1
|
Costa D, Scalise E, Ielapi N, Bracale UM, Faga T, Michael A, Andreucci M, Serra R. Omics Science and Social Aspects in Detecting Biomarkers for Diagnosis, Risk Prediction, and Outcomes of Carotid Stenosis. Biomolecules 2024; 14:972. [PMID: 39199360 PMCID: PMC11353051 DOI: 10.3390/biom14080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Carotid stenosis is characterized by the progressive narrowing of the carotid arteries due to the formation of atherosclerotic plaque, which can lead to stroke and death as major complications. Numerous biomarkers allow for its study and characterization, particularly those related to "omics" sciences. Through the most common research databases, we report representative studies about carotid stenosis biomarkers based on genomics, transcriptomics, proteomics, and metabolomics in a narrative review. To establish a priority among studies based on their internal validity, we used a quality assessment tool, the Scale for the Assessment of Narrative Review Articles (SANRA). Genes, transcriptomes, proteins, and metabolites can diagnose the disease, define plaque connotations, predict consequences after revascularization interventions, and associate carotid stenosis with other patient comorbidities. It also emerged that many aspects determining the patient's psychological and social sphere are implicated in carotid disease. In conclusion, when taking the multidisciplinary approach that combines human sciences with biological sciences, it is possible to comprehensively define a patient's health and thus improve their clinical management through precision medicine.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Roma, Italy;
| | | | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Ding R, Guan W, Yi M, Qin X, Wei S, Lu H, Wang Y, Lin C, Mei F, Xu H, Wu L. Identification of metabolic components of carotid plaque in high-risk patients utilizing liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9763. [PMID: 38745395 DOI: 10.1002/rcm.9763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Carotid atherosclerosis is a chronic progressive vascular disease that can be complicated by stroke in severe cases. Prompt diagnosis and treatment of high-risk patients are quite difficult due to the lack of reliable clinical biomarkers. This study aimed to explore potential plaque metabolic markers of stroke-prone risk and relevant targets for pharmacological intervention. METHOD Carotid intima and plaque sample tissues were obtained from 20 patients with cerebrovascular symptoms of carotid origin. An untargeted metabolomics approach based on liquid chromatography-tandem mass spectrometry was utilized to characterize the metabolic profiles of the tissues. Multivariate and univariate analysis tools were used. RESULTS A total of 154 metabolites were significantly altered in carotid plaque when compared with thickened intima. Of these, 62 metabolites were upregulated, whereas 92 metabolites were downregulated. Support vector machines identified the 15 most important metabolites, such as N-(cyclopropylmethyl)-N'-phenylurea, 9(S)-HOTrE, ACar 12:2, quinoxaline-2,3-dithiol, and l-thyroxine, as biomarkers for high-risk plaques. Metabolic pathway analysis showed that abnormal purine and nucleotide metabolism, amino acid metabolism, glutathione metabolism, and vitamin metabolism may contribute to the occurrence and progression of carotid atherosclerotic plaque. CONCLUSIONS Our study identifies the biomarkers and related metabolic mechanisms of carotid plaque, which is stroke-prone, and provides insights and ideas for the precise prevention and targeted intervention of the disease.
Collapse
Affiliation(s)
- Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenfei Guan
- Department of Vascular Surgery, Yichang Central People's Hospital, First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Man Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Wei
- Department of Oncology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Haoran Lu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunnan Lin
- Department of Neurosurgery, Maoming People's Hospital, Maoming, Guangdong, China
| | - Fei Mei
- Department of Vascular Surgery, Yichang Central People's Hospital, First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Haitao Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Chandran M, S S, Abhirami, Chandran A, Jaleel A, Plakkal Ayyappan J. Defining atherosclerotic plaque biology by mass spectrometry-based omics approaches. Mol Omics 2023; 19:6-26. [PMID: 36426765 DOI: 10.1039/d2mo00260d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is the principal cause of vascular diseases and one of the leading causes of worldwide death. Even though several insights into its natural course, risk factors and interventions have been identified, it is still an ongoing global pandemic. Since the structure and biochemical composition of the plaques show high heterogeneity, a comprehensive understanding of the intraplaque composition, its microenvironment, and the mechanisms of the progression and instability across different vascular beds at their progression stages is crucial for better risk stratification and treatment modalities. Even though several cell-based studies, animal studies, and extensive multicentric population studies have been conducted concerning cardiovascular diseases for assessing the risk factors and plaque biology, the studies on human clinical samples are very limited. New novel approaches utilize samples from percutaneous coronary interventions, which could possibly gain more access to clinical samples at different stages of the diseases without complex invasive resections. As an emerging technological platform in disease discovery research, mass spectrometry-based omics technologies offer capabilities for a comprehensive understanding of the mechanisms linked to several vascular diseases. Here, we discuss the cellular and molecular processes of atherosclerosis, different mass spectrometry-based omics approaches, and the studies mostly done on clinical samples of atheroma plaque using mass spectrometry-based proteomics, metabolomics and lipidomics approaches.
Collapse
Affiliation(s)
- Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India. .,Department of Biotechnology, University of Kerala, Thiruvananthapuram 695034, Kerala, India.,Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695012, India
| | - Sudhina S
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India.
| | - Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India.
| | - Akash Chandran
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram-695581, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695012, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India. .,Department of Biotechnology, University of Kerala, Thiruvananthapuram 695034, Kerala, India.,Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram-695581, Kerala, India.,Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| |
Collapse
|
4
|
Zhang R, Meng J, Wang X, Pu L, Zhao T, Huang Y, Han L. Metabolomics of ischemic stroke: insights into risk prediction and mechanisms. Metab Brain Dis 2022; 37:2163-2180. [PMID: 35612695 DOI: 10.1007/s11011-022-01011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Ischemic stroke (IS) is the most prevalent type of stroke. The early diagnosis and prognosis of IS are crucial for successful therapy and early intervention. Metabolomics, a tool in systems biology based on several innovative technologies, can be used to identify disease biomarkers and unveil underlying pathophysiological processes. Accordingly, in recent years, an increasing number of studies have identified metabolites from cerebral ischemia patients and animal models that could improve the diagnosis of IS and prediction of its outcome. In this paper, metabolomic research is comprehensively reviewed with a focus on describing the metabolic changes and related pathways associated with IS. Most clinical studies use biofluids (e.g., blood or plasma) because their collection is minimally invasive and they are ideal for analyzing changes in metabolites in patients of IS. We review the application of animal models in metabolomic analyses aimed at investigating potential mechanisms of IS and developing novel therapeutic approaches. In addition, this review presents the strengths and limitations of current metabolomic studies on IS, providing a reference for future related studies.
Collapse
Affiliation(s)
- Ruijie Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Jiajia Meng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Xihu District Center for Disease Control and Prevention, Hangzhou, 310013, Zhejiang, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Liyuan Pu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Tian Zhao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
- Medical Research Center, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China.
| | - Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
5
|
Lin CN, Hsu KC, Huang KL, Huang WC, Hung YL, Lee TH. Identification of Metabolomics Biomarkers in Extracranial Carotid Artery Stenosis. Cells 2022; 11:3022. [PMID: 36230983 PMCID: PMC9563778 DOI: 10.3390/cells11193022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The biochemical identification of carotid artery stenosis (CAS) is still a challenge. Hence, 349 male subjects (176 normal controls and 173 stroke patients with extracranial CAS ≥ 50% diameter stenosis) were recruited. Blood samples were collected 14 days after stroke onset with no acute illness. Carotid plaque score (≥2, ≥5 and ≥8) was used to define CAS severity. Serum metabolites were analyzed using a targeted Absolute IDQ®p180 kit. Results showed hypertension, diabetes, smoking, and alcohol consumption were more common, but levels of diastolic blood pressure, HDL-C, LDL-C, and cholesterol were lower in CAS patients than controls (p < 0.05), suggesting intensive medical treatment for CAS. PCA and PLS-DA did not demonstrate clear separation between controls and CAS patients. Decision tree and random forest showed that acylcarnitine species (C4, C14:1, C18), amino acids and biogenic amines (SDMA), and glycerophospholipids (PC aa C36:6, PC ae C34:3) contributed to the prediction of CAS. Metabolite panel analysis showed high specificity (0.923 ± 0.081, 0.906 ± 0.086 and 0.881 ± 0.109) but low sensitivity (0.230 ± 0.166, 0.240 ± 0.176 and 0.271 ± 0.169) in the detection of CAS (≥2, ≥5 and ≥8, respectively). The present study suggests that metabolomics profiles could help in differentiating between controls and CAS patients and in monitoring the progression of CAS.
Collapse
Affiliation(s)
- Chia-Ni Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Cheng Hsu
- School of Medicine, College of Medicine, Artificial Intelligence Center for Medical Diagnosis, and Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Kuo-Lun Huang
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Cheng Huang
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Lun Hung
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Shi M, He J, Li C, Lu X, He WJ, Cao J, Chen J, Chen JC, Bazzano LA, Li JX, He H, Gu D, Kelly TN. Metabolomics study of blood pressure salt-sensitivity and hypertension. Nutr Metab Cardiovasc Dis 2022; 32:1681-1692. [PMID: 35599090 PMCID: PMC9596959 DOI: 10.1016/j.numecd.2022.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Identify novel metabolite associations with blood pressure (BP) salt-sensitivity and hypertension. METHODS AND RESULTS The Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Replication study includes 698 Chinese participants who underwent a 3-day baseline examination followed by a 7-day low-sodium feeding and 7-day high-sodium feeding. Latent mixture models identified three trajectories of blood pressure (BP) responses to the sodium interventions. We selected 50 most highly salt-sensitive and 50 most salt-resistant participants for untargeted metabolomics profiling. Multivariable adjusted mixed logistic regression models tested the associations of baseline metabolites with BP salt-sensitivity. Multivariable adjusted mixed linear regression models tested the associations of BP salt-sensitivity with metabolite changes during the sodium interventions. Identified metabolites were tested for associations with hypertension among 1249 Bogalusa Heart Study (BHS) participants using multiple logistic regression. Fifteen salt-sensitivity metabolites were associated with hypertension in the BHS. Baseline values of serine, 2-methylbutyrylcarnitine and isoleucine directly associated with high salt-sensitivity. Among them, serine indirectly associated with hypertension while 2-methylbutyrylcarnitine and isoleucine directly associated with hypertension. Baseline salt-sensitivity status predicted changes in 14 metabolites when switching to low-sodium or high-sodium interventions. Among them, glutamate, 1-carboxyethylvaline, 2-methylbutyrylcarnitine, 3-methoxytyramine sulfate, glucose, alpha-ketoglutarate, hexanoylcarnitine, gamma-glutamylisoleucine, gamma-glutamylleucine, and gamma-glutamylphenylalanine directly associated with hypertension. Conversely, serine, histidine, threonate and 5-methyluridine indirectly associated with hypertension. Together, these metabolites explained an additional 7% of hypertension susceptibility when added to a model including traditional risk factors. CONCLUSIONS Our findings contribute to the molecular characterization of BP response to sodium and provide novel biological insights into salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - William J He
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ji-Chun Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Jian-Xin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.
| |
Collapse
|
7
|
Chen L, Chen Y, Wu L, Fu W, Wu L, Fu W. Efficacy of acupuncture on cognitive function in poststroke depression: study protocol for a randomized, placebo-controlled trial. Trials 2022; 23:85. [PMID: 35090538 PMCID: PMC8796526 DOI: 10.1186/s13063-022-06011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Poststroke depression (PSD) is the most common mental complication after stroke and has a serious impact on functional outcomes and quality of life. Antidepressants are the first-line treatment for PSD, but many reported side effects remain. Clinical research has shown that acupuncture has a positive effect on PSD. This trial aims to study the efficacy and safety of acupuncture for PSD and to explore its effect on cognitive function. It is hypothesized that acupuncture treatment improves depressive symptoms, cognitive behavior, and negative emotion processing bias in PSD. Methods In this randomized, placebo-controlled, single-blinded trial, fifty-six people with PSD will be randomly allocated into the intervention (n=28) or control (n=28) groups. The intervention group will receive acupuncture treatment, and the control group will receive sham acupuncture treatment, in 20 sessions over 4 weeks. The primary outcome is the change from baseline in the Hamilton Depression Scale-17 (HAMD-17) scores at week 4. Secondary outcomes include the Wisconsin Card Sorting Test (WCST) and latency and amplitude of P1, N170, and P3 of the event-related potentials (ERPs) components to assess the changes in cognitive function and electroencephalography. Outcomes are assessed at baseline and post intervention. Discussion Acupuncture therapy could become an alternative treatment for PSD, and it is expected that this trial will provide reliable clinical evidence for the future use of acupuncture for the treatment of PSD. Trial registration Chinese Clinical Trial Registry ChiCTR1900026948. Registered on 27 October 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06011-7.
Collapse
Affiliation(s)
- Ling Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lihua Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luanmian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Fu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Guangzhou University of Chinese Medicine, Guangzhou, China. .,Shenzhen Bao'an Research Center for Acupuncture and Moxibustion, Guangdong Province, Shenzhen, China. .,Sanming Project of Medicine in Shenzhen, Guangdong Province, Shenzhen, China.
| |
Collapse
|
8
|
Chen L, Chen Y, Fu WB, Huang DF, Lo WLA. The Effect of Virtual Reality on Motor Anticipation and Hand Function in Patients with Subacute Stroke: A Randomized Trial on Movement-Related Potential. Neural Plast 2022; 2022:7399995. [PMID: 35111219 PMCID: PMC8803454 DOI: 10.1155/2022/7399995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Impaired cognitive ability to anticipate the required control for an upcoming task in patients with stroke may affect rehabilitation outcome. The cortical excitability of task-related motor anticipation for upper limb movement induced by virtual reality (VR) training remains unclear. Aims To investigate the effect of VR training on the cortical excitability of motor anticipation when executing upper limb movement in patients with subacute stroke. Methods A total of thirty-six stroke survivors with upper limb hemiparesis resulting from the first occurrence of stroke within 1 to 3 months were recruited. Participants were randomly allocated to the VR intervention group or conventional therapy group. Event-related potentials (ERPs) and electromyography (EMG) were used to simultaneously record the cortical excitability and muscle activities during palmar grasp motion. Outcome measures of the contingent negative variation (CNV) latency and amplitude, EMG reaction time, Upper Limb Fugl-Meyer Assessment (UL-FMA), Action Research Arm Test (ARAT), and National Institutes of Health Stroke Scale (NIHSS) were recorded pre- and postintervention. The between-group difference was analysed by mixed model ANOVA. Results The EMG onset time of the paretic hand in the VR group was earlier than that observed in the control group (t = 2.174, p = 0.039) postintervention. CNV latency reduction postintervention was larger in the VR group than in the control group (t = 2.411, p = 0.021) during paretic hand movement. The reduction in CNV amplitude in the VR group was larger in the VR group than in the control group (p < 0.001 for all electrodes except for C3) when executing paretic hand movement. ARAT and UL-FMA scores were significantly higher in the VR group than in the control group (p = 0.019 and p = 0.037, respectively) postintervention. No significant difference in the reduction in NIHSS was found between the VR and control groups (p = 0.072). Conclusions VR intervention is superior to conventional therapy to improve the cognitive neural process of motor anticipation and reduce the excessive compensatory activation of the contralesional hemisphere. The improvements observed in the cognitive neural process corroborated with the improvements in hand function.
Collapse
Affiliation(s)
- Ling Chen
- Department of Acupuncture and Moxibustion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Bin Fu
- Department of Acupuncture and Moxibustion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Feng Huang
- Department of Rehabilitation, The First Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Sun Yat-sen University, Guangzhou 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation, The First Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Wang W, Wu J, Liu P, Tang X, Pang H, Xie T, Xu F, Shao J, Chen Y, Liu B, Zheng Y. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis and Phenotyping of Carotid Artery Stenosis. Front Mol Biosci 2021; 8:714706. [PMID: 34447787 PMCID: PMC8383446 DOI: 10.3389/fmolb.2021.714706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Carotid artery stenosis (CAS) is caused by the formation of atherosclerotic plaques inside the arterial wall and accounts for 20–30% of all strokes. The development of an early, noninvasive diagnostic method and the identification of high-risk patients for ischemic stroke is essential to the management of CAS in clinical practice. Methods: We used the data-independent acquisition (DIA) technique to conduct a urinary proteomic study in patients with CAS and healthy controls. We identified the potential diagnosis and risk stratification biomarkers of CAS. And Ingenuity pathway analysis was used for functional annotation of differentially expressed proteins (DEPs). Furthermore, receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic values of DEPs. Results: A total of 194 DEPs were identified between CAS patients and healthy controls by DIA quantification. The bioinformatics analysis showed that these DEPs were correlated with the pathogenesis of CAS. We further identified 32 DEPs in symptomatic CAS compared to asymptomatic CAS, and biological function analysis revealed that these proteins are mainly related to immune/inflammatory pathways. Finally, a biomarker panel of six proteins (ACP2, PLD3, HLA-C, GGH, CALML3, and IL2RB) exhibited potential diagnostic value in CAS and good discriminative power for differentiating symptomatic and asymptomatic CAS with high sensitivity and specificity. Conclusions: Our study identified novel potential urinary biomarkers for noninvasive early screening and risk stratification of CAS.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Xu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Shao
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Xue Y, Wang X, Zhao YY, Ma XT, Ji XK, Sang SW, Shao S, Yan P, Li S, Liu XH, Wang GB, Lv M, Xue FZ, Du YF, Sun QJ. Metabolomics and Lipidomics Profiling in Asymptomatic Severe Intracranial Arterial Stenosis: Results from a Population-Based Study. J Proteome Res 2020; 19:2206-2216. [PMID: 32297513 DOI: 10.1021/acs.jproteome.9b00644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuan Xue
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yuan-yuan Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiao-tong Ma
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiao-kang Ji
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong 250021, China
| | - Shao-wei Sang
- Department of Clinical Epidemiology, Qilu Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Sai Shao
- Department of Radiology, Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Peng Yan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Shan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiao-hui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Guang-bin Wang
- Department of Radiology, Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Ming Lv
- Department of Clinical Epidemiology, Qilu Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Fu-zhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong 250021, China
| | - Yi-feng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Qin-jian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
11
|
Gui YK, Li Q, Liu L, Zeng P, Ren RF, Guo ZF, Wang GH, Song JG, Zhang P. Plasma levels of ceramides relate to ischemic stroke risk and clinical severity. Brain Res Bull 2020; 158:122-127. [PMID: 32165273 DOI: 10.1016/j.brainresbull.2020.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/23/2020] [Accepted: 03/06/2020] [Indexed: 01/05/2023]
Abstract
Recent studies have suggested that specific plasma ceramides are independently associated with atherosclerosis and cardiovascular diseases, but it is currently unknown whether plasma ceramide levels are associated with ischemic stroke. Here, we examined whether ceramides were associated with both ischemic stroke risk and clinical severity at admission. We measured three previously identified high-risk plasma ceramide molecules [Cer(d18:1/16:0), Cer(d18:1/22:0), and Cer(d18:1/24:0)] in 202 patients with acute ischemic stroke and 202 age and sex matched control cases. Plasma ceramides levels were measured by a targeted liquid chromatography-tandem mass spectrometry assay at baseline. The median age of the 202 stroke patients was 66 (interquartile range [IQR], 58-75) years and 54.0 % were men. Plasma levels of C16:0, C22:0, and C24:0 ceramides in stroke patients were significantly higher than in those control cases (P < 0.001, all). In multivariate logistic regression analysis adjusted for other risk factors, higher levels of C16:0, C22:0, and C24:0 ceramides were associated with higher risk of ischemic stroke (odd ratio [OR] for one IQR increase: 2.15[1.42-2.99]; 2.90[2.13-4.01] and 1.29[1.10-1.69]; respectively). At admission, 103 patients (51.0 %) had a minor stroke (NIHSS < 6). In these patients, plasma levels of C16:0, C22:0, and C24:0 ceramides were lower than that observed in patients with moderate-to-high clinical severity (P < 0.001, all). In multivariate logistic regression analysis adjusted for other risk factors, higher levels of C16:0, C22:0, and C24:0 ceramides were associated with higher risk of moderate-to-high stroke (OR for one IQR increase: 2.96 [2.05-4.22], 3.03 [2.01-4.25] and 1.72 [1.25-3.31], respectively). An elevated plasma levels of ceramides were predictors of both risk and severity at admission in ischemic stroke patients. The underlying mechanisms of these associations remain to be investigated.
Collapse
Affiliation(s)
- Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qing Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Li Liu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ping Zeng
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Rui-Fang Ren
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhen-Fang Guo
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Gui-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Gui Song
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
12
|
Responsiveness and Predictive Ability of the Chinese Version of the Action Research Arm Test in People with Cerebral Infarction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8270187. [PMID: 31687400 PMCID: PMC6800965 DOI: 10.1155/2019/8270187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/30/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023]
Abstract
Purpose To detect the responsiveness and predictive ability of the Chinese version Action Research Arm Test (C-ARAT) in participants within the first 3 months after cerebral infarction. Methods Ninety-seven individuals (75 men, mean age 59.87 ± 10.94 years) with a first cerebral infarction were enrolled in this study. The participants were evaluated by two outcome measures: C-ARAT and the Barthel Activities of Daily Living Index (BI) at five time points: 0D, 3W, 3M, 6M and 1Y after enrolment. The standardised response mean (SRM) and the Wilcoxon signed rank test were used to analyse responsiveness. Predictive validity was determined by using Spearman's rank correlation coefficients. The predicted performance of C-ARAT on activities of daily living (ADLs) was measured by linear regression model. Floor and ceiling effects were estimated by counting the proportion of subjects falling outside the 5% lower or upper boundary, respectively. Results The C-ARAT showed moderate to large responsiveness in detecting changes over time (SRM = 0.58-0.84). The C-ARAT subscales showed small to large responsiveness (SRM = 0.44-0.90). The C-ARAT at 0D showed moderate to good correlation with the BI scores at 3W, 3M and 6M (ρ = 0.561-0.624, p < 0.001), and exhibited fair correlation with the BI score 1Y after enrolment (ρ = 0.384, p < 0.05). C-ARAT was a good predictor (adjusted R 2 = 0.185-0.249) of BI within 3M follow-up. The C-ARAT total score showed a notable floor effect at 0D and 3W and a notable ceiling effect at 3M, 6M and 1Y. Conclusion The results of this study support the use of the C-ARAT as a measurement of upper extremity function in individuals with a first cerebral infarction.
Collapse
|
13
|
Onida S, Tan MKH, Kafeza M, Bergner RT, Shalhoub J, Holmes E, Davies AH. Metabolic Phenotyping in Venous Disease: The Need for Standardization. J Proteome Res 2019; 18:3809-3820. [PMID: 31617359 DOI: 10.1021/acs.jproteome.9b00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Venous thromboembolism (VTE), chronic venous disease (CVD), and venous leg ulceration (VLU) are clinical manifestations of a poorly functioning venous system. Though common, much is unknown of the pathophysiology and progression of these conditions. Metabolic phenotyping has been employed to explore mechanistic pathways involved in venous disease. A systematic literature review was performed: full text, primary research articles on the applications of nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) in human participants and animals were included for qualitative synthesis. Seventeen studies applying metabolic phenotyping to venous disease were identified: six on CVD, two on VLU, and nine on VTE; both animal (n = 6) and human (n = 10) experimental designs were reported, with one study including both. NMR, MS, and MS imaging were employed to characterize serum, plasma, urine, wound fluid, and tissue. Metabolites found to be upregulated in CVD included lipids, branched chain amino acids (BCAA), glutamate, taurine, lactate, and myo-inositol identified in vein tissue. Upregulated metabolites in VLU included lactate, BCAA, lysine, 3-hydroxybutyrate, and glutamate identified in wound fluid and ulcer biopsies. VTE cases were associated with reduced carnitine levels, upregulated aromatic amino acids, 3-hydroxybutyrate, BCAA, and lipids in plasma, serum, thrombus, and vein wall; kynurenine and tricarboxylic acid pathway dysfunction were reported. Future research should focus on targeted studies with internal and external validation.
Collapse
Affiliation(s)
- Sarah Onida
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Matthew K H Tan
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Marina Kafeza
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Richmond T Bergner
- Section of Computational and Systems Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, Prince Consort Road , Kensington, London SW7 2BB , U.K
| | - Joseph Shalhoub
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| | - Elaine Holmes
- Section of Computational and Systems Medicine, Department of Surgery and Cancer , Imperial College London , Sir Alexander Fleming Building, Prince Consort Road , Kensington, London SW7 2BB , U.K.,Health Futures Institute , Murdoch University , Discovery Way , Perth , WA 6150 , Australia
| | - Alun H Davies
- Academic Section of Vascular Surgery, Department of Surgery and Cancer , Imperial College London , Floor 4 East, Charing Cross Hospital, Fulham Palace Road , London W6 8RF , U.K
| |
Collapse
|
14
|
Lee TH, Cheng ML, Shiao MS, Lin CN. Metabolomics study in severe extracranial carotid artery stenosis. BMC Neurol 2019; 19:138. [PMID: 31234801 PMCID: PMC6589885 DOI: 10.1186/s12883-019-1371-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Significant genetic association has been found in patients with severe carotid artery stenosis (CAS). The present study wished to investigate if metabolites may also act as biomarkers for CAS. METHODS Consecutive patients with at least one carotid artery stenosis > = 60% on cerebral angiography were prospectively recruited from May 2007 to January 2016. Normal controls were recruited from outpatient clinic who had no stroke and coronary artery disease (CAD) history, and the brain magnetic resonance or computed tomographic angiography showed bilateral CAS < 30%. Risk factor profile, clinical characteristics, age, and clinical features were recorded. All subjects were male, and none had diabetes. 1H-NMR spectroscopy-based metabolomics analysis was carried out for plasma samples. RESULTS Totally, 130 male subjects were recruited. Age had no significant difference between the controls and CAS group (60.2 ± 5.9 vs. 63.3 ± 6.0, p = 0.050). The CAS group had significantly higher frequency of CAD, hypertension, smoking and alcohol but lower body mass index than the controls (p < 0.05). The laboratory tests showed CAS group had significantly higher level of homocysteine but lower levels of cholesterol, high-density lipoprotein and hemoglobin than the controls (p < 0.05). The 1H-NMR based plasma metabolomics analysis indicated that choline was significantly lower in CAS patients. The VIP values of lipids were greater than 1.0, which were considered significantly different. CONCLUSIONS Our results suggest homocysteine, choline and lipids in association with traditional risk factors may be involved in the pathogenesis of CAS. Diet adjustment to control homocysteine, choline and lipids may be helpful for the prevention of CAS.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ni Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Kirlikaya B, Langridge B, Davies A, Onida S. Metabolomics as a tool to improve decision making for the vascular surgeon – wishful thinking or a dream come true? Vascul Pharmacol 2019; 116:1-3. [DOI: 10.1016/j.vph.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
|
16
|
Yang DB, Zhou J, Feng L, Xu R, Wang YC. Value of superb micro-vascular imaging in predicting ischemic stroke in patients with carotid atherosclerotic plaques. World J Clin Cases 2019; 7:839-848. [PMID: 31024955 PMCID: PMC6473120 DOI: 10.12998/wjcc.v7.i7.839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Unstable carotid atherosclerotic plaques are prone to cause ischemic stroke. Contrast-enhanced ultrasound (CEUS) is the primary method of assessing plaque stability, but CEUS cannot be a method for screening for unstable plaque. The emergence of superb micro-vascular imaging (SMI) offers the possibility of clinically screening for unstable plaque
AIM To investigate the value of SMI in predicting ischemic stroke in patients with carotid atherosclerotic plaques.
METHODS Patients with carotid atherosclerotic plaques (luminal stenosis of 50%-70%) were enrolled into the present study. All patients received conservative medication. The patient's clinical baseline data, serological data, CEUS and SMI data were analyzed. All patients underwent a 3-year follow-up. The follow-up endpoint was the occurrence of ischemic stroke and patients were divided into stroke group and non-stroke group according to whether the prognosis occurred or not. Subsequently, the difference in clinical data was compared, the correlation of SMI and CEUS was analyzed, and multiple Cox regression and receiver operating characteristic curve were applied to investigate the value of SMI and CEUS in predicting cerebral arterial thrombosis in three years.
RESULTS In this study, 43 patients were enrolled in the stroke group and 82 patients were enrolled in the non-stroke group. Cox regression revealed that SMI level (P = 0.013) and enhancement intensity (P = 0.032) were the independent factors influencing ischemic stroke. There was a positive correlation between SMI level and enhancement intensity (r = 0.737, P = 0.000). The area under curve of SMI level predicting ischemic stroke was 0.878. The best diagnostic point was ≥ level II, and its sensitivity and specificity was 86.05% and 79.27%. The area under curve of enhancement intensity predicting ischemic stroke was 0.890. The best diagnostic point was 9.92 db, and its sensitivity and specificity was 88.37% and 89.02%. As the SMI level gradually increased, the incidence of ischemic stroke increased gradually (X2 = 108.931, P = 0.000).
CONCLUSION SMI can be used as a non-invasive method of screening for unstable plaques and may help prevent ischemic stroke.
Collapse
Affiliation(s)
- De-Bin Yang
- Department of Ultrasonic Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Jie Zhou
- Department of Ultrasonic Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Lan Feng
- Department of Ultrasonic Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Rong Xu
- Department of Ultrasonic Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Ying-Chun Wang
- Department of Ultrasonic Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| |
Collapse
|
17
|
Sun D, Tiedt S, Yu B, Jian X, Gottesman RF, Mosley TH, Boerwinkle E, Dichgans M, Fornage M. A prospective study of serum metabolites and risk of ischemic stroke. Neurology 2019; 92:e1890-e1898. [PMID: 30867269 PMCID: PMC6550501 DOI: 10.1212/wnl.0000000000007279] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To identify promising blood-based biomarkers and novel etiologic pathways of disease risk, we applied an untargeted serum metabolomics profiling in a community-based prospective study of ischemic stroke (IS). METHODS In 3,904 men and women from the Atherosclerosis Risk In Communities study, Cox proportional hazard models were used to estimate the association of incident IS with the standardized level of 245 fasting serum metabolites individually, adjusting for age, sex, race, field center, batch, diabetes, hypertension, current smoking status, body mass index, and estimated glomerular filtration rate. Validation of results was carried out in an independent sample of 114 IS cases and 112 healthy controls. RESULTS Serum levels of 2 long-chain dicarboxylic acids, tetradecanedioate and hexadecanedioate, were strongly correlated (r = 0.88) and were associated with incident IS after adjusting for covariates (hazard ratio [95% confidence interval (CI)] 1.11 [1.06-1.16] and 1.12 [1.07-1.17], respectively; p < 0.0001). Analyses by IS subtypes suggested that these associations were specific to cardioembolic stroke (CES). Associations of tetradecanedioate and hexadecanedioate with IS were independently confirmed (odds ratio [95% CI] 1.76 [1.21; 2.56] and 1.60 [1.11; 2.32], respectively). CONCLUSION Two serum long-chain dicarboxylic acids, metabolic products of ω-oxidation of fatty acids, were associated with IS and CES independently of known risk factors. Pathways related to intracellular hexadecanedioate synthesis or those involved in its clearance from the circulation may mediate IS risk. These results highlight the potential of metabolomics to discover novel circulating biomarkers for stroke and to unravel novel pathways for IS and its subtypes.
Collapse
Affiliation(s)
- Daokun Sun
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Steffen Tiedt
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Bing Yu
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Xueqiu Jian
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Rebecca F Gottesman
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Thomas H Mosley
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Eric Boerwinkle
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Martin Dichgans
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Myriam Fornage
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany.
| |
Collapse
|
18
|
Metabolomics as an Innovative Tool for a Personalised Approach to Vascular Disease. Eur J Vasc Endovasc Surg 2019; 57:329-330. [PMID: 30718034 DOI: 10.1016/j.ejvs.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
|
19
|
Chen L, Mao Y, Ding M, Li L, Leng Y, Zhao J, Xu Z, Huang DF, Lo WLA. Assessing the Relationship Between Motor Anticipation and Cortical Excitability in Subacute Stroke Patients With Movement-Related Potentials. Front Neurol 2018; 9:881. [PMID: 30386292 PMCID: PMC6199379 DOI: 10.3389/fneur.2018.00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/28/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Stroke survivors may lack the cognitive ability to anticipate the required control for palmar grasp execution. The cortical mechanisms involved in motor anticipation of palmar grasp movement and its association with post-stroke hand function remains unknown. Aims: To investigate the cognitive anticipation process during a palmar grasp task in subacute stroke survivors and to compare with healthy individuals. The association between cortical excitability and hand function was also explored. Methods: Twenty-five participants with hemiparesis within 1-6 months after first unilateral stroke were recruited. Twenty-five matched healthy individuals were recruited as control. Contingent negative variation (CNV) was measured using electroencephalography recordings (EEG). Event related potentials were elicited by cue triggered hand movement paradigm. CNV onset time and amplitude between pre-cue and before movement execution were recorded. Results: The differences in CNV onset time and peak amplitude were statistically significant between the subacute stroke and control groups, with patients showing earlier onset time with increased amplitudes. However, there was no statistically significant difference in CNV onset time and peak amplitude between lesioned and non-lesioned hemisphere in the subacute stroke group. Low to moderate linear associations were observed between cortical excitability and hand function. Conclusions: The earlier CNV onset time and higher peak amplitude observed in the subacute stroke group suggest increased brain computational demand during palmar grasp task. The lack of difference in CNV amplitude between the lesioned and non-lesioned hemisphere within the subacute stroke group may suggest that the non-lesioned hemisphere plays a role in the motor anticipatory process. The moderate correlations suggested that hand function may be associated with cortical processing of motor anticipation.
Collapse
Affiliation(s)
- Ling Chen
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Acupuncture and Moxibustion, The Secondary Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yurong Mao
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Feng Huang
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Targeted metabolomic approach in men with carotid plaque. PLoS One 2018; 13:e0200547. [PMID: 30011297 PMCID: PMC6047792 DOI: 10.1371/journal.pone.0200547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the study was to analyse the presence of several metabolites related to atherosclerosis in the plasma of patients with unstable carotid plaque and in the plasma of healthy subjects. Materials and methods We included 20 patients who had undergone carotid endarterectomy and 20 healthy subjects as a control group. All the subjects recruited were male. We used a metabolomic approach with liquid chromatography coupled to mass spectrometry to evaluate plasma metabolite levels in the metabolic pathway involved in the progression of atherosclerotic plaque. Results We observed that circulating levels of 20-HETE were significantly higher in patients with atheroma plaque than in healthy subjects (p = 0.018). No differences were found with regard to the other metabolites analysed. We also conducted a random forest analysis and found that 20-HETE was the main differentiator in the list of selected metabolites. In addition, plasma levels of 20-HETE correlated positively with body mass index (r = 0.427, p = 0.007) and diastolic blood pressure (r = 0.365, p = 0.028). Conclusion This study confirms that of all the molecules studied only 20-HETE is related to carotid plaque. Further studies are needed to compare patients with stable carotid plaque vs. patients with unstable carotid plaque in order to confirm that 20-HETE could be a potential factor related to carotid plaque.
Collapse
|
21
|
Abstract
Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
Collapse
|
22
|
Expanding lipidome coverage using MS/MS-aided untargeted data-independent RP-UPLC-TOF-MS E acquisition. Bioanalysis 2018; 10:307-319. [PMID: 29494215 DOI: 10.4155/bio-2017-0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipid function and importance in disease are being rediscovered due to modern advancements in chemical analysis. RP-UPLC-TOF-MSE is now the lipidomics tool of choice and can provide the demanded specificity for detecting the great diversity of the lipidome. It can offer simplicity, rapidity, robustness and high throughputness, without the need for further optimization in current sample preparation protocols. This method can cover the major lipid categories with the ability to detect several corresponding subclasses. It can deliver adequate information for deciphering fatty chain length, unsaturation and regioisomerism. It has enabled the detection of a vast number of lipids, of which more than 250 are reported here. These lipids were detected from applications in a variety of biological matrices and species.
Collapse
|
23
|
Jung S, Song SW, Lee S, Kim SH, Ann SJ, Cheon EJ, Yi G, Choi EY, Lee SH, Joo HC, Ryu DH, Lee SH, Hwang GS. Metabolic phenotyping of human atherosclerotic plaques: Metabolic alterations and their biological relevance in plaque-containing aorta. Atherosclerosis 2018; 269:21-28. [DOI: 10.1016/j.atherosclerosis.2017.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
|
24
|
Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol 2018; 68:335-352. [PMID: 29122390 DOI: 10.1016/j.jhep.2017.09.021] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common forms of chronic liver disease worldwide and its prevalence is expected to continue rising. NAFLD has traditionally been considered a consequence of metabolic syndrome (MetS). However, the link between NAFLD and MetS components, especially type 2 diabetes mellitus (T2DM), hypertension (HTN), and cardiovascular disease (CVD) is more complex than previously thought. Indeed, the adverse effects of NAFLD extend far beyond the liver, with a large body of clinical evidence now suggesting that NAFLD may precede and/or promote the development of T2DM, HTN and atherosclerosis/CVD. The risk of developing these cardiometabolic diseases parallels the underlying severity of NAFLD. Accumulating evidence suggests that the presence and severity of NAFLD is associated with an increased risk of incident T2DM and HTN. Moreover, long-term prospective studies indicate that the presence and severity of NAFLD independently predicts fatal and nonfatal CVD events. In this review, we critically discuss the rapidly expanding body of clinical evidence that supports the existence of a bi-directional relationship between NAFLD and various components of MetS, particularly T2DM and HTN, as well as the current knowledge regarding a strong association between NAFLD and CVD morbidity and mortality. Finally, we discuss the most updated putative biological mechanisms through which NAFLD may contribute to the development of HTN, T2DM and CVD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, Modena, Italy
| | - Fabio Nascimbeni
- Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, Modena, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| |
Collapse
|
25
|
Vorkas PA, Abellona U MR, Li JV. Tissue Multiplatform-Based Metabolomics/Metabonomics for Enhanced Metabolome Coverage. Methods Mol Biol 2018; 1738:239-260. [PMID: 29654595 DOI: 10.1007/978-1-4939-7643-0_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of tissue as a matrix to elucidate disease pathology or explore intervention comes with several advantages. It allows investigation of the target alteration directly at the focal location and facilitates the detection of molecules that could become elusive after secretion into biofluids. However, tissue metabolomics/metabonomics comes with challenges not encountered in biofluid analyses. Furthermore, tissue heterogeneity does not allow for tissue aliquoting. Here we describe a multiplatform, multi-method workflow which enables metabolic profiling analysis of tissue samples, while it can deliver enhanced metabolome coverage. After applying a dual consecutive extraction (organic followed by aqueous), tissue extracts are analyzed by reversed-phase (RP-) and hydrophilic interaction liquid chromatography (HILIC-) ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy. This pipeline incorporates the required quality control features, enhances versatility, allows provisional aliquoting of tissue extracts for future guided analyses, expands the range of metabolites robustly detected, and supports data integration. It has been successfully employed for the analysis of a wide range of tissue types.
Collapse
Affiliation(s)
- Panagiotis A Vorkas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - M R Abellona U
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Digestive and Gut Health, Institute of Global Health Innovation, Imperial College London, London, UK
| |
Collapse
|
26
|
Bahado-Singh RO, Lugade A, Field J, Al-Wahab Z, Han B, Mandal R, Bjorndahl TC, Turkoglu O, Graham SF, Wishart D, Odunsi K. Metabolomic prediction of endometrial cancer. Metabolomics 2017; 14:6. [PMID: 30830361 DOI: 10.1007/s11306-017-1290-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Endometrial cancer (EC) is associated with metabolic disturbances including obesity, diabetes and metabolic syndrome. Identifying metabolite biomarkers for EC detection has a crucial role in reducing morbidity and mortality. OBJECTIVE To determine whether metabolomic based biomarkers can detect EC overall and early-stage EC. METHODS We performed NMR and mass spectrometry based metabolomic analyses of serum in EC cases versus controls. A total of 46 early-stage (FIGO stages I-II) and 10 late-stage (FIGO stages III-IV) EC cases constituted the study group. A total of 60 unaffected control samples were used. Patients and controls were divided randomly into a discovery group (n = 69) and an independent validation group (n = 47). Predictive algorithms based on biomarkers and demographic characteristics were generated using logistic regression analysis. RESULTS A total of 181 metabolites were evaluated. Extensive changes in metabolite levels were noted in the EC versus the control group. The combination of C14:2, phosphatidylcholine with acyl-alkyl residue sum C38:1 (PCae C38:1) and 3-hydroxybutyric acid had an area under the receiver operating characteristics curve (AUC) (95% CI) = 0.826 (0.706-0.946) and a sensitivity = 82.6%, and specificity = 70.8% for EC overall. For early EC prediction: BMI, C14:2 and PC ae C40:1 had an AUC (95% CI) = 0.819 (0.689-0.95) and a sensitivity = 72.2% and specificity = 79.2% in the validation group. CONCLUSIONS EC is characterized by significant perturbations in important cellular metabolites. Metabolites accurately detected early-stage EC cases and EC overall which could lead to the development of non-invasive biomarkers for earlier detection of EC and for monitoring disease recurrence.
Collapse
Affiliation(s)
- Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, William Beaumont Health, Royal Oak, MI, 48073, USA.
| | - Amit Lugade
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jayson Field
- Department of Gynecologic Oncology, William Beaumont Health, Royal Oak, MI, USA
| | - Zaid Al-Wahab
- Department of Gynecologic Oncology, William Beaumont Health, Royal Oak, MI, USA
| | - BeomSoo Han
- Departments of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Rupasri Mandal
- Departments of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Trent C Bjorndahl
- Departments of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, William Beaumont Health, Royal Oak, MI, 48073, USA
| | - Stewart F Graham
- Department of Obstetrics and Gynecology, William Beaumont Health, Royal Oak, MI, 48073, USA
| | - David Wishart
- Departments of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
- Department of Computing Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
27
|
Connecting the Dots Between Fatty Acids, Mitochondrial Function, and DNA Methylation in Atherosclerosis. Curr Atheroscler Rep 2017; 19:36. [PMID: 28735349 DOI: 10.1007/s11883-017-0673-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The quest for factors and mechanisms responsible for aberrant DNA methylation in human disease-including atherosclerosis-is a promising area of research. This review focuses on the role of fatty acids (FAs) as modulators of DNA methylation-in particular the role of mitochondrial beta-oxidation in FA-induced changes in DNA methylation during the progression of atherosclerosis. RECENT FINDINGS Recent publications have advanced the knowledge in all areas touched by this review: the causal role of lipids in shaping the DNA methylome, the associations between chronic degenerative disease and mitochondrial function, the lipid composition of the atheroma, and the relevance of DNA hypermethylation in atherosclerosis. Evidence is beginning to emerge, linking the dynamics of FA type abundance, mitochondrial function, and DNA methylation in the atheroma and systemically. In particular, this review highlights mitochondrial beta-oxidation as an important regulator of DNA methylation in metabolic disease. Despite the many questions still unanswered, this area of research promises to identify mechanisms and molecular factors that establish a pathological gene expression pattern in atherosclerosis.
Collapse
|
28
|
Effect of Virtual Reality on Postural and Balance Control in Patients with Stroke: A Systematic Literature Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7309272. [PMID: 28053988 PMCID: PMC5174165 DOI: 10.1155/2016/7309272] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/06/2016] [Indexed: 01/28/2023]
Abstract
Objective. To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population. Method. A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. Results. Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group. Conclusions. This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome.
Collapse
|