1
|
Kamel AH, Ashmawy NH, Youssef TA, Elnakib M, Abd El‐Naby H, Abd‐Rabboh HSM. Screen‐printed electrochemical sensors for label‐free potentiometric and impedimetric detection of human serum albumin. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/25/2023] [Indexed: 09/01/2023]
Abstract
AbstractHerein, two electrochemical methods based on potentiometric and impedimetric transductions were presented for albumin targeting, employing screen‐printed platforms (SPEs) to make easy and cost‐effective sensors with good detection merits. The SPEs incorporated ion‐to‐electron multi‐walled carbon nanotubes (MWCNTs) transducer. Sensors were constructed using either tridodecyl methyl‐ammonium chloride (TDMACl) (sensor I) or aliquate 336S (sensor II) in plasticized polymeric matrices of carboxylated poly (vinyl chloride) (PVC‐COOH). Analytical performances of the sensors were evaluated using the above‐mentioned electrochemical techniques. For potentiometric assay, constructed sensors responded to albumin with −81.7 ± 1.7 (r2 = 0.9986) and −146.2 ± 2.3 mV/decade (r2 = 0.9991) slopes over the linearity range 1.5 μM–1.5 mM with 0.8 and 1.0 μM detection limits for respective TDMAC‐ and aliquate‐based sensors. Interference study showed apparent selectivity for both sensors. Impedimetric assays were performed at pH = 7.5 in 10 mM PBS buffer solution with a 0.02 M [Fe(CN)6]−3/−4 redox‐active electrolyte. Sensors achieved detection limits of 4.3 × 10−8 and 1.8 × 10−7 M over the linear ranges of 5.2×10−8–1.0×10−4 M and 1.4×10−6–1.4×10−3 M, with 0.09 ± 0.004 and 0.168 ± 0.009 log Ω/decade slopes for sensors based on TDMAC and aliquate, respectively. These sensors are characterized with simple construction, high sensitivity and selectivity, fast response time, single‐use, and cost‐effectiveness. The methods were successfully applied to albumin assessment in different biological fluids.
Collapse
Affiliation(s)
- Ayman H. Kamel
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
- Chemistry Department College of Science Sakhir 32038, Kingdom of Bahrain
| | - Nashwa H. Ashmawy
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | - Teraze A. Youssef
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | - Mostafa Elnakib
- Military Medical Academy, Elkhalifa El-Maamoun St. Heliopolis Cairo Egypt
| | - Heba Abd El‐Naby
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | | |
Collapse
|
2
|
Lin SY, Lin CY. Electrochemically-functionalized CNT/ABTS nanozyme enabling sensitive and selective voltammetric detection of microalbuminuria. Anal Chim Acta 2022; 1197:339517. [DOI: 10.1016/j.aca.2022.339517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/01/2022]
|
3
|
Zumpano R, Manghisi M, Polli F, D’Agostino C, Ietto F, Favero G, Mazzei F. Label-free magnetic nanoparticles-based electrochemical immunosensor for atrazine detection. Anal Bioanal Chem 2022; 414:2055-2064. [DOI: 10.1007/s00216-021-03838-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
|
4
|
Scandurra A, Censabella M, Boscarino S, Condorelli GG, Grimaldi MG, Ruffino F. Fabrication of Cu(II) oxide-hydroxide nanostructures onto graphene paper by laser and thermal processes for sensitive nano-electrochemical sensing of glucose. NANOTECHNOLOGY 2021; 33:045501. [PMID: 34610585 DOI: 10.1088/1361-6528/ac2d0b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Glucose electrochemical sensors based on nanostructures of CuO/Cu(OH)2onto graphene paper were prepared by thermal (solid) and nanosecond pulsed laser (molten phase) dewetting of a CuO layer 6 nm thin deposited by sputtering. Dewetted systems, obtained without the use of any binder, act as array of nanoelectrodes. Solid state and molten phase dewetting produce nanostructures of copper oxide-hydroxide with different average size, shape and surface composition. Molten phase dewetting originates particles with size below 100 nm, while solid state dewetting produces particles with average size of about 200 nm. Moreover, molten phase dewetting produce drop-shaped nanostructures, conversely nanostructures derived from solid state dewetting are multifaceted. X-ray photoelectron spectroscopy (XPS) characterization revealed that the surface of nanostructures is formed by a copper(II) species CuO and Cu(OH)2. Shape of anodic branch of the cyclic voltammograms of glucose in alkali solution evidenced a convergent diffusion mechanism. Analytical performances in amperometric mode are as good as or better than other sensors based on copper oxide. Amperometric detection of glucose was done at potential as low as 0.4 V versus saturated calomel electrode by both types of electrodes. Linear range from 50μM to 10 mM, sensitivity ranging from 7 to 43μA cm-2mM-1and detection limit of 7μM was obtained. Good analytical performances were obtained by laser dewetted electrodes with a low copper content up to 1.2 by atoms percentage of the surface. Analytical performance of the proposed electrodes is compliant for the determination of glucose both in blood serum, saliva or tear.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | - Maria Censabella
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | - Stefano Boscarino
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | | | - Maria Grazia Grimaldi
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| |
Collapse
|
5
|
Phetsang S, Khwannimit D, Rattanakit P, Chanlek N, Kidkhunthod P, Mungkornasawakul P, Jakmunee J, Ounnunkad K. A Redox Cu(II)-Graphene Oxide Modified Screen Printed Carbon Electrode as a Cost-Effective and Versatile Sensing Platform for Electrochemical Label-Free Immunosensor and Non-enzymatic Glucose Sensor. Front Chem 2021; 9:671173. [PMID: 34095085 PMCID: PMC8172615 DOI: 10.3389/fchem.2021.671173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
A novel copper (II) ions [Cu(II)]-graphene oxide (GO) nanocomplex-modified screen-printed carbon electrode (SPCE) is successfully developed as a versatile electrochemical platform for construction of sensors without an additionally external redox probe. A simple strategy to prepare the redox GO-modified SPCE is described. Such redox GO based on adsorbed Cu(II) is prepared by incubation of GO-modified SPCE in the Cu(II) solution. This work demonstrates the fabrications of two kinds of electrochemical sensors, i.e., a new label-free electrochemical immunosensor and non-enzymatic sensor for detections of immunoglobulin G (IgG) and glucose, respectively. Our immunosensor based on square-wave voltammetry (SWV) of the redox GO-modified electrode shows the linearity in a dynamic range of 1.0-500 pg.mL-1 with a limit of detection (LOD) of 0.20 pg.mL-1 for the detection of IgG while non-enzymatic sensor reveals two dynamic ranges of 0.10-1.00 mM (sensitivity = 36.31 μA.mM-1.cm-2) and 1.00-12.50 mM (sensitivity = 3.85 μA.mM-1.cm-2) with a LOD value of 0.12 mM. The novel redox Cu(II)-GO composite electrode is a promising candidate for clinical research and diagnosis.
Collapse
Affiliation(s)
- Sopit Phetsang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- National Institute of Technology, Nagaoka College, Niigata, Japan
| | - Duangruedee Khwannimit
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Division of Chemistry, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parawee Rattanakit
- Division of Chemistry, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Narong Chanlek
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Aptamer-functionalised magnetic particles for highly selective detection of urinary albumin in clinical samples of diabetic nephropathy and other kidney tract disease. Anal Chim Acta 2021; 1154:338302. [PMID: 33736810 DOI: 10.1016/j.aca.2021.338302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/05/2023]
Abstract
We report a new highly selective detection platform for human albumin (HA) in urine based on aptamer-functionalised magnetic particles. Magnetic separation and re-dispersion was utilised to expose the HA-bound particles to a methylene blue solution. A second magnetic collection step was then used to allow the methylene blue supernatant to be reduced at an unmodified screen-printed electrode. Since methylene blue adsorbs to HA, the reduction current fell in proportion to HA concentration. There was no interference from compounds such as dopamine, epinephrine, vanillylmandelic acid, normetanephrine, metanephrine and creatinine in artificial urine at the concentrations at which they would be expected to appear. A calibration equation was derived to allow for the effect of pH on the response. This enabled measurement to be made directly in clinical urine samples of varying pH. After optimisation of experimental parameters, the total assay time was 40 min and the limit of detection was between 0.93 and 1.16 μg mL-1, depending on the pH used. HA could be detected up to 400 μg mL-1, covering the range from normoalbuminuria to macroalbuminuria. Analysis of urine samples of patients, with diabatic nephropathy, type I & II diabetes mellitus and chronic kidney disease, from a local hospital showed good agreement with the standard urinary human albumin detection method.
Collapse
|
7
|
Hakimian F, Ghourchian H. Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal Chim Acta 2020; 1136:1-8. [DOI: 10.1016/j.aca.2020.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
|
8
|
Dewetted Gold Nanostructures onto Exfoliated Graphene Paper as High Efficient Glucose Sensor. NANOMATERIALS 2019; 9:nano9121794. [PMID: 31888252 PMCID: PMC6955950 DOI: 10.3390/nano9121794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022]
Abstract
Non-enzymatic electrochemical glucose sensing was obtained by gold nanostructures on graphene paper, produced by laser or thermal dewetting of 1.6 and 8 nm-thick Au layers, respectively. Nanosecond laser annealing produces spherical nanoparticles (AuNPs) through the molten-phase dewetting of the gold layer and simultaneous exfoliation of the graphene paper. The resulting composite electrodes were characterized by X-ray photoelectron spectroscopy, cyclic voltammetry, scanning electron microscopy, micro Raman spectroscopy and Rutherford back-scattering spectrometry. Laser dewetted electrode presents graphene nanoplatelets covered by spherical AuNPs. The sizes of AuNPs are in the range of 10-150 nm. A chemical shift in the XPS Au4f core-level of 0.25-0.3 eV suggests the occurrence of AuNPs oxidation, which are characterized by high stability under the electrochemical test. Thermal dewetting leads to electrodes characterized by faceted not oxidized gold structures. Glucose was detected in alkali media at potential of 0.15-0.17 V vs. saturated calomel electrode (SCE), in the concentration range of 2.5μM-30 mM, exploiting the peak corresponding to the oxidation of two electrons. Sensitivity of 1240 µA mM-1 cm-2, detection limit of 2.5 μM and quantifications limit of 20 μM were obtained with 8 nm gold equivalent thickness. The analytical performances are very promising and comparable to the actual state of art concerning gold based electrodes.
Collapse
|
9
|
Chin KB, Chi I, Pasalic J, Huang CK, Barge LM. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:045108. [PMID: 29716330 DOI: 10.1063/1.5020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.
Collapse
Affiliation(s)
- K B Chin
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
| | - I Chi
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
| | - J Pasalic
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
| | - C-K Huang
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
| |
Collapse
|
10
|
Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques. NANOMATERIALS 2018; 8:nano8030171. [PMID: 29547580 PMCID: PMC5869662 DOI: 10.3390/nano8030171] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.
Collapse
|
11
|
Duffy GF, Moore EJ. Electrochemical Immunosensors for Food Analysis: A Review of Recent Developments. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1167900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Juſík T, Podešva P, Farka Z, Kováſ D, Skládal P, Foret F. Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Electrochemical sensor applications of Pt supported porous gold electrode prepared using cellulose-filter. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0179-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wang H, Wu Y, Song JF. Interface potential sensing from adsorption of human serum albumin (HSA) on carbon nanotube (CNT) monitored by zero current potentiometry for HSA determination. Biosens Bioelectron 2015; 72:225-9. [DOI: 10.1016/j.bios.2015.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
|
15
|
Song T, Yan M, Shi Z, Atrens A, Qian M. Creation of bimodal porous copper materials by an annealing-electrochemical dealloying approach. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.217] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sha Y, Guo Z, Chen B, Wang S, Ge G, Qiu B, Jiang X. A one-step electrochemiluminescence immunosensor preparation for ultrasensitive detection of carbohydrate antigen 19-9 based on multi-functionalized graphene oxide. Biosens Bioelectron 2015; 66:468-73. [DOI: 10.1016/j.bios.2014.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
|
17
|
Chai C, Lee J, Oh SW, Takhistov P. Impedimetric Characterization of Adsorption ofListeria monocytogeneson the Surface of an Aluminum-Based Immunosensor. J Food Sci 2014; 79:E2266-71. [DOI: 10.1111/1750-3841.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/20/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Changhoon Chai
- Dept. of Food and Nutrition; Kookmin Univ; Seoul 136-702 Korea
- School of Environmental and Biological Sciences; Rutgers, the State Univ. of New Jersey; New Brunswick NJ 08901 U.S.A
| | - Jooyoung Lee
- Dept. of Biotechnology; College of Life Science and Biotechnology; Yonsei Univ; Seoul 120-479 Korea
| | - Se-Wook Oh
- Dept. of Food and Nutrition; Kookmin Univ; Seoul 136-702 Korea
| | - Paul Takhistov
- School of Environmental and Biological Sciences; Rutgers, the State Univ. of New Jersey; New Brunswick NJ 08901 U.S.A
| |
Collapse
|
18
|
Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P. A novel molecularly imprinted chitosan–acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin. Analyst 2014; 139:6160-7. [DOI: 10.1039/c4an01000k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zhang R, Olin H. Porous Gold Films-A Short Review on Recent Progress. MATERIALS (BASEL, SWITZERLAND) 2014; 7:3834-3854. [PMID: 28788652 PMCID: PMC5453235 DOI: 10.3390/ma7053834] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/01/2023]
Abstract
Porous gold films have attracted increasing interest over the last ten years due to the unique properties of high specific surface area and electrical conductivity combined with chemical stability and ability to alter the surface chemistry. Several methods have been developed to synthesize porous gold films such as de-alloying, templating, electrochemical, and self-assembling. These porous gold films are used in diverse fields, for example, as electrochemical and Raman sensors or for chemical catalysis. Here, we provide a short review on the progress of porous gold films over the past ten years, including the synthesis and applications of such films.
Collapse
Affiliation(s)
- Renyun Zhang
- Department of Natural Sciences, Mid Sweden University, SE-85170 Sundsvall, Sweden.
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, SE-85170 Sundsvall, Sweden.
| |
Collapse
|