1
|
Ghosh R, Li X, Yates MZ. Nonenzymatic Glucose Sensor Using Bimetallic Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17-29. [PMID: 38118131 PMCID: PMC10788829 DOI: 10.1021/acsami.3c10167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Bimetallic glucose oxidation electrocatalysts were synthesized by two electrochemical reduction reactions carried out in series onto a titanium electrode. Nickel was deposited in the first synthesis stage followed by either silver or copper in the second stage to form Ag@Ni and Cu@Ni bimetallic structures. The chemical composition, crystal structure, and morphology of the resulting metal coating of the titanium electrode were investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. The electrocatalytic performance of the coated titanium electrodes toward glucose oxidation was probed using cyclic voltammetry and amperometry. It was found that the unique high surface area bimetallic structures have superior electrocatalytic activity compared to nickel alone. The resulting catalyst-coated titanium electrode served as a nonenzymatic glucose sensor with high sensitivity and low limit of detection for glucose. The Cu@Ni catalyst enables accurate measurement of glucose over the concentration range of 0.2-12 mM, which includes the full normal human blood glucose range, with the maximum level extending high enough to encompass warning levels for prediabetic and diabetic conditions. The sensors were also found to perform well in the presence of several chemical compounds found in human blood known to interfere with nonenzymatic sensors.
Collapse
Affiliation(s)
- Rashmi Ghosh
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Xiao Li
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Z. Yates
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Martinez-Saucedo G, Cuevas-Muñiz FM, Sanchez-Fraga R, Mejia I, Alcantar-Peña JJ, Chavez-Urbiola IR. Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples. Talanta 2023; 253:123926. [PMID: 36115100 DOI: 10.1016/j.talanta.2022.123926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
A cellulose microfluidic pH boosting layer adapts a non-enzymatic copper oxide glucose sensor strip for neutral pH samples. This adaptation allows the non-enzymatic technology to realize in-situ glucose measurements. A three-electrode system is constructed to test samples in a classical electrochemical cell, and in a sensing strip to test the microfluidic system. The system consists of copper oxide as working electrode, and silver and carbon paints as reference, and counter electrodes, respectively. The fabrication of the pH-boosting layer is made with natural cellulose. Within this layer are NaOH crystals, grown by a drying processes after immersion of cellulose in a concentrated solution of NaOH. The microfluidic layer is placed on top of the sensing electrodes, and while it transports the fluid sample to the sensing electrodes, the fluid dissolves the NaOH crystals, increasing the pH of the sample. This change allows the non-enzymatic mechanism to sense the glucose concentration in the fluid. Our system shows the capability to measure glucose in samples with neutral pH and human blood with a sensitivity of 70 μA/mM cm2, enough to distinguish between hypoglycemia and hyperglycemia.
Collapse
Affiliation(s)
- G Martinez-Saucedo
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - F M Cuevas-Muñiz
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico
| | - R Sanchez-Fraga
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - I Mejia
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - J J Alcantar-Peña
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - I R Chavez-Urbiola
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico.
| |
Collapse
|
4
|
Naikoo GA, Awan T, Salim H, Arshad F, Hassan IU, Pedram MZ, Ahmed W, Faruck HL, Aljabali AAA, Mishra V, Serrano‐Aroca Á, Goyal R, Negi P, Birkett M, Nasef MM, Charbe NB, Bakshi HA, Tambuwala MM. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioeng Transl Med 2022; 7:e10248. [PMID: 35111949 PMCID: PMC8780923 DOI: 10.1002/btm2.10248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger-pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past 10 years (2010 to present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahOman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahOman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahOman
| | - Fareeha Arshad
- Department of BiochemistryAligarh Muslim UniversityAligarhIndia
| | | | - Mona Zamani Pedram
- Faculty of Mechanical Engineering—Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and PhysicsCollege of Science, University of LincolnLincolnUK
| | | | - Alaa A. A. Aljabali
- Departmnt of Pharmaceutics and Pharmaceutical TechnologyYarmouk UniversityIrbidJordan
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Ángel Serrano‐Aroca
- Biomaterials and Bioengineering LabTranslational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente MártirValenciaSpain
| | - Rohit Goyal
- School of Pharmaceutical SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | - Poonam Negi
- School of Pharmaceutical SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | - Martin Birkett
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneUK
| | - Mohamed M. Nasef
- Department of PharmacySchool of Applied Science, University of HuddersfieldUK
| | - Nitin B. Charbe
- Department of Pharmaceutical SciencesRangel College of Pharmacy, Texas A&M UniversityKingsvilleTexasUSA
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | |
Collapse
|
5
|
Nonenzymatic electrochemical sensors via Cu native oxides (CuNOx) for sweat glucose monitoring. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Mazurków JM, Kusior A, Radecka M. Electrochemical Characterization of Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors. SENSORS 2021; 21:s21237928. [PMID: 34883931 PMCID: PMC8659783 DOI: 10.3390/s21237928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023]
Abstract
The diversity of materials proposed for non-enzymatic glucose detection and the lack of standardized protocols for assessing sensor performance have caused considerable confusion in the field. Therefore, methods for pre-evaluation of working electrodes, which will enable their conscious design, are currently intensively sought. Our approach involved comprehensive morphologic and structural characterization of copper sulfides as well as drop-casted suspensions based on three different polymers-cationic chitosan, anionic Nafion, and nonionic polyvinylpyrrolidone (PVP). For this purpose, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were applied. Subsequently, comparative studies of electrochemical properties of bare glassy carbon electrode (GCE), polymer- and copper sulfides/polymer-modified GCEs were performed using electrochemical impedance spectroscopy (EIS) and voltammetry. The results from EIS provided an explanation for the enhanced analytical performance of Cu-PVP/GCE over chitosan- and Nafion-based electrodes. Moreover, it was found that the pH of the electrolyte significantly affects the electrocatalytic behavior of copper sulfides, indicating the importance of OHads in the detection mechanism. Additionally, diffusion was denoted as a limiting step in the irreversible electrooxidation process that occurs in the proposed system.
Collapse
|
7
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Yuan K, Zhang Y, Huang S, Yang S, Zhao S, Liu F, Peng Q, Zhao Y, Zhang G, Fan J, Zang G. Copper Nanoflowers on Carbon Cloth as a Flexible Electrode Toward Both Enzymeless Electrocatalytic Glucose and H
2
O
2. ELECTROANAL 2021. [DOI: 10.1002/elan.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kun Yuan
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Yuchan Zhang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Shihao Huang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Shengfei Yang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Shuang Zhao
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University Chongqing 400030 China
| | - Fangxin Liu
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Qianyu Peng
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Guangyuan Zhang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Jingchuan Fan
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| |
Collapse
|
9
|
Khairullina EM, Panov MS, Andriianov VS, Ratautas K, Tumkin II, Račiukaitis G. High rate fabrication of copper and copper-gold electrodes by laser-induced selective electroless plating for enzyme-free glucose sensing. RSC Adv 2021; 11:19521-19530. [PMID: 35479213 PMCID: PMC9033606 DOI: 10.1039/d1ra01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/23/2021] [Indexed: 12/31/2022] Open
Abstract
In the current study, the method of Selective Surface Activation Induced by Laser (SSAIL) was used for the fabrication of metallic and bimetallic structures based on copper and gold on the surface of glass and glass-ceramics. It was shown that the fabricated electrodes are suitable for non-enzymatic detection of biologically essential analytes such as glucose. The implemented approach allows performing high-rate metallization of various dielectrics. Voltammetric methods were applied to evaluate the electrocatalytic activity of the obtained structures, which were used as working electrodes. The most promising results were revealed by copper–gold electrode structures manufactured on glass-ceramics. For these structures, sensitivity towards glucose sensing was 3060 μA mM−1 cm−2. The linear range of glucose detection varied between 0.3 and 1000 μM. Besides, the manufactured electrodes exhibited high selectivity and long-term stability. In the current study, the method of Selective Surface Activation Induced by Laser (SSAIL) was used for the fabrication of metallic and bimetallic structures based on copper and gold on the surface of glass and glass-ceramics.![]()
Collapse
Affiliation(s)
- Evgeniia M Khairullina
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Maxim S Panov
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Vladimir S Andriianov
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Karolis Ratautas
- Center for Physical Sciences and Technology 231 Savanoriu ave. Vilnius 02300 Lithuania
| | - Ilya I Tumkin
- Saint Petersburg State University 7/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Gediminas Račiukaitis
- Center for Physical Sciences and Technology 231 Savanoriu ave. Vilnius 02300 Lithuania
| |
Collapse
|
10
|
Copper and Nickel Microsensors Produced by Selective Laser Reductive Sintering for Non-Enzymatic Glucose Detection. MATERIALS 2021; 14:ma14102493. [PMID: 34065930 PMCID: PMC8151703 DOI: 10.3390/ma14102493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
In this work, the method of selective laser reductive sintering was used to fabricate the sensor-active copper and nickel microstructures on the surface of glass-ceramics suitable for non-enzymatic detection of glucose. The calculated sensitivities for these microsensors are 1110 and 2080 μA mM−1·cm−2 for copper and nickel, respectively. Linear regime of enzymeless glucose sensing is provided between 0.003 and 3 mM for copper and between 0.01 and 3 mM for nickel. Limits of glucose detection for these manufactured micropatterns are equal to 0.91 and 2.1 µM for copper and nickel, respectively. In addition, the fabricated materials demonstrate rather good selectivity, long-term stability and reproducibility.
Collapse
|
11
|
Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S. Polythiophene silver bromide nanostructure as ultra-sensitive non-enzymatic electrochemical glucose biosensor. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135630] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Liu B, Li Z. Electrochemical treating of a smooth Cu-Ni-Zn surface into layered micro-chips of rice grain-like Cu/Ni(OH)2 nanocomposites as a highly sensitive enzyme-free glucose sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Liu S, Liu B, Gong C, Li Z. A nanoporous Cu-Ag thin film at the Cu-Ag-Zn alloy surface by spontaneous dissolution of Zn and Cu in different degrees as a highly sensitive non-enzymatic glucose sensor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Pei Y, Hu M, Tang X, Huang W, Li Z, Chen S, Xia Y. Ultrafast one-pot anodic preparation of Co 3O 4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal Chim Acta 2019; 1059:49-58. [PMID: 30876632 DOI: 10.1016/j.aca.2019.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 02/02/2023]
Abstract
For fabrication of composite electrode, one-pot strategy is highly attractive for convenience and efficiency. Here, a self-supporting Co3O4/nanoporous gold (NPG) composite electrode was one-pot prepared via one-step in situ anodization of a smooth gold electrode in a CoCl2 solution within 100 s. It worked as a bifunctional electrocatalyst for glucose oxidation and H2O2 reduction in NaOH solution. Under optimized conditions, the electrocatalytic oxidation of glucose exhibits a wide linear range from 2 μM to 2.11 mM with a limit of detection as low as 0.085 μM (S/N = 3) and an ultrahigh sensitivity of 4470.4 μA mM-1 cm-2. Detection of glucose in human serum samples are also realized with results comparable to those from local hospital. The electrocatalytic reduction of H2O2 shows a linear response range from 20 μM to 19.1 mM and a high sensitivity of 1338.7 μA mM-1 cm-2. The present results demonstrate that the facilely prepared Co3O4/NPG is a promising nonenzymatic sensor for rapid amperometric detection of glucose and H2O2 with ultrasensitivity, high selectivity, satisfactory reproducibility, good stability and long duration.
Collapse
Affiliation(s)
- Yuanjiao Pei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Ming Hu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xueyong Tang
- The Second Affiliated Hospital of Hunan University of TCM, Changsha, 410005, China
| | - Wei Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Zelin Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yue Xia
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Engineering Laboratory for Petrochemicals and Materials, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
16
|
Uniform and dense copper nanoparticles directly modified indium tin oxide electrode for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Recent advances in electrochemical non-enzymatic glucose sensors - A review. Anal Chim Acta 2018; 1033:1-34. [PMID: 30172314 DOI: 10.1016/j.aca.2018.05.051] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
This review encompasses the mechanisms of electrochemical glucose detection and recent advances in non-enzymatic glucose sensors based on a variety of materials ranging from platinum, gold, metal alloys/adatom, non-precious transition metal/metal oxides to glucose-specific organic materials. It shows that the discovery of new materials based on unique nanostructures have not only provided the detailed insight into non-enzymatic glucose oxidation, but also demonstrated the possibility of direct detection in whole blood or interstitial fluids. We critically evaluate various aspects of non-enzymatic electrochemical glucose sensors in terms of significance as well as performance. Beyond laboratory tests, the prospect of commercialization of non-enzymatic glucose sensors is discussed.
Collapse
|
18
|
Zhu Y, Wang Y, Liu S, Guo R, Li Z. Facile and controllable synthesis at an ionic layer level of high-performance NiFe-based nanofilm electrocatalysts for the oxygen evolution reaction in alkaline electrolyte. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Anneal-shrinked Cu2O dendrites grown on porous Cu foam as a robust interface for high-performance nonenzymatic glucose sensing. Talanta 2016; 161:615-622. [DOI: 10.1016/j.talanta.2016.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022]
|
20
|
Study of a Sucrose Sensor by Functional Cu Foam Material and Its Applications in Commercial Beverages. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0580-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Farid MM, Goudini L, Piri F, Zamani A, Saadati F. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 2016; 194:61-7. [DOI: 10.1016/j.foodchem.2015.07.128] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 01/05/2023]
|
22
|
Niu X, Li X, Pan J, He Y, Qiu F, Yan Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra12506a] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We summarize the latest advances of non-enzymatic glucose detection using non-noble transition metal materials, highlighting their opportunities and challenges.
Collapse
Affiliation(s)
- Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Xin Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yanfang He
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
23
|
Wang P, Xiao J, Liao A, Li P, Guo M, Xia Y, Li Z, Jiang X, Huang W. Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Zhao F, Chai D, Lu J, Yu J, Liu S. Novel chemiluminescent imaging microtiter plates for high-throughput detection of multiple serum biomarkers related to Down's syndrome via soybean peroxidase as label enzyme. Anal Bioanal Chem 2015; 407:6117-26. [PMID: 26105511 DOI: 10.1007/s00216-015-8788-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Novel chemiluminescent (CL) imaging microtiter plates with high-throughput, low-cost, and simple operation for detection of four biomarkers related to Down's syndrome screening were developed and evaluated. To enhance the sensitivity of CL immunosensing, soybean peroxidase (SBP) was used instead of horseradish peroxide (HRP) as a label enzyme. The microtiter plates were fabricated by simultaneously immobilizing four capture monoclonal antibodies, anti-inhibin-A, anti-unconjugated oestriol (anti-uE3), anti-alpha-fetoprotein (anti-AFP), and beta anti-HCG (anti-β-HCG), on nitrocellulose (NC) membrane to form immunosensing microtiter wells. Under a sandwiched immunoassay, the CL signals on each sensing site of the microtiter plates were collected by a charge-coupled device (CCD), presenting an array-based chemiluminescence imaging method for detection of four target antigens in a well at the same time. The linear response to the analyte concentration ranged from 0.1 to 40 ng/mL for inhibin-A, 0.075 to 40 ng/mL for uE3, 0.2 to 400 ng/mL for AFP, and 0.4 to 220 ng/mL for β-HCG. The proposed microtiter plates possessed high-throughput, good stability, and acceptable accuracy for detection of four antigens in clinical serum samples and demonstrated potential for practical applicability of the proposed method to Down's syndrome screening. Graphical Abstract Schematic evaluation of the microtiter plater for simultaneous detection of the four biomarkers.
Collapse
Affiliation(s)
- Fang Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Suzhou Research Institute of Southeast University, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | | | | | | | | |
Collapse
|
25
|
Liu X, Sui Y, Yang X, Jiang L, Wang F, Wei Y, Zou B. A feasible approach to synthesize Cu2O microcrystals and their enhanced non-enzymatic sensor performance. RSC Adv 2015. [DOI: 10.1039/c5ra08586a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work provides a green and feasible approach to obtain a “clean surface” Cu2O with enhanced glucose sensor performance.
Collapse
Affiliation(s)
- Xinmei Liu
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| | - Yongming Sui
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| | - Lina Jiang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| | - Fei Wang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education)
- College of Physics
- Jilin University
- Changchun
- China
| | - Bo Zou
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
26
|
Devasenathipathy R, Karuppiah C, Chen SM, Palanisamy S, Lou BS, Ali MA, Al-Hemaid FMA. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine. RSC Adv 2015. [DOI: 10.1039/c4ra17161f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, a simple and sensitive amperometric enzyme-free glucose sensor was developed at a multiwalled carbon nanotube and cobalt phthalocyanine (MWCNT–CoTsPc) modified electrode.
Collapse
Affiliation(s)
- Rajkumar Devasenathipathy
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Selvakumar Palanisamy
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Bih-Show Lou
- Chemistry Division
- Center for General Education
- Chang Gung University
- Tao-Yuan
- Taiwan
| | - M. Ajmal Ali
- Department of Botany and Microbiology
- College of Science
- King Saud University Riyadh 11451
- Saudi Arabia
| | - Fahad M. A. Al-Hemaid
- Department of Botany and Microbiology
- College of Science
- King Saud University Riyadh 11451
- Saudi Arabia
| |
Collapse
|