1
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Li S, Zheng S, Zheng X, Bi D, Yang X, Luo X. Optimization of electrolytic system type for industrial reverse osmosis concentrate treatment to achieve effluent quality and energy savings. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Gharibian S, Hazrati H. Towards practical integration of MBR with electrochemical AOP: Improved biodegradability of real pharmaceutical wastewater and fouling mitigation. WATER RESEARCH 2022; 218:118478. [PMID: 35472746 DOI: 10.1016/j.watres.2022.118478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In the current study, we report enhanced treatment of real pharmaceutical wastewater by integration of Electrooxidation (EO) with Membrane Bio-Reactor (MBR) for the first time. Integrated pre-pilot EO-MBR plant consisted of a 3D printed electrochemical flowcell equipped with graphite electrodes installed in the effluent recirculation line of an MBR equipped with a hollow fiber membrane module. Results demonstrated that 5 V was the optimum voltage level for an isolated EO system. Isolated EO system led to 40% COD removal and 2.5 fold biodegradability index (BOD5/COD) improvement after 24 hr treatment at the optimum voltage of 5 V and 160 mL.min-1 flowrate. Almost complete removal of COD and BOD5 was observed for the EO-MBR system with 160 mL.min-1 recirculation rate and 24 hr HRT, while respective values were 60 and 87% for the MBR system at same operational conditions. Oxidation of pharmaceutical compounds identified in real wastewater and the fate of main oxidation-recalcitrant by-products were confirmed using liquid chromatography techniques. In addition, the integrated EO-MBR system led to significant membrane fouling mitigation with a 28 day extended operational time before reaching the Trans Membrane Pressure (TMP) limit value of 30 kPa. Measurements revealed reduced Extracellular Polymeric Substances (EPS) Concentration of membrane sludge cake layer of EO-MBR along with significant reduction of proteinaceous compounds in the LB-EPS fraction of cake layer in comparison with isolated MBR system. Fouling behavior improvement of the EO-MBR system was attributed to the electrophilic attack of electrochemically generated hydroxyl radicals to the electron-rich moieties of EPS organic foulants. Reduced proteinaceous/humic-like substances of LB-EPS from the cake layer were further confirmed by Emission Excitation matrix (EEM) and Fourier Transform InfraRed (FTIR) spectroscopic methods. The results of current research provide a helpful basis for future studies by elucidating the complex operating/fouling mechanism of integrated Advanced Oxidation Processes (AOPs) with MBR systems for enhanced treatment of organics polluted wastewaters with low biodegradability.
Collapse
Affiliation(s)
- Soorena Gharibian
- Faculty of Chemical Engineering, Sahand University of Technology, Sahand New Town, East Azerbaijan, P.O. Box: 51335-1996, Iran; Environmental Engineering Research Center, Sahand University of Technology, Sahand New Town, Iran; Biotechnology Research Center, Sahand University of Technology, Sahand New Town, Iran
| | - Hossein Hazrati
- Faculty of Chemical Engineering, Sahand University of Technology, Sahand New Town, East Azerbaijan, P.O. Box: 51335-1996, Iran; Environmental Engineering Research Center, Sahand University of Technology, Sahand New Town, Iran; Biotechnology Research Center, Sahand University of Technology, Sahand New Town, Iran.
| |
Collapse
|
4
|
Use of a turbulence promoter in an electrochemical filter-press reactor: Consolidated evidence of significant enhancement of organics mass transport and degradation rates. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
|
6
|
Yue B, Zhu G, Wang Y, Song J, Chang Z, Guo N, Xu M. Uncertainty analysis of factors affecting coating thickness distribution during nickel electrodeposition. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Modelling and simulation of H2-H2O bubbly flow through a stack of three cells in a pre-pilot filter press electrocoagulation reactor. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Pérez T, Arenas LF, Villalobos-Lara D, Zhou N, Wang S, Walsh FC, Nava JL, de León CP. Simulations of fluid flow, mass transport and current distribution in a parallel plate flow cell during nickel electrodeposition. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Fransen S, Ballet S, Fransaer J, Kuhn S. Overcoming diffusion limitations in electrochemical microreactors using acoustic streaming. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Castañeda LF, Nava JL. Simulations of single-phase flow in an up-flow electrochemical reactor with parallel plate electrodes in a serpentine array. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Fransen S, Fransaer J, Kuhn S. Current and concentration distributions in electrochemical microreactors: Numerical calculations and asymptotic approximations for self-supported paired synthesis. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Pérez T, Sirés I, Brillas E, Nava JL. Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate medium. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Maarof HI, Daud WMAW, Aroua MK. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AbstractHeavy metal-laden water and wastewater pose a threat to biodiversity, including human health. Contaminated wastewater can be treated with several separation and purification methods. Among them, electrochemical treatment is a notable clean technology, versatile and environmentally compatible for the removal and recovery of inorganic pollutants from water and wastewater. Electrochemical technology provides solution for the recovery of metals in their most valuable state. This paper analyses the most recent electrochemical approaches for the removal and recovery of metal ions. Various current works involving cell design and electrode development were addressed in distinguished electrochemical processes, namely, electrodeposition, electrocoagulation, electroflotation, and electrosorption. Cathodic reduction of metal ions has been proven in result to metal deposit on the metal, metal oxide, stainless steel, and graphite electrode. However, little progress has been made toward electrode modification, particularly the cathode for the purpose of cathodic reduction and deposition. Meanwhile, emerging advanced materials, such as ionic liquids, have been presented to be prominent to the technological advancement of electrode modifications. It has been projected that by integrating different priorities into the design approach for electrochemical reactors and recent electrode developments, several insights can be obtained that will contribute toward the enhancement of the electrochemical process performance for the effective removal and recovery of heavy metals from water and wastewater in the near future.
Collapse
|
14
|
Sandoval MA, Fuentes R, Walsh FC, Nava JL, de León CP. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Rodríguez G, Sierra-Espinosa F, Álvarez A, Silva S, Hernández J. CFD prediction and experimental validation of surface cathode concentration in filter press parallel plate electrolysers. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Srihari BK, Reddy BP, Venkatesh P, Agarwal S, Sai PS, Nagarajan K. Experimental studies and model validation for the optimization of electrodes configuration in a molten salt electrorefiner. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1158190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - P. Venkatesh
- Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| | - S. Agarwal
- Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| | - P.M. Satya Sai
- Waste Immobilisation Plant, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, India
| | - K. Nagarajan
- Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| |
Collapse
|
17
|
Computational fluid dynamic simulations of turbulent flow in a rotating cylinder electrode reactor in continuous mode of operation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Rivera FF, León CPD, Walsh FC, Nava JL. The reaction environment in a filter-press laboratory reactor: the FM01-LC flow cell. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.161] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|