1
|
Bogarin Cantero BC, Zhang Y, Davidson PC. Electrolysis of HTL-AP for nutrient recovery by converting cyclic nitrogen to nitrate-N fertilizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125069. [PMID: 39374766 DOI: 10.1016/j.envpol.2024.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Valorization of hydrothermal liquefaction aqueous phase (HTL-AP) can be achieved through its use as a nutrient source for lettuce production in hydroponic systems after being treated to reduce the nutrient imbalance. Removing nitrogen cyclic compounds in HTL-AP may impact the availability of some nutrients, such as nitrate-N, that are necessary for plant growth. Previous studies indicate that electrolysis enables nitrate-N accumulation in algal-HTL-AP. In this study, HTL-AP derived from food waste was electrolyzed to convert available nitrogenous compounds into nitrogen forms that are preferred by plants such as nitrate-N. Biochemical properties were assessed for the HTL-AP samples before and after two years of storage. Results from this study show that it is viable to convert heterocyclic amines in HTL-AP into inorganic nitrogen forms such as nitrite-N, nitrate-N, ammonia-N, and fatty acids. Specifically, this study showed that accumulation of 609 mg/L of nitrate-N in the HTL-AP with an initial concentration of 25 mg/L was achieved at the lowest current density. Additionally, electrolysis treatment removed 48%-61% of COD from the HTL-AP at different current densities. Furthermore, water quality characterization before and after storage for two years showed decreased organic matter in the HTL-AP, leading to reduced inorganic nitrogen recovery. Overall, this study indicates that electrolysis can increase the concentration of inorganic nitrogen in the HTL-AP both before and after long-term storage.
Collapse
Affiliation(s)
- Barbara Camila Bogarin Cantero
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Paul C Davidson
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Xia C, Shen X. Analysis of factors influencing on Electro-Fenton and research on combination technology (II): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46910-46948. [PMID: 38995339 DOI: 10.1007/s11356-024-34159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.
Collapse
Affiliation(s)
- Chongjie Xia
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China.
| |
Collapse
|
3
|
Khaliq N, Ali G, Rasheed MA, Khan M, Xie Y, Schmuki P, Cho SO, Karim S. Multifunctional tunable Cu 2O and CuInS 2 quantum dots on TiO 2 nanotubes for efficient chemical oxidation of cholesterol and ibuprofen. NANOSCALE 2024; 16:12207-12227. [PMID: 38845383 DOI: 10.1039/d4nr00422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In this study, a CuInS2/Cu2O/TiO2 nanotube (TNT) heterojunction-based hybrid material is reported for the selective detection of cholesterol and ibuprofen. Anodic TNTs were co-decorated with Cu2O and CuInS2 quantum dots (QDs) using a modified chemical bath deposition (CBD) method. QDs help trigger the chemical oxidation of cholesterol by cathodically generating hydroxyl radicals (˙OH). The small size of QDs can be used to tune the energy levels of electrode materials to the effective redox potential of redox species, resulting in highly improved sensing characteristics. Under optimal conditions, CuInS2/Cu2O/TNTs show the highest sensitivity (∼12 530 μA mM-1 cm-2, i.e. up to 11-fold increase compared to pristine TNTs) for cholesterol detection with a low detection limit (0.013 μM) and a fast response time (1.3 s). The proposed biosensor was successfully employed for the detection of cholesterol in real blood samples. In addition, fast (4 s) and reliable detection of ibuprofen (with a sensitivity of ∼1293 μA mM-1 cm-2) as a water contaminant was achieved using CuInS2/Cu2O/TNTs. The long-term stability and favourable reproducibility of CuInS2/Cu2O/TNTs illustrate a unique concept for the rational design of a stable and high-performance multi-purpose electrochemical sensor.
Collapse
Affiliation(s)
- Nilem Khaliq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.
- Department of Physics, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan.
| | - Muhammad Asim Rasheed
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.
| | - Maaz Khan
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan.
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, China
| | - Patrik Schmuki
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.
| | - Sung Oh Cho
- Department of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shafqat Karim
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan.
| |
Collapse
|
4
|
Alaufey R, Zhao L, Lindsay A, Siboonruang T, Wu Q, Keith JA, Wood E, Tang M. Interplay between Catalyst Corrosion and Homogeneous Reactive Oxygen Species in Electrochemical Ozone Production. ACS Catal 2024; 14:6868-6880. [PMID: 38933735 PMCID: PMC11197020 DOI: 10.1021/acscatal.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024]
Abstract
Electrochemical ozone production (EOP), a six-electron water oxidation reaction, offers promising avenues for creating value-added oxidants and disinfectants. However, progress in this field is slowed by a dearth of understanding of fundamental reaction mechanisms. In this work, we combine experimental electrochemistry, spectroscopic detection of reactive oxygen species (ROS), oxygen-anion chemical ionization mass spectrometry, and computational quantum chemistry calculations to determine a plausible reaction mechanism on nickel- and antimony-doped tin oxide (Ni/Sb-SnO2, NATO), one of the most selective EOP catalysts. Antimony doping is shown to increase the conductivity of the catalyst, leading to improved electrochemical performance. Spectroscopic analysis and electrochemical experiments combined with quantum chemistry predictions reveal that hydrogen peroxide (H2O2) is a critical reaction intermediate. We propose that leached Ni4+ cations catalyze hydrogen peroxide into solution phase hydroperoxyl radicals (•OOH); these radicals are subsequently oxidized to ozone. Isotopic product analysis shows that ozone is generated catalytically from water and corrosively from the catalyst oxide lattice without regeneration of lattice oxygens. Further quantum chemistry calculations and thermodynamic analysis suggest that the electrochemical corrosion of tin oxide itself might generate hydrogen peroxide, which is then catalyzed to ozone. The proposed pathways explain both the roles of dopants in NATO and its lack of stability. Our study interrogates the possibility that instability and electrochemical activity are intrinsically linked through the formation of ROS. In doing so, we provide the first mechanism for EOP that is consistent with computational and experimental results and highlight the central challenge of instability as a target for future research efforts.
Collapse
Affiliation(s)
- Rayan Alaufey
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Lingyan Zhao
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Andrew Lindsay
- Department
of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tana Siboonruang
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Qin Wu
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - John A. Keith
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Ezra Wood
- Department
of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Maureen Tang
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Kim TH, Jeong C, Choi JH, Park HS, Lee KW, Lee TS. Fabrication of nanofibrous PbO 2 electrode embedded with Pt for decomposition of organic chelating agents. CHEMOSPHERE 2023; 344:140386. [PMID: 37813248 DOI: 10.1016/j.chemosphere.2023.140386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
A new fabrication method of nanofibrous metal oxide electrode comprising Pt nanofiber (Pt-NF) covered with PbO2 on a Ti substrate was proposed. Pt-NF was obtained by performing sputtering deposition of Pt on the surface of electrospun poly(vinyl alcohol) (PVA) nanofiber on a Ti substrate, in which PVA was then removed by calcination (Ti/Pt-NF). Subsequently, by introducing PbO2 to the Ti/Pt-NF using the electrodeposition method, a nanofibrous Ti/Pt-NF/PbO2 electrode was finally obtained. Because the Ti substrate was covered by nanofibrous Pt, it had no environmental exposure and thus, was not oxidized during calcination. The crystal structure of the PbO2 mainly consisted of β-form rather than α-form; the β-form was suitable for electrochemical decomposition and remained stable even after 20 h of use. The nanofibrous Ti/Pt-NF/PbO2 electrodes showed 10% lower anode potential, 1.6 times higher current density at water decomposition potential, lower electrical resistance in the ion charge transfer resistance, and 2.27 times higher electrochemically active surface area than those of a planar-type Ti/Pt/PbO2 electrode, and demonstrated excellent electrochemical performance. As a result, compared with the planar electrode, the Ti/Pt-NF/PbO2 electrode showed more effective electrochemical decomposition toward nitrilotriacetic acid (80%) and ethylenediaminetetraacetic acid (83%), which are commonly used as chelating agents in nuclear decontamination.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Institute of Chemical and Biological Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Chanhee Jeong
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Jung-Hoon Choi
- Korea Atomic Energy Research Institute, Daejeon, 34057, South Korea
| | - Hwan-Seo Park
- Korea Atomic Energy Research Institute, Daejeon, 34057, South Korea
| | - Kune-Woo Lee
- Institute of Chemical and Biological Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| | - Taek Seung Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
6
|
Machreki M, Chouki T, Tyuliev G, Žigon D, Ohtani B, Loukanov A, Stefanov P, Emin S. Defective TiO 2 Nanotube Arrays for Efficient Photoelectrochemical Degradation of Organic Pollutants. ACS OMEGA 2023; 8:21605-21617. [PMID: 37360499 PMCID: PMC10286085 DOI: 10.1021/acsomega.3c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Oxygen vacancies (OVs) are one of the most critical factors that enhance the electrical and catalytic characteristics of metal oxide-based photoelectrodes. In this work, a simple procedure was applied to prepare reduced TiO2 nanotube arrays (NTAs) (TiO2-x) via a one-step reduction method using NaBH4. A series of characterization techniques were used to study the structural, optical, and electronic properties of TiO2-x NTAs. X-ray photoelectron spectroscopy confirmed the presence of defects in TiO2-x NTAs. Photoacoustic measurements were used to estimate the electron-trap density in the NTAs. Photoelectrochemical studies show that the photocurrent density of TiO2-x NTAs was nearly 3 times higher than that of pristine TiO2. It was found that increasing OVs in TiO2 affects the surface recombination centers, enhances electrical conductivity, and improves charge transport. For the first time, a TiO2-x photoanode was used in the photoelectrochemical (PEC) degradation of a textile dye (basic blue 41, B41) and ibuprofen (IBF) pharmaceutical using in situ generated reactive chlorine species (RCS). Liquid chromatography coupled with mass spectrometry was used to study the mechanisms for the degradation of B41 and IBF. Phytotoxicity tests of B41 and IBF solutions were performed using Lepidium sativum L. to evaluate the potential acute toxicity before and after the PEC treatment. The present work provides efficient PEC degradation of the B41 dye and IBF in the presence of RCS without generating harmful products.
Collapse
Affiliation(s)
- Manel Machreki
- Materials
Research Laboratory, University of Nova
Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
| | - Takwa Chouki
- Materials
Research Laboratory, University of Nova
Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
| | - Georgi Tyuliev
- Institute
of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bldg. 11, Sofia 1113, Bulgaria
| | - Dušan Žigon
- Institute
“Jožef Stefan”, Jamova 39, 1000 Ljubljana, Slovenia
| | - Bunsho Ohtani
- Catalysis
Research Center, Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Alexandre Loukanov
- Department
of Chemistry and Materials Science, National Institute of Technology, Gunma College, 580 Toriba, Maebashi 371-8530, Gunma, Japan
| | - Plamen Stefanov
- Institute
of General and Inorganic Chemistry, Bulgarian
Academy of Sciences, Sofia 1113, Bulgaria
| | - Saim Emin
- Materials
Research Laboratory, University of Nova
Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
| |
Collapse
|
7
|
El Aggadi S, Ennouhi M, Boutakiout A, Ennoukh FE, El Hourch A. Iron (III)-doped PbO 2 and its application as electrocatalyst for decomposition of phthalocyanine dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27332-3. [PMID: 37145356 DOI: 10.1007/s11356-023-27332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The textile industry contributes significantly to environmental pollution through dyeing and finishing processes that release dyes into wastewater. Even small amounts of dyes can have harmful effects and cause negative impacts. These effluents have carcinogenic, toxic, and teratogenic properties and can take a long time to be naturally degraded through photo/bio-degradation processes. This work investigates degradation of Reactive Blue 21 (RB21) phthalocyanine dye using anodic oxidation process with PbO2 anode doped with iron III (0.1 M) (marked as Ti/PbO2-0.1Fe) and compared with pure PbO2. Ti/PbO2 films with and without doping were successfully prepared by electrodeposition technology on Ti substrates. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) was used to characterize the electrode morphology. Also, linear scanning voltammetry (LSV) and cyclic voltammetry (CV) tests were conducted to investigate the electrochemical response of these electrodes. The influence of operational variables on the mineralization efficiency was studied as a function of pH, temperature, and current density. Doping Ti/PbO2 with Fe3+ (0.1 M) could reduce the particle to a smaller dimension and slightly increase the oxygen evolution potential (OEP). A large anodic peak was found for both electrodes prepared in the CV test, indicating that oxidation of the RB21 dye was easily achieved on the surface of the prepared anodes. No significant effect of initial pH on the mineralization of RB21 was observed. RB21 decolorization was more rapid at room temperature and increases with increasing current density. A possible degradation pathway for the anodic oxidation of RB21 in aqueous solution is proposed based on the identified reaction products. In general, it can be said that from the findings it was observed that the Ti/PbO2 and Ti/PbO2-0.1Fe electrodes show good performance on RB21 degradation. However, it was noted that the Ti/PbO2 electrode tends to deteriorate over time and exhibits poor substrate adhesion, while the Ti/PbO2-0.1Fe electrode displays superior substrate adhesion and stability.
Collapse
Affiliation(s)
- Sanaa El Aggadi
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco.
| | - Mariem Ennouhi
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Amale Boutakiout
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Fatima Ezzahra Ennoukh
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Abderrahim El Hourch
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| |
Collapse
|
8
|
Zhang Y, Guo L, Hoffmann MR. Ozone- and Hydroxyl Radical-Mediated Oxidation of Pharmaceutical Compounds Using Ni-Doped Sb-SnO 2 Anodes: Degradation Kinetics and Transformation Products. ACS ES&T ENGINEERING 2023; 3:335-348. [PMID: 36935895 PMCID: PMC10012175 DOI: 10.1021/acsestengg.2c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical oxidation provides a versatile technique for treating wastewater streams onsite. We previously reported that a two-layer heterojunction Ni-Sb-SnO2 anode (NAT/AT) can produce both ozone (O3) and hydroxyl radical (•OH). In this study, we explore further the applicability of NAT/AT anodes for oxidizing pharmaceutical compounds using carbamazepine (CBZ) and fluconazole (FCZ) as model probe compounds. Details of the oxidation reaction kinetics and subsequent reaction products are investigated in the absence and presence of chloride (Cl-) and sulfate (SO4 2-). In all cases, faster or comparable degradation kinetics of CBZ and FCZ are achieved using the double-layered NAT/AT anode coupled with a stainless steel (SS) cathode in direct comparison to an identical setup using a boron-doped diamond anode. Production of O3 on NAT/AT enhances the elimination of both parent compounds and their transformation products (TPs). Very fast CBZ degradation is observed during NAT/AT-SS electrolysis in both NaClO4 and NaCl electrolytes. However, more reaction products are identified in the presence of Cl- than ClO4 - (23 TPs vs 6). Rapid removal of FCZ is observed in NaClO4, while the degradation rate is retarded in NaCl depending on the [Cl-]. In SO4 2--containing electrolytes, altered reaction pathways and transformation product distributions are observed due to sulfate radical generation. SO4 ·- oxidation produces fewer hydroxylated products and promotes the oxidation of aldehydes to carboxylic acids. Similar trend in treatment performance is observed in mixtures of CBZ and FCZ with other pharmaceutical compounds in latrine wastewater and secondary WWTP effluent.
Collapse
Affiliation(s)
- Yi Zhang
- Linde
Laboratories, California Institute of Technology, Pasadena, California91125, United States
| | - Lei Guo
- Linde
Laboratories, California Institute of Technology, Pasadena, California91125, United States
- Department
of Civil Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
| | - Michael R. Hoffmann
- Linde
Laboratories, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
9
|
Sharan S, Khare P, Shankar R, Tyagi A, Khare A. Development of 3D network of Zn-oxide nanorods assisted with PbO2/Pb electrode for electrochemical oxidation of methylene blue in aqueous phase. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Jayalatha NA, Devatha CP. Experimental investigation for treating ibuprofen and triclosan by biosurfactant from domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116913. [PMID: 36521217 DOI: 10.1016/j.jenvman.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The presence of emerging pollutants of pharmaceutical products and personal care products (PPCPs) in the aquatic environment overspreads the threat on living beings. Bioremediation is a promising option for treating wastewater. In the present study, an experimental investigation was carried out to produce a biosurfactant by Pseudomonas aeruginosa (MTCC 1688) for the removal of Ibuprofen (IBU) and Triclosan (TCS) from domestic wastewater. It was performed in three stages. Firstly, the production and optimization of biosurfactant was carried out to arrive at the best combination of crude sunflower oil, sucrose and ammonium bicarbonate (10%: 5.5 g/L: 1 g/L) to yield effective biosurfactant production (crude biosurfactant) and further extended to achieve critical micelle concentration (CMC) formation by dilution (biosurfactant at 10.5%). The stability of the biosurfactant was also confirmed. Biosurfactant showed a reduction in the surface tension to 41 mN/m with a yield concentration of 11.2 g/L. Secondly, its effectiveness was evaluated for the removal of IBU and TCS from the domestic wastewater collected during the dry and rainy seasons. Complete removal of IBU was achieved at 36 h & 6 h and TCS at 6 h & 1 h by crude biosurfactant and biosurfactant at CMC formation for the dry season sample. IBU removal was achieved in 2 h by both crude and biosurfactant at CMC and no TCS was detected in the rainy season sample. Thirdly, biotransformation intermediates of IBU and TCS formed during the application of the biosurfactant and degradation pathways are proposed based on the Liquid Chromatography-Mass Spectrometry (LC-MS) and it indicates that there is no formation of toxic by-products. Based on the results, it is evident that biosurfactant at CMC has performed better for the removal of IBU and TCS than crude biosurfactants without any formation of toxic intermediates. Hence, this study proved to be an eco-friendly, cost-effective and sustainable treatment option for domestic wastewater treatment.
Collapse
Affiliation(s)
- N A Jayalatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| | - C P Devatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
11
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Gül KARAOGLU A, ÖZTÜRK D, AKYOL A, KARA S. PCT Degradation with Electrooxidation (EOx) and Ultrasound (US) Hybrid Process Using Different Type Electrodes: BDD, Ti/PbO2 and Ti/Pt. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
K. Laha J, Manral N, Badoni S, Kaur Hunjan M, Gulati U. Sulfate Radical Anion (SO4˙ˉ) Mediated Degradation of Some Over-the-Counter Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) at Neutral Ph in Aqueous Environment. HETEROCYCLES 2023. [DOI: 10.3987/com-23-14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Mussa ZH, Al-Qaim FF, Jawad AH, Scholz M, Yaseen ZM. A Comprehensive Review for Removal of Non-Steroidal Anti-Inflammatory Drugs Attained from Wastewater Observations Using Carbon-Based Anodic Oxidation Process. TOXICS 2022; 10:598. [PMID: 36287878 PMCID: PMC9610849 DOI: 10.3390/toxics10100598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) (concentration <µg/L) are globally acknowledged as hazardous emerging pollutants that pass via various routes in the environment and ultimately enter aquatic food chains. In this context, the article reviews the occurrence, transport, fate, and electrochemical removal of some selected NSAIDs (diclofenac (DIC), ketoprofen (KTP), ibuprofen (IBU), and naproxen (NPX)) using carbon-based anodes in the aquatic environment. However, no specific protocol has been developed to date, and various approaches have been adopted for the sampling and elimination processes of NSAIDs from wastewater samples. The mean concentration of selected NSAIDs from different countries varies considerably, ranging between 3992−27,061 µg/L (influent wastewater) and 1208−7943 µg/L (effluent wastewater). An assessment of NSAIDs removal efficiency across different treatment stages in various wastewater treatment plants (WWTPs) has been performed. Overall, NSAIDs removal efficiency in wastewater treatment plants has been reported to be around 4−89%, 8−100%, 16−100%, and 17−98% for DIC, KTP, NPX, and IBU, respectively. A microbiological reactor (MBR) has been proclaimed to be the most reliable treatment technique for NSAIDs removal (complete removal). Chlorination (81−95%) followed by conventional mechanical biological treatment (CMBT) (94−98%) treatment has been demonstrated to be the most efficient in removing NSAIDs. Further, the present review explains that the electrochemical oxidation process is an alternative process for the treatment of NSAIDs using a carbon-based anode. Different carbon-based carbon anodes have been searched for electrochemical removal of selected NSAIDs. However, boron-doped diamond and graphite have presented reliable applications for the complete removal of NSAIDs from wastewater samples or their aqueous solution.
Collapse
Affiliation(s)
| | - Fouad Fadhil Al-Qaim
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
- Department of Chemistry, College of Science for Women, University of Babylon, Hillah 51001, Iraq
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Miklas Scholz
- Directorate of Engineering the Future, School of Science, Engineering and Environment, The University of Salford, Newton Building, Salford M5 4WT, Greater Manchester, UK
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Johannesburg 2092, South Africa
- Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), 76, Lenin Prospekt, 454080 Chelyabinsk, Russia
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Cheraghian M, Alinezhad H, Ghasemi S, Moalem-Banhangi M. Modified Metal-Organic Frameworks as an Efficient Nanoporous Adsorbent for the Removal of Naproxen from Water Sources. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | | | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
16
|
Ghasemi M, Khedri M, Didandeh M, Taheri M, Ghasemy E, Maleki R, Shon HK, Razmjou A. Removal of Pharmaceutical Pollutants from Wastewater Using 2D Covalent Organic Frameworks (COFs): An In Silico Engineering Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehdi Ghasemi
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran 46414356, Iran
| | - Mojtaba Taheri
- Department of Chemical Engineering, University of Tehran, Tehran 141556455, Iran
| | - Ebrahim Ghasemy
- Centre Énergie Matériaux Télécommunications, Institut National de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz 71946, Iran
| | - Ho kyong Shon
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, Sydney 2007, New South
Wales, Australia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, Perth 6027, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, New South
Wales, Australia
| |
Collapse
|
17
|
Rodrigues AS, Souiad F, Fernandes A, Baía A, Pacheco MJ, Ciríaco L, Bendaoud-Boulahlib Y, Lopes A. Treatment of fruit processing wastewater by electrochemical and activated persulfate processes: Toxicological and energetic evaluation. ENVIRONMENTAL RESEARCH 2022; 209:112868. [PMID: 35143803 DOI: 10.1016/j.envres.2022.112868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
A fruit processing wastewater was submitted to different advanced oxidation processes, namely, electro-Fenton (EF), electrochemical oxidation (EO), activated persulfate (PS), and combined EF/PS. The performance of the treatment processes, at different experimental conditions, regarding organic load removal, biodegradability increment, toxicity reduction, and specific energy consumption (Esp), was evaluated. At the experimental conditions studied, EO led to the treated solutions with the highest biodegradability increment, from 0.24 to 0.48, and toxicity reduction towards Daphnia magna, from 5.8 to 1.5 toxic units, without requiring the addition of chemicals. Nevertheless, the highest chemical oxygen demand (COD) removals were obtained for EF and combined EF/PS treatments. For the electrochemical processes, an increase in COD removal rate with applied current density (j) was observed. However, the increase in j substantially raised the Esp. In PS treatment, COD removals above 80% were only achieved for high amounts of added persulfate and iron, which led to less biodegradable and more toxic solutions. Combined EF/PS attained the lowest Esp values, mainly due to the conductivity increase originated by the persulfate and iron salts addition. Besides the disadvantage of the chemicals added, this combined treatment led to treated solutions with very acidic pH and significant iron content.
Collapse
Affiliation(s)
- A S Rodrigues
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - F Souiad
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal; Unité de Recherche CHEMS, Département de Chimie, Faculté des Sciences Exactes, Université Constantine 1, 25000, Constantine, Algeria
| | - A Fernandes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal.
| | - A Baía
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - M J Pacheco
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - L Ciríaco
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Y Bendaoud-Boulahlib
- Unité de Recherche CHEMS, Département de Chimie, Faculté des Sciences Exactes, Université Constantine 1, 25000, Constantine, Algeria
| | - A Lopes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marques de Ávila e Bolama, 6201-001, Covilhã, Portugal
| |
Collapse
|
18
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
19
|
Naima A, Ammar F, Abdelkader O, Rachid C, Lynda H, Syafiuddin A, Boopathy R. Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal. BIORESOURCE TECHNOLOGY 2022; 347:126685. [PMID: 35007736 DOI: 10.1016/j.biortech.2022.126685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
A potential biochar from pepper stems (PS-biochar) was developed via a one-stage pyrolysis process of precursor at 700 °C and employed to adsorb ibuprofen (IBP) in water media. Results showed that PS-biochar was a carbonaceous mesoporous adsorbent with well-developed porosity (SBET = 727.5 m2/g and VTotal = 0.36 cm3/g) and rich surface functional groups. Mechanism of IBP adsorption consisted mainly of π- π interaction, pore filling, and H-bonding. The Langmuir monolayer capacity (569.6 mg/g) was very high compared to values reported in similar studies. The successful PS-biochar regeneration after four cycles in the batch system confirmed the high performance of the NaOH (0.1 M) as a desorbing agent. Therefore, the prepared biochar can be considered as a cost-effective and high-performance material for water decontamination.
Collapse
Affiliation(s)
- Azri Naima
- Laboratory of LARGHYDE, University of Biskra, PO Box 145, Biskra 07000, Algeria; Department of industrial Chemistry, University of Biskra, PO Box 145, Biskra 07000, Algeria
| | - Fadel Ammar
- Department of industrial Chemistry, University of Biskra, PO Box 145, Biskra 07000, Algeria
| | - Ouakouak Abdelkader
- Hydraulic and Civil Engineering Department, University of El Oued, PO Box 789, El Oued 39000, Algeria; Research Laboratory in Subterranean and Surface Hydraulics, University of Biskra, PO Box 145, Biskra 07000, Algeria
| | - Chebbi Rachid
- Department of industrial Chemistry, University of Biskra, PO Box 145, Biskra 07000, Algeria
| | - Hecini Lynda
- Scientific and Technical Research Center for Arid Zones CRSTRA, University of Biskra, PO Box 145, Biskra 07000, Algeria
| | - Achmad Syafiuddin
- Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
20
|
Kiendrebeogo M, Karimi Estahbanati MR, Ouarda Y, Drogui P, Tyagi RD. Electrochemical degradation of nanoplastics in water: Analysis of the role of reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151897. [PMID: 34826468 DOI: 10.1016/j.scitotenv.2021.151897] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and nanoplastics (NPs) are emerging water contaminants which have recently gained lots of attention because of their effects on the aquatic systems and human life. Most of the previous works on the treatment of plastic pollution in water have been focused on microplastics and a very limited study has been performed on the NPs treatment. In this work, the role of main reactive oxygen species (ROSs) in the electrooxidation (EO) and electro-peroxidation (EO-H2O2) of NPs in water is investigated. In-situ generation of hydroxyl radicals (•OH), persulfates (S2O82-), and hydrogen peroxide (H2O2) were performed using boron-doped diamond (BDD) as the anode, whereas titanium (in EO process) and carbon felt (CF, in EO-H2O2 process) were used as cathode. In the EO process, NPs were mainly oxidized by two types of ROSs on the BDD surface: (i) •OH from water discharge and (ii) SO4•- via S2O82- reaction with •OH. In EO-H2O2 process, NPs were additionally degraded by •OH formed from H2O2 decomposition as well as SO4•- generated from direct or indirect reactions with H2O2. Analysis of the degradation of NPs showed that EO-H2O2 process was around 2.6 times more effective than EO process. The optimum amount of NPs degradation efficiency of 86.8% was obtained using EO-H2O2 process at the current density of 36 mA·cm-2, 0.03 M Na2SO4, pH of 2, and 40 min reaction time. In addition, 3D EEM fluorescence analysis confirmed the degradation of NPs. Finally, the economic analysis showed the treatment of NPs using EO-H2O2 process had an operating cost of 2.3 $US.m-3, which was around 10 times less than the EO process. This study demonstrated that the in-situ generation of ROSs can significantly enhance the degradation of NPs in water.
Collapse
Affiliation(s)
- Marthe Kiendrebeogo
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec G1K 9A9, QC, CANADA
| | - M R Karimi Estahbanati
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec G1K 9A9, QC, CANADA.
| | - Yassine Ouarda
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec G1K 9A9, QC, CANADA
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec G1K 9A9, QC, CANADA.
| | - R D Tyagi
- Distinguished Prof Huzhou University, China; BOSK Bioproducts, Québec, Canada
| |
Collapse
|
21
|
Zhou Q, Zhou X, Zheng R, Liu Z, Wang J. Application of lead oxide electrodes in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150088. [PMID: 34563906 DOI: 10.1016/j.scitotenv.2021.150088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (EO) based on hydroxyl radicals (·OH) generated on lead dioxide has become a typical advanced oxidation process (AOP). Titanium-based lead dioxide electrodes (PbO2/Ti) play an increasingly important role in EO. To further improve the efficiency, the structure and properties of the lead dioxide active surface layer can be modified by doping transition metals, rare earth metals, nonmetals, etc. Here, we compare the common preparation methods of lead dioxide. The EO performance of lead dioxide in wastewater containing dyes, pesticides, drugs, landfill leachate, coal, petrochemicals, etc., is discussed along with their suitable operating conditions. Finally, the factors influencing the contaminant removal kinetics on lead dioxide are systematically analysed.
Collapse
Affiliation(s)
- Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
22
|
Diao Y, Yang Y, Cui L, Shen Y, Wang H, Yao Y. Electrochemical degradation of vanillin using lead dioxide electrode: influencing factors and reaction pathways. ENVIRONMENTAL TECHNOLOGY 2022; 43:646-657. [PMID: 32677547 DOI: 10.1080/09593330.2020.1797902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel PbO2-CeO2 composite electrode was applied it to the electrocatalytic degradation of vanillin. The operating parameters such as applied current density, initial vanillin concentration, supporting electrolyte concentration and pH value were investigated and optimised. After 120 min, in a 0.10 mol L-1 Na2SO4 solution with a current density of 50 mA cm-2 and a pH value of 5.0 containing 30 mg L-1 vanillin, the vanillin removal efficiency can reach 98.03%, the COD removal efficiency is up to 73.28%. The results indicate that electrochemical degradation has a high ability to remove vanillin in aqueous solution. The reaction follows a pseudo-first-order reaction kinetics model with rate constants of 0.03036 min-1. In the process of electrochemical degradation, up to eight hydroxylated or polyhydroxylated oxidation by-products were identified through hydroxylation, dealkylation and substitution reactions. Furthermore, the degradation pathways were proposed, which eventually mineralised into inorganic water and carbon dioxide.
Collapse
Affiliation(s)
- Yuhan Diao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Yang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Leilei Cui
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Ying Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Han Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| | - Yingwu Yao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
23
|
Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6010008] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Advanced oxidation procedures (AOPs) refer to a variety of technical procedures that produce OH radicals to sufficiently oxidize wastewater, organic pollutant streams, and toxic effluents from industrial, hospital, pharmaceutical and municipal wastes. Through the implementation of such procedures, the (post) treatment of such waste effluents leads to products that are more susceptible to bioremediation, are less toxic and possess less pollutant load. The basic mechanism produces free OH radicals and other reactive species such as superoxide anions, hydrogen peroxide, etc. A basic classification of AOPs is presented in this short review, analyzing the processes of UV/H2O2, Fenton and photo-Fenton, ozone-based (O3) processes, photocatalysis and sonolysis from chemical and equipment points of view to clarify the nature of the reactive species in each AOP and their advantages. Finally, combined AOP implementations are favored through the literature as an efficient solution in addressing the issue of global environmental waste management.
Collapse
|
24
|
Electrodeposition of Calcium Carbonate and Magnesium Carbonate from Hard Water on Stainless-Steel Electrode to Prevent Natural Scaling Phenomenon. WATER 2021. [DOI: 10.3390/w13192752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study focuses on preventing scale formation in hard waters by controlled electrode-position of Ca2+ and Mg2+ on a stainless-steel cathode at constant applied current intensity. The influence of the anode material, BDD or Ti/Pt/PbO2, cathode active area, stirring speed, and applied anodic current intensity on the inorganic carbon (IC), Ca2+, and Mg2+ removal was investigated. Assays were performed with model hard water solutions, simulating Bounouara (Algeria) water. The scaling inhibiting properties of the treated water were followed by measuring IC, calcium, and magnesium concentrations and chronoamperometric characterization of the treated solutions. The influence of the Ca/Mg molar ratio on the inorganic carbon removal by electrolysis was also evaluated, utilizing model solutions with different compositions. It was found that an increase in stirring speed or cathode geometric area favors IC and Ca2+ and Mg2+ removal rates. The applied current intensity was varied from 0.025 to 0.5 A, and the best results were obtained for 0.1 A, either in IC and Ca2+ and Mg2+ removals or by the accelerated scaling tests. However, energy costs increase with applied current. The deposit formed over the cathode does not seem to influence posterior deposition rate, and after eight consecutive assays, the solid deposition rate was kept constant. Ca/Mg ratio influences IC removal rate that increases with it. The results showed that hard-water scaling phenomena can be prevented by solid electrodeposition on the cathode at applied constant current.
Collapse
|
25
|
Zhang J, Zhou Y, Yao B, Yang J, Zhi D. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126313. [PMID: 34329033 DOI: 10.1016/j.jhazmat.2021.126313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Various pharmaceuticals have been detected in natural water and wastewater bodies, causing threats to water ecosystem and human health. Although electrochemical anodic-oxidation (EAO) has been shown to be efficient for pharmaceuticals degradation from aqueous solution, it still has a distinct need to apply EAO technology for pharmaceuticals removal rationally. This review provides the most recent progress on the mechanisms, influencing factors, and new technique of EAO for pharmaceuticals degradation. The mechanism and superiority of EAO were analyzed. Major influencing factors (e.g., electrode materials, electrochemical reactor, applied current density, anode-cathode distance, electrolyte type and concentration, initial solution pH value, and initial pharmaceuticals concentration) were discussed on the removal of pharmaceuticals. The latest development of reactive electrochemical membranes (REM) was regarded as an emerging EAO technique, and it was also highlighted. This work revealed that the EAO of pharmaceuticals has extraordinary application prospects in the field of water and wastewater treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
26
|
Zhang S, Chen X, Du S, Wang J, Dong J, Wu D. Facile synthesis of highly active Ti/Sb-SnO 2 electrode by sol-gel spinning technique for landfill leachate treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1366-1378. [PMID: 34559072 DOI: 10.2166/wst.2021.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly active Ti/Sb-SnO2 electrodes were fabricated using sol-gel spin coating procedure, which exhibited a rough, uniform and multilayer coating structure. The effects of different Sb-SnO2 film layers on the physiochemical, electrochemical properties and pollutant degradability of electrodes and the mechanism were evaluated on a systematic basis. The electrodes with more active layers exhibited higher electro-catalytic performance. Upon exceeding 8 layers, the promotion effect of the coating was reduced. Considering various factors, this paper recommends preparing Ti/Sb-SnO2 electrodes coated with 8 layers to obtain higher electro-catalytic ability in landfill leachate treatment. The specific number of coating layers should be determined according to the electrode requirements. This work provided a theoretical basis and technical support for the preparation of Ti-SnO2 electrodes with high electro-catalytic activity and stability, while it still remains a great challenge to achieve an excellent balance between performance and stability before Ti/Sb-SnO2 electrodes can be implemented on a large scale in wastewater treatment.
Collapse
Affiliation(s)
- Shuchi Zhang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China E-mail:
| | - Xu Chen
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China E-mail:
| | - Shuwen Du
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China E-mail:
| | - Jingli Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China E-mail:
| | - Jiayu Dong
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China E-mail:
| | - Donglei Wu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China E-mail:
| |
Collapse
|
27
|
Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the research on the environmental applications of electrochemistry to remove recalcitrant and priority pollutants and, in particular, drugs from the aqueous phase has increased dramatically. This literature review summarizes the applications of electrochemical oxidation in recent years to decompose pharmaceuticals that are often detected in environmental samples such as carbamazapine, sulfamethoxazole, tetracycline, diclofenac, ibuprofen, ceftazidime, ciprofloxacin, etc. Similar to most physicochemical processes, efficiency depends on many operating parameters, while the combination with either biological or other physicochemical methods seems particularly attractive. In addition, various strategies such as using three-dimensional electrodes or the electrosynthesis of hydrogen peroxide have been proposed to overcome the disadvantages of electrochemical oxidation. Finally, some guidelines are proposed for future research into the applications of environmental electrochemistry for the degradation of xenobiotic compounds and micropollutants from environmental matrices. The main goal of the present review paper is to facilitate future researchers to design their experiments concerning the electrochemical oxidation processes for the degradation of micropollutants/emerging contaminants, especially, some specific drugs considering, also, the existing limitations of each process.
Collapse
|
28
|
Caliari PC, Pacheco MJ, Ciríaco L, Lopes A. Treatment of tannery effluent by chemical coagulation combined with batch-recirculated electro-oxidation at different anode materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24138-24149. [PMID: 33486686 DOI: 10.1007/s11356-021-12436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to evaluate the pollutant load from tannery effluents treated by chemical coagulation (CC) followed by electro-oxidation (EO), performed in two different experimental batch-recirculated setups, one with a BDD anode and the other with Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes (PS). Results were compared with those obtained from EO of the raw sample. CC was performed with a Fe3+ concentration of 0.25 g L-1, and the applied current densities for EO in each setup were 60 mA cm-2 for BDD and, in the PS setup, 20 and 40 mA cm-2 for Ti/Pt/SnO2-Sb2O4 and Ti/Pt/PbO2, respectively. During CC, removals of 27% in chemical oxygen demand (COD), 14% in total nitrogen, 100% in sulfide, and 73% in Cr(VI) were observed. COD removal in the EO of the raw sample was higher than that obtained for the combined CC + EO, for both setups, showing that the organic compounds removed by CC are mainly those that would be more easily removed by EO. For most of the other parameters related with carbon and nitrogen, the removals for CC + EO were higher than for EO alone. During EO, sulfide is converted to sulfate, especially with BDD. Concerning Cr(VI) concentration, it increases during EO, in particular for PS setup. Combined treatment, with both setups, proved to be an effective choice to treat tannery effluents.
Collapse
Affiliation(s)
- Paulo Cezar Caliari
- FibEnTech-UBI and Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, 29106-210, Brazil
| | - Maria José Pacheco
- FibEnTech-UBI and Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Lurdes Ciríaco
- FibEnTech-UBI and Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Ana Lopes
- FibEnTech-UBI and Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
| |
Collapse
|
29
|
Kiendrebeogo M, Karimi Estahbanati MR, Khosravanipour Mostafazadeh A, Drogui P, Tyagi RD. Treatment of microplastics in water by anodic oxidation: A case study for polystyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116168. [PMID: 33333450 DOI: 10.1016/j.envpol.2020.116168] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Water pollution by microplastics (MPs) is a contemporary issue which has recently gained lots of attentions. Despite this, very limited studies were conducted on the degradation of MPs. In this paper, we reported the treatment of synthetic mono-dispersed suspension of MPs by using electrooxidation (EO) process. MPs synthetic solution was prepared with distilled water and a commercial polystyrene solution containing a surfactant. In addition to anode material, different operating parameters were investigated such as current intensity, anode surface, electrolyte type, electrolyte concentration, and reaction time. The obtained results revealed that the EO process can degrade 58 ± 21% of MPs in 1 h. Analysis of the operating parameters showed that the current intensity, anode material, electrolyte type, and electrolyte concentration substantially affected the MPs removal efficiency, whereas anode surface area had a negligible effect. In addition, dynamic light scattering analysis was performed to evaluate the size distribution of MPs during the degradation. The combination of dynamic light scattering, scanning electron microscopy, total organic carbon, and Fourier-transform infrared spectroscopy results suggested that the MPs did not break into smaller particles and they degrade directly into gaseous products. This work demonstrated that EO is a promising process for degradation of MPs in water without production of any wastes or by-products.
Collapse
Affiliation(s)
- Marthe Kiendrebeogo
- Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC), Canada, G1K 9A9
| | - M R Karimi Estahbanati
- Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC), Canada, G1K 9A9
| | - Ali Khosravanipour Mostafazadeh
- Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC), Canada, G1K 9A9
| | - Patrick Drogui
- Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC), Canada, G1K 9A9.
| | - R D Tyagi
- Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC), Canada, G1K 9A9
| |
Collapse
|
30
|
José C, Briand L, Michlig N, Repetti MR, Benedetich C, Cornaglia LM, Bosko ML. Isolation of ibuprofen enantiomers and racemic esters through electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Electrochemical Mineralization of Ibuprofen on BDD Electrodes in an Electrochemical Flow Reactor: Numerical Optimization Approach. Processes (Basel) 2020. [DOI: 10.3390/pr8121666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Statistical analysis was applied to optimize the electrochemical mineralization of ibuprofen with two boron-doped diamond (BDD) electrodes in a continuous electrochemical flow reactor under recirculation batch mode. A central composite rotatable (CCR) experimental design was used to analyze the effect of initial pH (2.95–13.04), current intensity (2.66–4.34 A), and volumetric flow rate (0.16–1.84 L/min) and further optimized by response surface methodology (RSM) to obtain the maximum mineralization efficiency and the minimum specific energy consumption. A 91.6% mineralization efficiency (EM) of ibuprofen with a specific energy consumption (EC) of 4.36 KW h/g TOC within 7 h of treatment was achieved using the optimized operating parameters (pH0 = 12.29, I = 3.26 A, and Q of 1 L/min). Experimental results of RSM were fitted via a third-degree polynomial regression equation having the performance index determination coefficients (R2) of 0.8658 and 0.8468 for the EM and EC, respectively. The reduced root-mean-square error (RMSE) was 0.1038 and 0.1918 for EM and EC, respectively. This indicates an efficient predictive performance to optimize the operating parameters of the electrochemical flow reactor with desirability of 0.9999993. Besides, it was concluded that the optimized conditions allow to achieve a high percentage of ibuprofen mineralization (91.6%) and a cost of 0.002 USD $/L. Therefore, the assessed process is efficient for wastewater remediation.”
Collapse
|
32
|
Adsorption of Reactive Black 5 Dye from Aqueous Solutions by Carbon Nanotubes and its Electrochemical Regeneration Process. HEALTH SCOPE 2020. [DOI: 10.5812/jhealthscope.102443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
: Removal of Reactive Black 5 (RB5) dye from aqueous solutions was investigated by adsorption onto Multi-walled Carbon Nanotubes (MWCNTs) and Single-walled Carbon Nanotubes (SWCNTs). A Taguchi orthogonal design including pH, initial RB5 concentration, contact time, and CNTs dose, was used in 16 experiments. The results showed that all four factors were statistically significant, and the optimum conditions for both adsorbents were as follows: pH of 3, adsorbent dose of 1000 mg/L, RB5 concentrations of 25 mg/L, and contact time of 60 min. An equilibrium study by Isotherm Fitting Tool (ISOFIT) software showed that Langmuir isotherm provided the best fit for RB5 adsorption by CNTs. The maximum predicted adsorption capacities for the dye were obtained as 231.84 and 829.20 mg/g by MWCNTs and SWCNTs, respectively. The results also indicated that the adsorption capacity of SWCNTs was about 1.21 folds higher than that of MWCNTs. Studies of electrochemical regeneration were conducted, and the results demonstrated that RB5-loaded MWCNTs and SWCNTs could be regenerated (86.5% and 77.3%, respectively) using the electrochemical process. Adsorbent regeneration was mostly due to the degradation of the dye by the attack of active species such as chlorate, H2O2, and, •OH, which were generated by the electrochemical oxidation process with Ti/RuO2-IrO2-TiO2 anodes. The results of Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that acetic acid, 3-chlorobenzenesulfonamide, and 1,2-benzenedicarboxylic acid were produced after adsorbent regeneration by the electrochemical process in the solution of regeneration. The adsorption and regeneration cycles showed that the electrochemical process with Ti/RuO2-IrO2-TiO2 and graphite is a good alternative method for the regeneration of CNTs and simultaneous degradation of the dye.
Collapse
|
33
|
Fernandes A, Pereira C, Kozioł V, Pacheco MJ, Ciríaco L, Lopes A. Emerging contaminants removal from effluents with complex matrices by electrooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140153. [PMID: 32563882 DOI: 10.1016/j.scitotenv.2020.140153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The electrooxidation of methiocarb and bisphenol A was studied in complex matrices, namely, simulated and real sanitary landfill leachate samples, using a boron-doped diamond anode. With simulated sanitary landfill leachate samples, the influence of the type and ratio of carbon source (glucose/humic acid) and electrolyte (NaCl or Na2SO4) on the emerging contaminants removal was assessed. Using real sanitary landfill leachate, the influence of current density was evaluated. The experimental results showed that electrooxidation, using a boron-doped diamond anode, can be successfully utilized to degrade methiocarb and bisphenol A when present in complex matrices, such as sanitary landfill leachate, and that methiocarb is more easily oxidized than bisphenol A. Furthermore, it was found that the presence of chloride and high humic acid content increases emerging contaminants removal rate, showing that electrooxidation at boron-doped diamond is particularly adequate to solve the problems raised by sanitary landfill leachate, even when contaminated with emerging contaminants.
Collapse
Affiliation(s)
- Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
| | - Christopher Pereira
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Violeta Kozioł
- Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy, 12 35-959 Rzeszów, Poland
| | - Maria José Pacheco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Lurdes Ciríaco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
34
|
Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.038] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
35
|
Chen M, Wang C, Zhao X, Wang Y, Zhang W, Chen Z, Meng X, Luo J, Crittenden J. Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO 2-nanotubes array. ENVIRONMENT INTERNATIONAL 2020; 140:105813. [PMID: 32480113 DOI: 10.1016/j.envint.2020.105813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
This paper reports on the development of macroporous flow-through anodes. The anodes comprised an enhanced TiO2 nanotube array (ENTA) that was grown on three macroporous titanium substrates (MP-Ti) with nominal pore sizes of 10, 20, and 50 µm. The ENTA was then covered with SnO2-Sb2O3. We refer to this anode as the MP-Ti-ENTA/SnO2-Sb2O3 anode. The morphology, pore structure, and electrochemical properties of the anode were characterized. Compared with the traditional NTA layer, we found that the MP-Ti-ENTA/SnO2-Sb2O3 anode has a service lifetime that was 1.56 times larger than that of MP-Ti-NTA/SnO2-Sb2O3. We used 2-methyl-4-isothiazolin-3-one (MIT), a common biocide, as the target pollutant. We evaluated the impact of the operating parameters on energy efficiency and the oxidation rate of MIT. Furthermore, the apparent rate constants were 0.38, 1.63, and 1.24 min-1 for the 10, 20, and 50 μm nominal pore sizes of the MP-Ti substrates, respectively, demonstrating the different coating-loading mechanisms for the porous substrate. We found that hydroxyl radicals were the dominant species in the MIT oxidation in the HO radical scavenging experiments. The radical and nonradical oxidation contributions to the MIT degradation for different current densities were quantitatively determined as 72.1%-74.8% and 25.2%-27.9%, respectively. Finally, we summarized the oxidation performance for MIT destruction for (1) the published literature on various advanced oxidation technologies, (2) the published literature on various anodes, and (3) our flow-by and -through anodes. Accordingly, we found that our flow-through anode has a much lower electrical efficiency per order value (0.58 kWh m-3) than the flow-by anodes (6.85 kWh m-3).
Collapse
Affiliation(s)
- Min Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| | - Yingcai Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Weiqiu Zhang
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Zefang Chen
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Xiaoyang Meng
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jinming Luo
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
36
|
Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. WATER 2020. [DOI: 10.3390/w12061551] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Presence of pharmaceutically active compounds (PACs) as emerging contaminants in water is a major concern. Recent reports have confirmed the presence of PACs in natural and wastewater systems, which have caused several problems indicating the urgent need for their removal. The current review evaluates the role of chemically modified biosorbents in the removal of PACs in water. Reported biosorbents include plant and animal solid waste, microorganisms and bio-composite. Bio-composites exhibited better prospects when compared with other biosorbents. Types of chemical treatment reported include acid, alkaline, solvent extraction, metal salt impregnation and surface grafting, with alkaline treatment exhibiting better results when compared with other treatments. The biosorption processes mostly obeyed the pseudo-second-order model and the Langmuir isotherm model in a process described mainly by ionic interaction. Desorption and regeneration capacity are very important in selecting an appropriate biosorbent for the biosorption process. Depending on the type of biosorbent, the cost of water treatment per million liters of water was estimated as US $10–US $200, which presents biosorption as a cheap process compared to other known water treatment processes. However, there is a need to conduct large-scale studies on the biosorption process for removing PACs in water.
Collapse
|
37
|
Diaw PA, Oturan N, Gaye Seye MD, Mbaye OMA, Mbaye M, Coly A, Aaron JJ, Oturan MA. Removal of the herbicide monolinuron from waters by the electro-Fenton treatment. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Arenhart Heberle AN, García-Gabaldón M, Ortega EM, Bernardes AM, Pérez-Herranz V. Study of the atenolol degradation using a Nb/BDD electrode in a filter-press reactor. CHEMOSPHERE 2019; 236:124318. [PMID: 31319310 DOI: 10.1016/j.chemosphere.2019.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The present paper deals with the atenolol (ATL) degradation by advanced anodic oxidation using a boron-doped diamond anode supported on niobium (Nb/BDD). Cyclic voltammetry performed on this electrode revealed that it presents a high quality (diamond-sp3/sp2-carbon ratio), high potential for OER and that ATL can be oxidized directly and/or indirectly by the electrogenerated oxidants, such as hydroxyl radicals, persulfate ions and sulfate radicals. Electrolysis experiments demonstrated that ATL degradation and mineralization follow a mixed (first and zero) order kinetics depending on the applied current density. At high applied current densities, the amount of OH radicals is very high and the overall reaction is limited by the transport of ATL (pseudo first-order kinetics) whereas for low applied current densities, the rate of OH radicals generation at the anode is slower than the rate of arrival of ATL molecules (pseudo-zero order kinetics). Estimated values of kzero and kfirst based on the assumption of pseudo-zero or pseudo-first order kinetics were carried oud as a function of the supporting electrolyte concentration, indicating that both parameters increased with its concentration due the higher production of sulfate reactive species that play an important role in degradation. Finally, MCE increased with the decrease of current density, due to the lower amount of OH present in solution, since this species could be rapidly wasted in parasitic reactions; and the increase of sulfate concentration due to the more efficient production of persulfate.
Collapse
Affiliation(s)
- Alan Nelson Arenhart Heberle
- Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain; Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Montserrat García-Gabaldón
- Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain
| | - Emma María Ortega
- Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain
| | - Andréa Moura Bernardes
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Valentín Pérez-Herranz
- Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain.
| |
Collapse
|
39
|
Wool roving textured reduced graphene oxide-HoVO4-ZnO nanocomposite for photocatalytic and supercapacitor performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Xu L, Ma X, Niu J, Chen J, Zhou C. Removal of trace naproxen from aqueous solution using a laboratory-scale reactive flow-through membrane electrode. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120692. [PMID: 31255850 DOI: 10.1016/j.jhazmat.2019.05.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The kinetics and mechanisms of naproxen (NPX) degradation with the concentration of 20-200 μg/L were investigated by using reactive flow-through membrane anode. The electrochemical degradation of NPX followed pseudo-first-order reaction kinetics. The kinetic rate constant (k) of 0.649 min-1 and energy consumption (EEO) of 0.744 Wh/L were found under optimal conditions with the initial NPX concentration of 50 μg/L. Higher current density benefited •OH production and NPX degradation. Faster rotational speed of pump and lower pH were in favor of electrochemical degradation of NPX, in which k and EEO were 3.9 and 0.27 times when rotational speed was increased from 100 to 600 rpm, and 4.9 and 0.21 times when pH was decreased from 11.0 to 3.0, respectively. The degradation efficiency and energy consumption were both maintained at a narrow range when the initial concentration of NPX was changed from 20 to 200 μg/L, and even under the addition of humic acid (1.0-10.0 mg/L). The major degradation pathways of NPX were demethylation and decarboxylation, followed with the further ring cleavage reactions. The flow-through membrane electrode is proved to be effective for the elimination of trace NPX from aqueous solution.
Collapse
Affiliation(s)
- Lei Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiao Ma
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Jie Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chengzhi Zhou
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
41
|
Jun BM, Heo J, Park CM, Yoon Y. Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework. CHEMOSPHERE 2019; 235:527-537. [PMID: 31276866 DOI: 10.1016/j.chemosphere.2019.06.208] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical products (PhACs) in water sources are considered to be a severe environmental issue. To mitigate this issue, we used a metal-organic framework (MOF) as an adsorbent to remove selected PhACs (i.e., carbamazepine (CBM) and ibuprofen (IBP)). This work was carried out to characterize the MOF, then confirm its feasibility for removing the selected PhACs. In particular, based on practical considerations, we investigated the effects of various water quality conditions, such as solution temperature, pH, ionic strength/background ions, and humic acid. MOF exhibited better removal rates than commercial powder activated carbon (PAC), considering pseudo-second order kinetic model. We clarified the competitive PhACs adsorption mechanisms based on the results obtained under various water quality conditions and found that hydrophobic interactions were the most important factors for both adsorbates. To confirm the practicality of MOF adsorption, we carried out regeneration tests with four adsorption and desorption cycles using acetone as a cleaning solution. Furthermore, to support the results of our regeneration tests, we characterized the MOF samples before and after adsorbate exposure using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Overall, MOF can be used in practical applications as efficient adsorbents to remove PhACs from water sources.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Youngcheon, 495 Hogook-ro, Gokyungmeon, Youngcheon, Gyeongbuk, 38900, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
42
|
Chen M, Wang C, Wang Y, Meng X, Chen Z, Zhang W, Tan G. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134779] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Mao N, Huang L, Shuai Q. Facile Synthesis of Porous Carbon for the Removal of Diclofenac Sodium from Water. ACS OMEGA 2019; 4:15051-15060. [PMID: 31552347 PMCID: PMC6751710 DOI: 10.1021/acsomega.9b01838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
In this work, a series of porous carbon materials (PCs) were obtained at different carbonization temperatures (800, 900, 1000, and 1100 °C) by a simple and fast solvent-free method. Moreover, the feasibility of PCs as reliable and efficient adsorbents to capture diclofenac sodium (DCF) from the water was evaluated. Notably, porous carbon (PC) prepared at 1000 °C (PC-1000) was found to be the best candidate for the adsorption of DCF. Remarkably, adsorption equilibrium was achieved within 3 h, which followed a pseudo-second-order kinetic model with a high correlation coefficient (R 2 > 0.994). Furthermore, experimental data obtained from adsorption isotherm indicated that the capture of DCF onto PC-1000 followed the Langmuir adsorption model (R 2 > 0.997), wherein its maximum adsorption capacity was calculated to be 392 mg/g. In addition, based on the results obtained from the zeta potential of PC-1000 under different pH and the adsorbed quantity of DCF along with functional groups created on the surface of PC-1000, electrostatic and H-bonding interactions were proposed as the possible adsorption mechanisms. Due to its high stability and excellent reusability, PC-1000 has been testified as a promising candidate for removing DCF from contaminated water.
Collapse
|
44
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
45
|
Ordered Mesoporous Carbons for Adsorption of Paracetamol and Non-Steroidal Anti-Inflammatory Drugs: Ibuprofen and Naproxen from Aqueous Solutions. WATER 2019. [DOI: 10.3390/w11051099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adsorption of paracetamol and non-steroidal anti-inflammatory drugs (ibuprofen and naproxen) on ordered mesoporous carbons (OMC) and, for comparison, on commercial activated carbon, were investigated in this work. OMC adsorbents were obtained by the soft-templating method and were characterized by low-temperature nitrogen adsorption and scanning electron microscopy (SEM). The effects of contact time and initial concentration of organic adsorbates on the adsorption were studied. The contact time to reach equilibrium for maximum adsorption was 360 min for all the studied adsorbates. The adsorption mechanism was found to fit pseudo-second-order and intra particle-diffusion models. Freundlich, Langmuir and Langmuir-Freundlich isotherm models were used to analyze equilibrium adsorption data. Based on the obtained experimental data, the adsorption isotherm in the applied concentration range for all the studied adsorbates was well represented by the Freundlich-Langmuir model. The adsorption ability of ordered mesoporous carbon materials was much higher for paracetamol and naproxen in comparison to commercial activated carbon. The removal efficiency for ibuprofen was significantly lower than for other studied pharmaceuticals and comparable for all adsorbents. Theoretical calculations made it possible to obtain optimized chemical structures of (S)-naproxen, ibuprofen, and paracetamol molecules. Knowledge of charge distributions of these adsorbate molecules can be helpful to explain why paracetamol and naproxen can react more strongly with the surface of adsorbents with a large numbers of acidic groups compared to ibuprofen facilitating more efficient adsorption of these pharmaceuticals on ordered mesoporous carbons.
Collapse
|
46
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
47
|
Mo C, Wei H, Wang T. Fabrication of a self‐doped TiO
2
nanotube array electrode for electrochemical degradation of methyl orange. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenghao Mo
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Huixian Wei
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Tongjun Wang
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| |
Collapse
|
48
|
Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: Mechanism, oxidation products and degradation pathway. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.114] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Feng Y, Long Y, Wang Z, Wang X, Shi N, Suo N, Shi Y, Yu Y. Performance and microbial community of an electric biological integration reactor (EBIR) for treatment of wastewater containing ibuprofen. BIORESOURCE TECHNOLOGY 2019; 274:447-458. [PMID: 30553085 DOI: 10.1016/j.biortech.2018.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Electric biological integration reactor (EBIR) was designed and built for the treatment of wastewater containing ibuprofen. This study evaluates the removal performance of EBIR by comparison with biological aerated filter (BAF), while also discussing the optimal operational parameters of EBIR within the context of the response surface methodology. The results indicate that EBIR exhibits higher average removal rates of ibuprofen, chemical oxygen demand (COD) and NH4+-N, i.e. 93.48%, 86.72% and 85.19%, representing an increase by 61.59%, 14.57% and 10.49%, respectively, compared with BAF. The optimal conditions for EBIR were 12.73 A/m2 current density (CD), 3.5 h hydraulic retention time and 0.08 mg/L influent ibuprofen concentration. In addition, microbial community structures were detected using an Illumina Miseq PE300 system, which were different at the phylum, class, and genus levels between EBIR and BAF. The microbial communities of EBIR, including mainly Trichococcus, Aeromonas, Saprospiraceae_uncultured, Thiobacillus, Aeromonas Flavobacterium, Sphingopyxis, Candidate_division_TM7_norank, Acinetobacter and physicochemical properties indirectly confirmed the excellent removal performance at 12.73 A/m2 CD.
Collapse
Affiliation(s)
- Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Yingying Long
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan 250022, China
| | - Xinwei Wang
- China Urban Construction Design & Research Institute Co. Ltd (Shang Dong), Jinan 250022, China
| | - Nan Shi
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Yulong Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, China
| |
Collapse
|
50
|
Liu W, Shen X, Han Y, Liu Z, Dai W, Dutta A, Kumar A, Liu J. Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. CHEMOSPHERE 2019; 215:524-531. [PMID: 30342397 DOI: 10.1016/j.chemosphere.2018.10.075] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
The adsorption capacity of three representative pharmaceutical drugs and personal care products (PPCPs) viz. diclofenac sodium (DCF), chlorpromazine hydrochloride (CLF) and amodiaquin dihydrochloride (ADQ), were preliminarily studied using a water-stable Cu(II)-based metal organic framework (MOF) [Cu(BTTA)]n·2DMF (1) (H2BTTA = 1,4-bis(triazol-1-yl)terephthalic acid). We also investigated the factors influencing the adsorption such as concentration, pH, contact time, temperature and dosages. The results show that the adsorption capacity of 1 for DCF (650 mg g-1) from aqueous medium, which is higher in comparison to most of the reported MOFs. While the adsorption of CLF and ADQ are only 67 mg g-1 and 72 mg g-1, respectively. The adsorption isotherm and adsorption kinetics indicated that the adsorption of diclofenac sodium by 1 follows Freundlich model with R2 value of 0.9902 and pseudo-first-order kinetics with correlation coefficient 0.9939 and K1 value of 0.0058 min-1, respectively. Investigations indicate that 1 could become a potential material to adsorb DCF from aqueous medium.
Collapse
Affiliation(s)
- Weicong Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xin Shen
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Yaoyao Han
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Zhaohui Liu
- Dongguan Middle School -SSL School, Dongguan 523808, PR China
| | - Wei Dai
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Archisman Dutta
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|