1
|
Wu Y, Jiang H, Hu Y, Dai H, Zhao Q, Zheng Y, Liu W, Rui H, Liu B. B cell dysregulation and depletion therapy in primary membranous nephropathy: Prospects and potential challenges. Int Immunopharmacol 2024; 140:112769. [PMID: 39098228 DOI: 10.1016/j.intimp.2024.112769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
B cells are crucial to the humoral immune response, originating in the bone marrow and maturing in the spleen and lymph nodes. They primarily function to protect against a wide range of infections through the secretion of antibodies. The role of B cells in primary membranous nephropathy (PMN) has gained significant attention, especially following the discovery of various autoantibodies that target podocyte antigens and the observed positive outcomes from B cell depletion therapy. Increasing evidence points to the presence of abnormal B cell subsets and functions in MN. B cells have varied roles during the different stages of disease onset, progression, and relapse. Initially, B cells facilitate self-antigen presentation, activate effector T cells, and initiate cellular immunity. Subsequently, the disruption of both central and peripheral immune tolerance results in the emergence of autoreactive B cells, with strong germinal center responses as a major source of MN autoantibodies. Additionally, critical B cell subsets, including Bregs, memory B cells, and plasma cells, play roles in the immune dysregulation observed in MN, assisting in predicting disease recurrence and guiding management strategies for MN. This review offers a detailed overview of research advancements on B cells and elucidates their pathological roles in MN.
Collapse
Affiliation(s)
- Yadi Wu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100310, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China.
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Luo C, Wei C, He Z, Feng R. Overview of Immunological Response in Urological Membranous Nephropathy: Focus on Cytokine and Treatment Options. J Interferon Cytokine Res 2024. [PMID: 39453643 DOI: 10.1089/jir.2024.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Membranous nephropathy (MN) is an autoimmune disease that is caused by the production of autoantibody against glomerular podocyte antigens by immune cells due to the lack of self-tolerance mechanisms. Similar to many autoimmune diseases, the pathogenesis of MN is still vague and many experiments are being conducted to detect the antigens and genetic reasons for MN illness. Recently, new antigens, such as exotosin 1/exotosin 2, neural EGF-like-1, semaphorin 3B, and protocadherin 7 have been identified in MN patients who did not have presence of antiphospholipase A2 receptor antigen. What is more, cytokines, which are molecules that regulate immune responses, have been found to have harmful effects in various autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and MN. The role of cytokines and treatment strategies in MN patients is discussed in this article. As the understanding of the disease improves, targeted therapies that focus on specific antigens or cytokines may be developed to effectively manage MN.
Collapse
Affiliation(s)
- Chao Luo
- Urology Surgery, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Chengcheng Wei
- Urology Surgery, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Zhaoxian He
- Urology Surgery, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Renlei Feng
- Department of Geriatrics, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Huang Z, Gunarathne SMS, Liu W, Zhou Y, Jiang Y, Li S, Huang J. PhIP-Seq: methods, applications and challenges. FRONTIERS IN BIOINFORMATICS 2024; 4:1424202. [PMID: 39295784 PMCID: PMC11408297 DOI: 10.3389/fbinf.2024.1424202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Phage-immunoprecipitation sequencing (PhIP-Seq) technology is an innovative, high-throughput antibody detection method. It enables comprehensive analysis of individual antibody profiles. This technology shows great potential, particularly in exploring disease mechanisms and immune responses. Currently, PhIP-Seq has been successfully applied in various fields, such as the exploration of biomarkers for autoimmune diseases, vaccine development, and allergen detection. A variety of bioinformatics tools have facilitated the development of this process. However, PhIP-Seq technology still faces many challenges and has room for improvement. Here, we review the methods, applications, and challenges of PhIP-Seq and discuss its future directions in immunological research and clinical applications. With continuous progress and optimization, PhIP-Seq is expected to play an even more important role in future biomedical research, providing new ideas and methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqing Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
4
|
Cai A, Meng Y, Zhou H, Cai H, Shao X, Wang Q, Xu Y, Zhou Y, Zhou W, Chen L, Mou S. Podocyte Pathogenic Bone Morphogenetic Protein-2 Pathway and Immune Cell Behaviors in Primary Membranous Nephropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404151. [PMID: 38785168 PMCID: PMC11304328 DOI: 10.1002/advs.202404151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Primary membranous nephropathy (PMN) is one of the leading causes of end-stage renal disease, and the most frequent cause of massive proteinuria in nondiabetic adults, resulting in fatal complications. However, the underlying pathomechanisms of PMN remain largely unclear. Here, single-cell RNA sequencing is employed to analyze kidney biopsies from eleven PMN patients and seven healthy subjects. Profiling 44 060 cells from patients allowed us to characterize the cellular composition and cell-type-specific gene expression in the PMN kidney. The complement-induced BMP2/pSMAD1/COL4 pathway is identified as the pathogenic pathway in podocytes, bridging two key events, i.e., complement system activation and glomerular basement membrane thickening in PMN. Augmented infiltration and activation of myeloid leukocytes and B lymphocytes are found, profiling delicate crosstalk of immune cells in PMN kidneys. Overall, these results provide valuable insights into the roles of podocytes and immune cells in PMN, and comprehensive resources toward the complete understanding of PMN pathophysiology.
Collapse
Affiliation(s)
- Anxiang Cai
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yiwei Meng
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Institute of Molecular Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hang Zhou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hong Cai
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qin Wang
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yao Xu
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yin Zhou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenyan Zhou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai201210China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
5
|
Wang M, Yang J, Fang X, Lin W, Yang Y. Membranous nephropathy: pathogenesis and treatments. MedComm (Beijing) 2024; 5:e614. [PMID: 38948114 PMCID: PMC11214595 DOI: 10.1002/mco2.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Membranous nephropathy (MN), an autoimmune disease, can manifest at any age and is among the most common causes of nephrotic syndrome in adults. In 80% of cases, the specific etiology of MN remains unknown, while the remaining cases are linked to drug use or underlying conditions like systemic lupus erythematosus, hepatitis B virus, or malignancy. Although about one-third of patients may achieve spontaneous complete or partial remission with conservative management, another third face an elevated risk of disease progression, potentially leading to end-stage renal disease within 10 years. The identification of phospholipase A2 receptor as the primary target antigen in MN has brought about a significant shift in disease management and monitoring. This review explores recent advancements in the pathophysiology of MN, encompassing pathogenesis, clinical presentations, diagnostic criteria, treatment options, and prognosis, with a focus on emerging developments in pathogenesis and therapeutic strategies aimed at halting disease progression. By synthesizing the latest research findings and clinical insights, this review seeks to contribute to the ongoing efforts to enhance our understanding and management of this challenging autoimmune disorder.
Collapse
Affiliation(s)
- Mengqiong Wang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Jingjuan Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Xin Fang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Yi Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| |
Collapse
|
6
|
Wang H, Lan L, Wang J, Chen J, Xiao L, Han F. Alterations of B-Cell subsets in Peripheral Blood from Adult Patients with Idiopathic Membranous Nephropathy. Immunol Lett 2024; 266:106838. [PMID: 38278305 DOI: 10.1016/j.imlet.2024.106838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES Idiopathic membranous nephropathy (MN) is an autoimmune disease characterized by specific antibodies. However, the underlying mechanisms by which lymphocytes promote the development of MN remain poorly understood. This study aims to determine the changes of B-cell subsets and their clinical significance in MN patients. METHODS We included a cohort of 21 idiopathic MN patients with new onset or a relapse, 19 healthy controls (HCs) and 10 patients with minimal change disease (MCD). Immunohistochemistry and flow cytometry were performed to assess the B-cell infiltration in renal biopsy tissues and peripheral blood, respectively. RESULTS Idiopathic MN patients (including new-onset and relapse groups) had lower percentages of marginal-zone B (MZB) and non-switched memory B cells, and higher percentages of plasmablasts than HCs (P < 0.01). Particularly, the new-onset group had lower percentages of switched memory B cells and MZB cells, and higher percentages of Naïve B cells than HCs (P<0.05). Interestingly, the percentage of plasmablasts was significantly correlated with urine protein to creatinine ratio, serum albumin, IgG, anti-M-type phospholipase A2 receptor antibody level and age in MN patients (P < 0.05). MN with Ehrenreich-Churg stage Ⅱ-Ⅳ had a lower median percentage of MZB and non-switched memory B cells, while a higher median percentage of plasmablasts than those in MN patients with stage Ehrenreich-Churg I (P < 0.05). CONCLUSION Idiopathic MN patients had specific changes in B-cell subsets proportions in peripheral blood. Further studies are needed to precisely determine the roles of B-cell subsets in MN.
Collapse
Affiliation(s)
- Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China; Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jiahui Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Liang Xiao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China.
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Efe O, So PNH, Anandh U, Lerma EV, Wiegley N. An Updated Review of Membranous Nephropathy. Indian J Nephrol 2024; 34:105-118. [PMID: 38681023 PMCID: PMC11044666 DOI: 10.25259/ijn_317_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 05/01/2024] Open
Abstract
Membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in adults. The discovery of phospholipase A2 receptor (PLA2R) as a target antigen has led to a paradigm shift in the understanding and management of MN. At present, serum PLA2R antibodies are used for diagnosis, prognostication, and guiding treatment. Now, with the discovery of more than 20 novel target antigens, antigen mapping is almost complete. The clinical association of certain antigens provides clues for clinicians, such as the association of nerve epidermal growth factor-like 1 with malignancies and indigenous medicines. Serum antibodies are detected for most target antigens, except exostosin 1 and 2 and transforming growth factor-beta receptor 3, but their clinical utility is yet to be defined. Genome-wide association studies and studies investigating environmental factors, such as air pollution, shed more light on the underpinnings of MN. The standard therapy of MN diversified from cyclical cyclophosphamide and steroids to include rituximab and calcineurin inhibitors over the past decades. Here, we provide a cutting-edge review of MN, focusing on genetics, immune system and environmental factors, novel target antigens and their clinical characteristics, and currently available and emerging novel therapies in MN.
Collapse
Affiliation(s)
- Orhan Efe
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital; Harvard Medical School, Boston, USA
| | | | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Delhi, NCR, India
| | - Edgar V. Lerma
- Department of Medicine, University of Illinois at Chicago; Advocate Christ Medical Center, Oak Lawn, Illinois, USA
| | - Nasim Wiegley
- Division of Nephrology, Department of Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Perico L, Casiraghi F, Sônego F, Todeschini M, Corna D, Cerullo D, Pezzotta A, Isnard-Petit P, Faravelli S, Forneris F, Thiam K, Benigni A, Remuzzi G. Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front Immunol 2024; 15:1335998. [PMID: 38469301 PMCID: PMC10926275 DOI: 10.3389/fimmu.2024.1335998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction In autoimmune diseases, autoreactive B cells comprise only the 0.1-0.5% of total circulating B cells. However, current first-line treatments rely on non-specific and general suppression of the immune system, exposing patients to severe side effects. For this reason, identification of targeted therapies for autoimmune diseases is an unmet clinical need. Methods Here, we designed a novel class of immunotherapeutic molecules, Bi-specific AutoAntigen-T cell Engagers (BiAATEs), as a potential approach for targeting the small subset of autoreactive B cells. To test this approach, we focused on a prototype autoimmune disease of the kidney, membranous nephropathy (MN), in which phospholipase A2 receptor (PLA2R) serves as primary nephritogenic antigen. Specifically, we developed a BiAATE consisting of the immunodominant Cysteine-Rich (CysR) domain of PLA2R and the single-chain variable fragment (scFv) of an antibody against the T cell antigen CD3, connected by a small flexible linker. Results BiAATE creates an immunological synapse between autoreactive B cells bearing an CysR-specific surface Ig+ and T cells. Ex vivo, the BiAATE successfully induced T cell-dependent depletion of PLA2R-specific B cells isolated form MN patients, sparing normal B cells. Systemic administration of BiAATE to mice transgenic for human CD3 reduced anti-PLA2R antibody levels following active immunization with PLA2R. Discussion Should this approach be confirmed for other autoimmune diseases, BiAATEs could represent a promising off-the-shelf therapy for precision medicine in virtually all antibody-mediated autoimmune diseases for which the pathogenic autoantigen is known, leading to a paradigm shift in the treatment of these diseases.
Collapse
Affiliation(s)
- Luca Perico
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Daniela Corna
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Domenico Cerullo
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Kader Thiam
- Preclinical Models & Services, genOway, Lyon, France
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
9
|
Ushio Y, Akihisa T, Karasawa K, Seki M, Kobayashi S, Miyabe Y, Kataoka H, Ito N, Taneda S, Akiyama S, Hebisawa A, Kawano M, Honda K, Hoshino J. PLA2R-positive membranous nephropathy in IgG4-related disease. BMC Nephrol 2024; 25:66. [PMID: 38395839 PMCID: PMC10893645 DOI: 10.1186/s12882-024-03511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is a fibroinflammatory disease that affects multiple organs, including the pancreas, lacrimal glands, salivary glands, periaortic/retroperitoneum, and kidney. Interstitial nephritis is a typical renal disorder associated with IgG4-RD, but membranous nephropathy is also seen in some cases. CASE PRESENTATION Herein we report on the case of a 77-year-old male patient with nephrotic syndrome and IgG4-related lung disease. His serum phospholipase A2 receptor (PLA2R) antibody was positive. His renal biopsy specimen was also positive for PLA2R. The renal biopsy specimen showed membranous nephropathy with equal IgG3 and IgG4 immunofluorescence staining and no interstitial nephritis, suggesting IgG4-RD manifesting as membranous nephropathy. CONCLUSIONS Nephrotic syndrome caused by membranous nephropathy is sometimes associated with IgG4-RD. In such cases, even if serum PLA2R antibody is positive, it should be considered that the membranous nephropathy may be secondary to IgG4-RD.
Collapse
Affiliation(s)
- Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan.
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Kazunori Karasawa
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Momoko Seki
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Shizuka Kobayashi
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Yoei Miyabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Naoko Ito
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sekiko Taneda
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shin'ichi Akiyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Hebisawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Mitsuhiro Kawano
- Department of Rheumatology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| |
Collapse
|
10
|
Han M, Wang Y, Huang X, Li P, Shan W, Gu H, Wang H, Zhang Q, Bao K. Prediction of biomarkers associated with membranous nephropathy: Bioinformatic analysis and experimental validation. Int Immunopharmacol 2024; 126:111266. [PMID: 38029552 DOI: 10.1016/j.intimp.2023.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Membranous nephropathy (MN), the most prevalent form of nephrotic syndrome in non-diabetic adults globally, is currently the second most prevalent and fastest-increasing primary glomerular disease in China. Numerous renal disorders are developed partly due to ferroptosis. However, its relationship to the pathogenesis of MN has rarely been investigated in previous studies; actually, ferroptosis is closely linked to the immune microenvironment and inflammatory response, which might affect the entire process of MN development. In this study, we aimed to identify ferroptosis-related genes that are potentially related to immune cell infiltration, which can further contribute to MN pathogenesis. The microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related differentially expressed genes (FDEGs) were identified, which were further used for functional enrichment analysis. The common genes identified using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify the characteristic genes related to ferroptosis. The feasibility of the 7 genes as a distinguishing factor was assessed using the receiver operating characteristic (ROC) curve, with the area under the curve (AUC) score serving as the evaluation metric. Gene set enrichment analysis (GSEA) and correlation analysis of these genes were further performed. The correlation between the expression of these genes and immune cell infiltration inferred by single sample gene set enrichment analysis (ssGSEA) algorithm was explored. As a result, 7 genes, including NR1D1, YTHDC2, EGR1, ZFP36, RRM2, RELA and PDK4, which were most relevant to immune cell infiltration, were identified to be potential diagnostic genes in MN patients. Next, the signature genes were validated with other GEO datasets. In the subsequent steps, we conducted quantitative real-time fluorescence PCR (qRT-PCR) analysis and immunohistochemistry (IHC) method on the cationic bovine serum albumin (C-BSA) induced membranous nephropathy (MN) rat model and the passive Heymann nephritis (pHN) rat model to examine characteristic genes. Finally, we analysed the mRNA expression patterns of hub genes in MN patients and normal controls using the Nephroseq V5 online platform. In concise terms, our study successfully identified biomarkers specific to MN patients and delved into the potential interplay between these markers and immune cell infiltration. This knowledge bears significance for the diagnosis and prospective treatment strategies for individuals affected by MN.
Collapse
Affiliation(s)
- Miaoru Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine
| | - Yi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine
| | - Xiaoyan Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine
| | - Ping Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine; Nephrology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wenjun Shan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine
| | - Haowen Gu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine
| | - Houchun Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine
| | - Qinghua Zhang
- Nephrology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Feng X, Chen Q, Zhong J, Yu S, Wang Y, Jiang Y, Wan J, Li L, Jiang H, Peng L, Wang A, Zhang G, Wang M, Yang H, Li Q. Molecular characteristics of circulating B cells and kidney cells at the single-cell level in special types of primary membranous nephropathy. Clin Kidney J 2023; 16:2639-2651. [PMID: 38046035 PMCID: PMC10689139 DOI: 10.1093/ckj/sfad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 12/05/2023] Open
Abstract
Background Although primary membranous nephropathy (pMN) associated with podocyte autoantibodies (POS) is becoming well-known, the molecular characteristics of the specific type of pMN that is negative for podocyte autoantibodies (NEG) is still unclear. Methods We performed single-cell transcriptome sequencing and single-cell B cell receptor sequencing on circulating CD19+ cells and kidney cells of a NEG paediatric patient with pMN. The single-cell datasets of POS patients and healthy control individuals were included for integrative analysis. Results The gene expression characteristics and clonal expansion of naïve and memory B cells in the NEG patient changed significantly. We found that a group of CD38+ naïve B cells expanded in the NEG patient, which had the functional characteristics of cell activation. In addition, the conversion between immunoglobulin M (IgM)/IgD and IgG1 in the NEG patient was increased. Parietal epithelial cells (PECs) and podocytes shared similar signature genes (WT1, CLIC5), and new candidate marker genes for PECs, such as NID2, CAV1 and THY1, might contribute to the definition of cell subsets. PECs might have undergone significant changes in the disease, mainly manifested by changes in the expression of CCN2, PLAAT4 and SEPTIN2. The scores of gene sets related to extracellular matrix, cell adhesion and calcium channel in podocytes of the NEG patient was significantly increased. The gene expression of sodium transporter in a group of proximal tubule cells in the disease was significantly increased, especially SLC5A12, which might be related to the oedema of patients. Conclusions Our research demonstrated the cell type-specific molecular features in the circulation and kidney of the NEG pMN patient.
Collapse
Affiliation(s)
- Xiaoqian Feng
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qilin Chen
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jinjie Zhong
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Sijie Yu
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue Wang
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform, Nanjing, Jiangsu, China
| | - Yaru Jiang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junli Wan
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Longfei Li
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform, Nanjing, Jiangsu, China
| | - Huimin Jiang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liping Peng
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mo Wang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Haiping Yang
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiu Li
- Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
12
|
Salhi S, Ribes D, Fortenfant F, Faguer S. Plasma cell-directed therapy for rituximab-refractory PLA2R+ membranous nephropathy. Nephrol Dial Transplant 2023; 38:2851-2853. [PMID: 37401153 DOI: 10.1093/ndt/gfad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 07/05/2023] Open
Affiliation(s)
- Sofiane Salhi
- Department of Organ Transplantation, National Reference Centre for Rare Kidney Diseases - SORARE, University Hospital of Toulouse, Toulouse, France
| | - David Ribes
- Department of Organ Transplantation, National Reference Centre for Rare Kidney Diseases - SORARE, University Hospital of Toulouse, Toulouse, France
| | | | - Stanislas Faguer
- Department of Organ Transplantation, National Reference Centre for Rare Kidney Diseases - SORARE, University Hospital of Toulouse, Toulouse, France
- University Paul Sabatier - Toulouse 3, Faculty of Medicine, Toulouse, France
- INSERM UMR 1297, Institute of Metabolic and Cardiovascular Diseases, Team 'Kidney Diseases: biomarkers, prevention and treatment', Toulouse, France
| |
Collapse
|
13
|
Zhang P, Geng Y, Tang J, Cao Z, Xiang X, Yang K, Chen H. Identification of biomarkers related to immune and inflammation in membranous nephropathy: comprehensive bioinformatic analysis and validation. Front Immunol 2023; 14:1252347. [PMID: 37876929 PMCID: PMC10590909 DOI: 10.3389/fimmu.2023.1252347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Background Membranous nephropathy (MN) is an autoimmune glomerular disease that is predominantly mediated by immune complex deposition and complement activation. The aim of this study was to identify key biomarkers of MN and investigate their association with immune-related mechanisms, inflammatory cytokines, chemokines and chemokine receptors (CCRs). Methods MN cohort microarray expression data were downloaded from the GEO database. Differentially expressed genes (DEGs) in MN were identified, and hub genes were determined using a protein-protein interaction (PPI) network. The relationships between immune-related hub genes, immune cells, CCRs, and inflammatory cytokines were examined using immune infiltration analysis, gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA). Finally, the immune-related hub genes in MN were validated using ELISA. Results In total, 501 DEGs were identified. Enrichment analysis revealed the involvement of immune- and cytokine-related pathways in MN progression. Using WGCNA and immune infiltration analysis, 2 immune-related hub genes (CYBB and CSF1R) were identified. These genes exhibited significant correlations with a wide range of immune cells and were found to participate in B cell/T cell receptor and chemokine signaling pathways. In addition, the expressions of 2 immune-related hub genes were positively correlated with the expression of CCR1, CX3CR1, IL1B, CCL4, TNF, and CCR2. Conclusion Our study identified CSF1 and CYBB as immune-related hub genes that potentially influence the expression of CCRs and pro-inflammatory cytokines (CCR1, CX3CR1, IL1B, CCL4, TNF, and CCR2). CSF1 and CYBB may be potential biomarkers for MN progression, providing a perspective for diagnostic and immunotherapeutic targets of MN.
Collapse
Affiliation(s)
- Pingna Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yunling Geng
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zijing Cao
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Xiang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Kezhen Yang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
14
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Research advances on targeted-Treg therapies on immune-mediated kidney diseases. Autoimmun Rev 2023; 22:103257. [PMID: 36563769 DOI: 10.1016/j.autrev.2022.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The primary function of regulatory T cells (Tregs) is blocking the pathogenic immunological response mediated by autoreactive cells, establishing and maintaining immune homeostasis in tissues. Kidney diseases are often caused by Immune imbalance, including alloimmune graft damage after renal transplantation, direct immune-mediated kidney diseases like membranous nephropathy (MN) and anti-glomerular basement membrane (anti-GBM) glomerulonephritis, as well as indirect immune-mediated ones like Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAVs), IgA nephropathy (IgAN) and lupus nephritis (LN). Treg cells are deficient numerically and/or functionally in those kidney diseases. Targeted-Treg therapies, including adoptive Tregs transfer therapy and low-dose IL-2 therapy, have begun to thrive in treating autoimmune diseases in recent years. However, the clinical use of targeted Treg-therapies is rarely mentioned in those kidney diseases above except for kidney transplantation. This article mainly discusses the newest progressions of targeted-Treg therapies in those specific examples of immune-mediated kidney diseases. Meanwhile, we also reviewed the main factors that affect Treg development and differentiation, hoping to inspire new strategies to develop target Tregs-therapies. Lastly, we emphasize the significant impediments and prospects to the clinical translation of target-Treg therapy. We advocate for more preclinical and clinical studies on target Tregs-therapies to decipher Tregs in those diseases.
Collapse
|
16
|
Shah M, DeLaat A, Cavanaugh C. Treatment of membranous nephropathy: Perspectives on current and future therapies. FRONTIERS IN NEPHROLOGY 2023; 3:1110355. [PMID: 37675368 PMCID: PMC10479573 DOI: 10.3389/fneph.2023.1110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 09/08/2023]
Abstract
Primary membranous nephropathy remains one of the most frequent causes of nephrotic syndrome in adults. It is an autoimmune disorder in which auto-antibodies target antigens at the podocytes cell membrane-basement membrane interface. Our understanding of membranous nephropathy has expanded dramatically as of late. After the initial discovery of the phospholipase A2 receptor auto-antibody in 2009, eight more antigens have been discovered. These discoveries have led to refinement in our understanding of the pathogenesis, diagnosis, and natural history of primary membranous nephropathy. Now, many experts advocate for redefining primary membranous nephropathy based on antigen, potentially shedding the primary and secondary nomenclature. Recently, therapies for primary membranous have also expanded. Immunosuppressive therapies like cyclophosphamide and rituximab, which primarily target B-cells, remain the cornerstone of therapy. However, there is still significant room for improvement, as many as 30-40% do not respond to this therapy according to recent trials. Additionally, drugs targeting complement, and other novel therapies are also under investigation. In this review we will discuss the available therapies for primary membranous nephropathy in light of recent clinic trials like GEMRITUX, MENTOR, RI-CYCLO, and STARMEN, as well as management strategies. While the last 10 years have seen a boom in our mechanistic understanding of this ever-diversifying disease, we are likely to see a similar boom in the therapeutic options in the years to come.
Collapse
Affiliation(s)
- Monarch Shah
- Division of Nephrology, University of Virginia, Charlottesville, VA, United States
| | - Andrew DeLaat
- Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Corey Cavanaugh
- Division of Nephrology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
17
|
Zhao Q, Dai H, Hu Y, Jiang H, Feng Z, Liu W, Dong Z, Tang X, Hou F, Rui H, Liu B. Cytokines network in primary membranous nephropathy. Int Immunopharmacol 2022; 113:109412. [DOI: 10.1016/j.intimp.2022.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
18
|
Chung EYM, Wang YM, Keung K, Hu M, McCarthy H, Wong G, Kairaitis L, Bose B, Harris DCH, Alexander SI. Membranous nephropathy: Clearer pathology and mechanisms identify potential strategies for treatment. Front Immunol 2022; 13:1036249. [PMID: 36405681 PMCID: PMC9667740 DOI: 10.3389/fimmu.2022.1036249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Primary membranous nephropathy (PMN) is one of the common causes of adult-onset nephrotic syndrome and is characterized by autoantibodies against podocyte antigens causing in situ immune complex deposition. Much of our understanding of the disease mechanisms underpinning this kidney-limited autoimmune disease originally came from studies of Heymann nephritis, a rat model of PMN, where autoantibodies against megalin produced a similar disease phenotype though megalin is not implicated in human disease. In PMN, the major target antigen was identified to be M-type phospholipase A2 receptor 1 (PLA2R) in 2009. Further utilization of mass spectrometry on immunoprecipitated glomerular extracts and laser micro dissected glomeruli has allowed the rapid discovery of other antigens (thrombospondin type-1 domain-containing protein 7A, neural epidermal growth factor-like 1 protein, semaphorin 3B, protocadherin 7, high temperature requirement A serine peptidase 1, netrin G1) targeted by autoantibodies in PMN. Despite these major advances in our understanding of the pathophysiology of PMN, treatments remain non-specific, often ineffective, or toxic. In this review, we summarize our current understanding of the immune mechanisms driving PMN from animal models and clinical studies, and the implications on the development of future targeted therapeutic strategies.
Collapse
Affiliation(s)
- Edmund Y. M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Yuan M. Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Karen Keung
- Department of Nephrology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Min Hu
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Hugh McCarthy
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Germaine Wong
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Lukas Kairaitis
- Department of Nephrology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Bhadran Bose
- Department of Nephrology, Nepean Hospital, Kingswood, NSW, Australia
| | - David C. H. Harris
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
19
|
Dong Z, Geng Y, Zhang P, Tang J, Cao Z, Zheng H, Guo J, Zhang C, Liu B, Liu WJ. Identification of molecular mechanism and key biomarkers in membranous nephropathy by bioinformatics analysis. Am J Transl Res 2022; 14:5833-5847. [PMID: 36105034 PMCID: PMC9452341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Membranous nephropathy (MN) is an autoimmune nephropathy. The incidence of MN is increasing gradually in recent years. Previous studies focused on antibody production, complement activation and podocyte injury in MN. However, the etiology and underlying mechanism of MN remain to be further studied. METHODS GSE104948 and GSE108109 of glomerular expression profile were downloaded from Gene Expression Omnibus (GEO) database, GSE47184, GSE99325, GSE104954, GSE108112, GSE133288 of renal tubule expression profile, and GSE73953 of peripheral blood mononuclear cells (PBMCs) expression profile. After data integration by Networkanalyst, differentially expressed genes (DEGs) between MN and healthy samples were obtained. DEGs were enriched in gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) networks of these genes were constructed through Metascape, etc. We further understood the function of hub genes through gene set enrichment analysis (GSEA). The diagnostic value of DEGs in MN was evaluated by receiver operating characteristic (ROC) analysis. RESULTS A total of 3 genes (TP53, HDAC5, and SLC2A3) were screened out. Among them, the up-regulated TP53 expression may be closely related to MN renal pathological changes. However, the expression of MN podocyte target antigen was not significantly different from that of healthy controls. In addition, the changes of Wnt signaling pathway in PBMCs and the effects of SLC2A3 on the differentiation of M2 monocyte need further study. CONCLUSION It is difficult to unify a specific mechanism for the changes of glomerulus, renal tubules and PBMCs in MN patients. This may be related to the pathogenesis, pathology and immune characteristics of MN. MN podocyte target antigen may not be the root cause of the disease, but a stage result in the pathogenesis process.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Yunling Geng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Zijing Cao
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jing Guo
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
20
|
Membranous nephropathy: new pathogenic mechanisms and their clinical implications. Nat Rev Nephrol 2022; 18:466-478. [PMID: 35484394 DOI: 10.1038/s41581-022-00564-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
Abstract
Membranous nephropathy (MN) is characterized histomorphologically by the presence of immune deposits in the subepithelial space of the glomerular filtration barrier; its clinical hallmarks are nephrotic range proteinuria with oedema. In patients with primary MN, autoimmunity is driven by circulating autoantibodies that bind to one or more antigens on the surface of glomerular podocytes. Compared with other autoimmune kidney diseases, the understanding of the pathogenesis of MN has substantially improved in the past decade, thanks to the discovery of pathogenic circulating autoantibodies against phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type 1 domain-containing protein 7A (THSD7A). The subsequent identification of more proteins associated with MN, some of which are also endogenous podocyte antigens, might further advance the clinical characterization of MN, including its diagnosis, treatment and prognosis. Insights from studies in patients with MN, combined with the development of novel in vivo and in vitro experimental models, have potential to improve the management of patients with MN. Characterizing the interaction between autoimmunity and local glomerular lesions provides an opportunity to develop more specific, pathogenesis-based treatments.
Collapse
|
21
|
B Cells in Primary Membranous Nephropathy: Escape from Immune Tolerance and Implications for Patient Management. Int J Mol Sci 2021; 22:ijms222413560. [PMID: 34948358 PMCID: PMC8708506 DOI: 10.3390/ijms222413560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recognized, especially following the discovery of various autoantibodies that target specific podocytic antigens and the promising treatment responses seen with B cell depleting therapies. The presence of autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes. These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory signalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance and homeostasis may have important implications for patient management in MN, as conventional immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on proliferation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic response and prediction of disease relapse. These recent advances in the understanding of B cell tolerance in MN have provided greater insight into its immunopathogenesis and potential novel strategies for disease monitoring and treatment.
Collapse
|
22
|
Liu W, Huang G, Rui H, Geng J, Hu H, Huang Y, Huo G, Liu B, Xu A. Course monitoring of membranous nephropathy: Both autoantibodies and podocytes require multidimensional attention. Autoimmun Rev 2021; 21:102976. [PMID: 34757091 DOI: 10.1016/j.autrev.2021.102976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
A variety of podocyte antigens have been identified in human membranous nephropathy (MN), which is divided into various antigen-dominated subtypes, confirming the concept that MN is the common pattern of glomerular injury in multiple autoimmune responses. The detection of autoantibodies has been widely used, which promoted the clinical practice of MN toward personalized precision medicine. However, given the potential risks of immunosuppressive therapy, more autoantibodies and biomarkers need to be identified to predict the prognosis and therapeutic response of MN more accurately. In this review, we attempted to summarize the autoantigens/autoantibodies and autoimmune mechanisms that can predict disease states based on the current understanding of MN pathogenesis, especially the podocyte injury manifestations. In conclusion, both the autoimmune response and podocyte injury require multidimensional attention in the disease course of MN.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
23
|
Abstract
Membranous nephropathy (MN) is a glomerular disease that can occur at all ages. In adults, it is the most frequent cause of nephrotic syndrome. In ~80% of patients, there is no underlying cause of MN (primary MN) and the remaining cases are associated with medications or other diseases such as systemic lupus erythematosus, hepatitis virus infection or malignancies. MN is an autoimmune disease characterized by a thickening of the glomerular capillary walls due to immune complex deposition. Identification of the phospholipase A2 receptor (PLA2R) as the major antigen in adults in 2009 induced a paradigm shift in disease diagnosis and monitoring and several other antigens have since been characterized. Disease outcome is difficult to predict and around one-third of patients will undergo spontaneous remission. In those at high risk of progression, immunosuppressive therapy with cyclophosphamide plus corticosteroids has substantially reduced the need for kidney replacement therapy. Owing to carcinogenic risk, other treatments (calcineurin inhibitors and CD20-targeted B cell depletion therapy (rituximab)) have been developed. However, disease relapses are frequent when calcineurin inhibitors are stopped and the remission rate with rituximab is lower than with cyclophosphamide, particularly in patients with high PLA2R antibody titres. Other new drugs are already available and antigen-specific immunotherapies are being developed.
Collapse
|
24
|
Zhao Q, Dai H, Liu X, Jiang H, Liu W, Feng Z, Zhang N, Gao Y, Dong Z, Zhou X, Du J, Zhang N, Rui H, Yuan L, Liu B. Helper T Cells in Idiopathic Membranous Nephropathy. Front Immunol 2021; 12:665629. [PMID: 34093559 PMCID: PMC8173183 DOI: 10.3389/fimmu.2021.665629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the immune system produces an antibody response to its own antigens due to impaired immune tolerance. Although antibodies are derived from plasma cells differentiated by B cells, the T-B cells also contribute a lot to the immune system. In particular, the subsets of helper T (Th) cells, including the dominant subsets such as Th2, Th17, and follicular helper T (Tfh) cells and the inferior subsets such as regulatory T (Treg) cells, shape the immune imbalance of IMN and promote the incidence and development of autoimmune responses. After reviewing the physiological knowledge of various subpopulations of Th cells and combining the existing studies on Th cells in IMN, the role model of Th cells in IMN was explained in this review. Finally, the existing clinical treatment regimens for IMN were reviewed, and the importance of the therapy for Th cells was highlighted.
Collapse
Affiliation(s)
- Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Xianli Liu
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Feng
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Lerner GB, Virmani S, Henderson JM, Francis JM, Beck LH. A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy. Kidney Int 2021; 100:289-300. [PMID: 33857571 DOI: 10.1016/j.kint.2021.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/07/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Primary membranous nephropathy is a leading cause of adult nephrotic syndrome. The field took a major step forward with the identification of phospholipase A2 receptor (PLA2R) as a target antigen in the majority of cases and with the ability to measure circulating autoantibodies to PLA2R. Since then, the existence of additional target antigens such as thrombospondin type-1 domain-containing 7A, exostosin 1 and 2, neural EGFL like 1, and semaphorin 3B has been demonstrated. The ability to detect and monitor levels of circulating autoantibodies has opened a new window onto the humoral aspect of primary membranous nephropathy. Clinicians now rely on clinical parameters such as proteinuria, as well as levels of circulating autoantibodies against PLA2R and the results of immunofluorescence staining for PLA2R within kidney biopsy tissue, to guide the management of this disease. The relationship between immunologic and clinical disease course is consistent, but not necessarily intuitive. In addition, kidney biopsy provides only a single snapshot of disease that needs to be interpreted in light of changing clinical and serological findings. A clear understanding of these dynamic parameters is essential for staging, treatment, and management of this disease. This review aims to shed light on current knowledge regarding the development and time course of changes in the serum levels of autoantibodies against PLA2R, proteinuria, and histological findings that underlie the pathophysiology of primary membranous nephropathy.
Collapse
Affiliation(s)
- Gabriel B Lerner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Samarth Virmani
- Department of Internal Medicine, University of Central Florida College of Medicine, Gainesville, Florida, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Jean M Francis
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Laurence H Beck
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Mechanisms of Primary Membranous Nephropathy. Biomolecules 2021; 11:biom11040513. [PMID: 33808418 PMCID: PMC8065962 DOI: 10.3390/biom11040513] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogenous outcomes with approximately 30% of cases progressing to end-stage renal disease. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. Approximately 50–80% and 3–5% of primary MN (PMN) cases are associated with either anti-PLA2R or anti-THSD7A antibodies, respectively. The presence of these autoantibodies is used for MN diagnosis; antibody levels correlate with disease severity and possess significant biomarker values in monitoring disease progression and treatment response. Importantly, both autoantibodies are causative to MN. Additionally, evidence is emerging that NELL-1 is associated with 5–10% of PMN cases that are PLA2R- and THSD7A-negative, which moves us one step closer to mapping out the full spectrum of PMN antigens. Recent developments suggest exostosin 1 (EXT1), EXT2, NELL-1, and contactin 1 (CNTN1) are associated with MN. Genetic factors and other mechanisms are in place to regulate these factors and may contribute to MN pathogenesis. This review will discuss recent developments over the past 5 years.
Collapse
|
27
|
Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, Zhou X, Du J, Huang G, Tian X, Liu B. The Potential Role of Regulatory B Cells in Idiopathic Membranous Nephropathy. J Immunol Res 2020; 2020:7638365. [PMID: 33426094 PMCID: PMC7772048 DOI: 10.1155/2020/7638365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory B cells (Breg) are widely regarded as immunomodulatory cells which play an immunosuppressive role. Breg inhibits pathological autoimmune response by secreting interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and adenosine and through other ways to prevent T cells and other immune cells from expanding. Recent studies have shown that different inflammatory environments induce different types of Breg cells, and these different Breg cells have different functions. For example, Br1 cells can secrete IgG4 to block autoantigens. Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the humoral immune response is dominant and the cellular immune response is impaired. However, only a handful of studies have been done on the role of Bregs in this regard. In this review, we provide a brief overview of the types and functions of Breg found in human body, as well as the abnormal pathological and immunological phenomena in IMN, and propose the hypothesis that Breg is activated in IMN patients and the proportion of Br1 can be increased. Our review aims at highlighting the correlation between Breg and IMN and proposes potential mechanisms, which can provide a new direction for the discovery of the pathogenesis of IMN, thus providing a new strategy for the prevention and early treatment of IMN.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhiyuan Liu
- Shandong First Medical University, No. 619 Changcheng Road, Tai'an City, Shandong 271016, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Fei Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xiaoshan Zhou
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Jieli Du
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guangrui Huang
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|