1
|
Alsaç EP, Nelson DL, Yoon SG, Cavallaro KA, Wang C, Sandoval SE, Eze UD, Jeong WJ, McDowell MT. Characterizing Electrode Materials and Interfaces in Solid-State Batteries. Chem Rev 2025; 125:2009-2119. [PMID: 39903474 PMCID: PMC11869192 DOI: 10.1021/acs.chemrev.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Solid-state batteries (SSBs) could offer improved energy density and safety, but the evolution and degradation of electrode materials and interfaces within SSBs are distinct from conventional batteries with liquid electrolytes and represent a barrier to performance improvement. Over the past decade, a variety of imaging, scattering, and spectroscopic characterization methods has been developed or used for characterizing the unique aspects of materials in SSBs. These characterization efforts have yielded new understanding of the behavior of lithium metal anodes, alloy anodes, composite cathodes, and the interfaces of these various electrode materials with solid-state electrolytes (SSEs). This review provides a comprehensive overview of the characterization methods and strategies applied to SSBs, and it presents the mechanistic understanding of SSB materials and interfaces that has been derived from these methods. This knowledge has been critical for advancing SSB technology and will continue to guide the engineering of materials and interfaces toward practical performance.
Collapse
Affiliation(s)
- Elif Pınar Alsaç
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Douglas Lars Nelson
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelsey Anne Cavallaro
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Congcheng Wang
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Elizabeth Sandoval
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udochukwu D. Eze
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Won Joon Jeong
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Martín-Yerga D, Xu X, Valavanis D, West G, Walker M, Unwin PR. High-Throughput Combinatorial Analysis of the Spatiotemporal Dynamics of Nanoscale Lithium Metal Plating. ACS NANO 2024; 18:23032-23046. [PMID: 39136274 PMCID: PMC11363218 DOI: 10.1021/acsnano.4c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The development of Li metal batteries requires a detailed understanding of complex nucleation and growth processes during electrodeposition. In situ techniques offer a framework to study these phenomena by visualizing structural dynamics that can inform the design of uniform plating morphologies. Herein, we combine scanning electrochemical cell microscopy (SECCM) with in situ interference reflection microscopy (IRM) for a comprehensive investigation of Li nucleation and growth on lithiophilic thin-film gold electrodes. This multimicroscopy approach enables nanoscale spatiotemporal monitoring of Li plating and stripping, along with high-throughput capabilities for screening experimental conditions. We reveal the accumulation of inactive Li nanoparticles in specific electrode regions, yet these regions remain functional in subsequent plating cycles, suggesting that growth does not preferentially occur from particle tips. Optical-electrochemical correlations enabled nanoscale mapping of Coulombic Efficiency (CE), showing that regions prone to inactive Li accumulation require more cycles to achieve higher CE. We demonstrate that electrochemical nucleation time (tnuc) is a lagging indicator of nucleation and introduce an optical method to determine tnuc at earlier stages with nanoscale resolution. Plating at higher current densities yielded smaller Li nanoparticles and increased areal density, and was not affected by heterogeneous topographical features, being potentially beneficial to achieve a more uniform plating at longer time scales. These results enhance the understanding of Li plating on lithiophilic surfaces and offer promising strategies for uniform nucleation and growth. Our multimicroscopy approach has broad applicability to study nanoscale metal plating and stripping phenomena, with relevance in the battery and electroplating fields.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, Jyväskylä 40100, Finland
| | - Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Geoff West
- Warwick
Manufacturing Group, University of Warwick, Coventry CV4 7AL, U.K.
| | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Jeong WJ, Wang C, Yoon SG, Liu Y, Chen T, McDowell MT. Electrochemical behavior of elemental alloy anodes in solid-state batteries. ACS ENERGY LETTERS 2024; 9:2554-2563. [PMID: 38903403 PMCID: PMC11187630 DOI: 10.1021/acsenergylett.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024]
Abstract
Lithium alloy anodes in the form of dense foils offer significant potential advantages over lithium metal and particulate alloy anodes for solid-state batteries (SSBs). However, the reaction and degradation mechanisms of dense alloy anodes remain largely unexplored. Here, we investigate the electrochemical lithiation/delithiation behavior of 12 elemental alloy anodes in SSBs with Li6PS5Cl solid-state electrolyte (SSE), enabling direct behavioral comparisons. The materials show highly divergent first-cycle Coulombic efficiency, ranging from 99.3% for indium to ∼20% for antimony. Through microstructural imaging and electrochemical testing, we identify lithium trapping within the foil during delithiation as the principal reason for low Coulombic efficiency in most materials. The exceptional Coulombic efficiency of indium is found to be due to unique delithiation reaction front morphology evolution in which the high-diffusivity LiIn phase remains at the SSE interface. This study links composition to reaction behavior for alloy anodes and thus provides guidance toward better SSBs.
Collapse
Affiliation(s)
- Won Joon Jeong
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Congcheng Wang
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuhgene Liu
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Timothy Chen
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Sanin A, Stein HS. Exploring Reproducible Nonaqueous Scanning Droplet Cell Electrochemistry in Model Battery Chemistries. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3536-3545. [PMID: 38681088 PMCID: PMC11044270 DOI: 10.1021/acs.chemmater.3c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
The discovery and optimization of new materials for energy storage are essential for a sustainable future. High-throughput experimentation (HTE) using a scanning droplet cell (SDC) is suitable for the rapid screening of prospective material candidates and effective variation of investigated parameters over a millimeter-scale area. Herein, we explore the transition and challenges for SDC electrochemistry from aqueous toward aprotic electrolytes and address pitfalls related to reproducibility in such high-throughput systems. Specifically, we explore whether reproducibilities comparable to those for millimeter half-cells are achievable on the millimeter half-cell level than for full cells. To study reproducibility in half-cells as a first screening step, this study explores the selection of appropriate cell components, such as reference electrodes (REs) and the use of masking techniques for working electrodes (WEs) to achieve consistent electrochemically active areas. Experimental results on a Li-Au model anode system show that SDC, coupled with a masking approach and subsequent optical microscopy, can mitigate issues related to electrolyte leakage and yield good reproducibility. The proposed methodologies and insights contribute to the advancement of high-throughput battery research, enabling the discovery and optimization of future battery materials with improved efficiency and efficacy.
Collapse
Affiliation(s)
- Alexey Sanin
- Helmholtz
Institute Ulm, Helmholtzstr.
11, 89081 Ulm, Germany
- Karlsruhe
Institute of Technology, 76021 Karlsruhe, Germany
- Technical
University of Munich, TUM School of Natural
Sciences, Department of Chemistry, Chair of Digital Catalysis; Munich
Institute of Robotics and Machine Intelligence (MIRMI); Munich Data
Science Institute (MDSI), Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Helge S. Stein
- Helmholtz
Institute Ulm, Helmholtzstr.
11, 89081 Ulm, Germany
- Karlsruhe
Institute of Technology, 76021 Karlsruhe, Germany
- Technical
University of Munich, TUM School of Natural
Sciences, Department of Chemistry, Chair of Digital Catalysis; Munich
Institute of Robotics and Machine Intelligence (MIRMI); Munich Data
Science Institute (MDSI), Lichtenbergstr. 4, 85748 Garching b. München, Germany
| |
Collapse
|
5
|
Mao J, Li G, Xu D, Hao R. Direct imaging of dynamic heterogeneous lithium-gold interaction at the electrochemical interface during the charging/discharging processes. Chem Sci 2024; 15:3192-3202. [PMID: 38425538 PMCID: PMC10901480 DOI: 10.1039/d3sc05021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Lithium can smoothly plate on certain lithium alloys in theory, such as the Li-Au alloy, making the alloy/metal films promising current collectors for high energy density anode-free batteries. However, the actual performance of the batteries with alloy film electrodes often rapidly deteriorates. It remains challenging for current imaging approaches to provide sufficient details for fully understanding the process. Here, a "see-through" operando optical microscopic approach that allows direct imaging of Li-Au interaction with high spatiotemporal and chemical resolution has been developed. Through this approach, a two-step Li-Au alloying process that exhibits interesting complementary spatiotemporal evolution paths has been discovered. The alloying process regulates the nucleation of further Li deposition, while the Li nucleation sites generate pores on the electrode film. After several cycles, film rupture occurs due to the generation of an increased number of pores, thus explaining the previously unclear mechanism of poor cycling stability. We have also elucidated the deterioration mechanism of silver electrodes: the growth of defect pores in size, independent of the alloying process. Overall, this new imaging approach opens up an effective and simple way to monitor the dynamic heterogeneity of metal-metal interaction at the electrochemical interface, which could provide helpful insight for designing high-performance batteries.
Collapse
Affiliation(s)
- Jiaxin Mao
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Guopeng Li
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Dongwei Xu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Rui Hao
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
6
|
Scandura G, Kumari P, Palmisano G, Karanikolos GN, Orwa J, Dumée LF. Nanoporous Dealloyed Metal Materials Processing and Applications─A Review. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gabriele Scandura
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Priyanka Kumari
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Julius Orwa
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Behling C, Mayrhofer KJJ, Berkes BB. Formation of lithiated gold and its use for the preparation of reference electrodes — an EQCM study. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05060-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractLithiated gold wires can be used to build reference electrodes with outstanding potential stabilities over several days and even over the course of one year. These electrodes are well suited for investigations in the context of lithium-ion batteries (LIBs). In this work, a detailed procedure for the preparation of such electrodes with tailored mechanical properties, which can be fitted gastight into electrochemical cells using commercially available fittings, is given. The electrochemical lithiation process is studied using the electrochemical quartz crystal microbalance (EQCM) technique, and the differences in lithiation of wire type and thin film type gold electrodes are discussed. All experiments were carried out with two different electrolytes, namely, a LiPF6 and a lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-based electrolyte, and we conclude that for a higher lithiation rate and long-term stability, the use of LiTFSI-based electrolyte in the preparation phase is beneficial. The EQCM data provides a better insight in the analysis of film formation processes, like the buildup of the solid electrolyte interphase (SEI) during the lithiation, the rate of deposition of metallic lithium, or additional information on the kinetics of Li-Au alloy formation.
Collapse
|
8
|
Eyovge C, Deenen CS, Ruiz-Zepeda F, Bartling S, Smirnov Y, Morales-Masis M, Susarrey-Arce A, Gardeniers H. Color Tuning of Electrochromic TiO 2 Nanofibrous Layers Loaded with Metal and Metal Oxide Nanoparticles for Smart Colored Windows. ACS APPLIED NANO MATERIALS 2021; 4:8600-8610. [PMID: 34485847 PMCID: PMC8406417 DOI: 10.1021/acsanm.1c02231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Co-axial electrospinning was applied for the structuring of non-woven webs of TiO2 nanofibers loaded with Ag, Au, and CuO nanoparticles. The composite layers were tested in an electrochromic half-cell assembly. A clear correlation between the nanoparticle composition and electrochromic effect in the nanofibrous composite is observed: TiO2 loaded with Ag reveals a black-brown color, Au shows a dark-blue color, and CuO shows a dark-green color. For electrochromic applications, the Au/TiO2 layer is the most promising choice, with a color modulation time of 6 s, transmittance modulation of 40%, coloration efficiency of 20 cm2/C, areal capacitance of 300 F/cm2, and cyclic stability of over 1000 cycles in an 18 h period. In this study, an unexplored path for the rational design of TiO2-based electrochromic device is offered with unique color-switching and optical efficiency gained by the fibrous layer. It is also foreseen that co-axial electrospinning can be an alternative nanofabrication technique for smart colored windows.
Collapse
Affiliation(s)
- Cavit Eyovge
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Cristian S. Deenen
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Stephan Bartling
- Leibniz
Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Yury Smirnov
- Inorganic
Materials Science, MESA+ Institute, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Monica Morales-Masis
- Inorganic
Materials Science, MESA+ Institute, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Arturo Susarrey-Arce
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Han Gardeniers
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| |
Collapse
|
9
|
Källquist I, Lindgren F, Lee MT, Shavorskiy A, Edström K, Rensmo H, Nyholm L, Maibach J, Hahlin M. Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32989-32996. [PMID: 34251812 PMCID: PMC8397238 DOI: 10.1021/acsami.1c07424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical potential difference (Δμ̅) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), Δμ̅ values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how Δμ̅ affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in Δμ̅e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface.
Collapse
Affiliation(s)
- Ida Källquist
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Fredrik Lindgren
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Ming-Tao Lee
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| | | | - Kristina Edström
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| | - Håkan Rensmo
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Leif Nyholm
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| | - Julia Maibach
- Institute
for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Hahlin
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
- Department
of Chemistry - Ångström, Uppsala
University, 751 20 Uppsala, Sweden
| |
Collapse
|
10
|
Li J, Liu W, Zhang X, Ma Y, Wei Y, Fu Z, Li J, Yan Y. Heat treatment effects in oxygen-doped β-Li3PS4 solid electrolyte prepared by wet chemistry method. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Okumura T, Shiba Y, Sakamoto N, Kobayashi T, Hashimoto S, Doguchi K, Ogaki H, Takeuchi T, Kobayashi H. Zr- and Ce-doped Li 6Y(BO 3) 3 electrolyte for all-solid-state lithium-ion battery. RSC Adv 2021; 11:16530-16536. [PMID: 35479124 PMCID: PMC9031198 DOI: 10.1039/d1ra02191e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
The ionic conductivity of Li6Y(BO3)3 (LYBO) was enhanced by the substitution of tetravalent ions (Zr4+ and Ce4+) for Y3+ sites through the formation of vacancies at the Li sites, an increase in compact densification, and an increase in the Li+-ion conduction pathways in the LYBO phase. As a result, the ionic conductivity of Li5.875Y0.875Zr0.1Ce0.025(BO3)3 (ZC-LYBO) reached 1.7 × 10−5 S cm−1 at 27 °C, which was about 5 orders of magnitude higher than that of undoped Li6Y(BO3)3. ZC-LYBO possessed a large electrochemical window and was thermally stable after cosintering with a LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrode. These characteristics facilitated good reversible capacities in all-solid-state batteries for both NMC positive electrodes and graphite negative electrodes via a simple cosintering process. Ionic conductivity of Li6Y(BO3)3 (LYBO) is enhanced by the substitution of tetravalent ions through an increase in the conduction pathways etc. Zr,Ce-doped LYBO can be used as an electrolyte for all-solid-state batteries via a cosintering process.![]()
Collapse
Affiliation(s)
- Toyoki Okumura
- Research Institute of Electrochemical Energy
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| | | | | | | | | | | | - Harunobu Ogaki
- Development Division
- Canon Optron Inc
- Ibaraki 307-0015
- Japan
| | - Tomonari Takeuchi
- Research Institute of Electrochemical Energy
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| | - Hironori Kobayashi
- Research Institute of Electrochemical Energy
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| |
Collapse
|
12
|
Iron oxide @ gold nanoparticles: Synthesis, properties and potential use as anode materials for lithium-ion batteries. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Hu F, Li Z, Wang S, Tenhaeff WE. Mirror-Like Electrodeposition of Lithium Metal under a Low-Resistance Artificial Solid Electrolyte Interphase Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39674-39684. [PMID: 32805885 DOI: 10.1021/acsami.0c12248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nonuniform electrodeposition and dendritic growth of lithium metal coupled to its chemical incompatibility with liquid electrolytes are largely responsible for poor Coulombic efficiency and safety hazards preventing the successful implementation of energy-dense Li metal anodes. Artificial solid electrolyte interface (ASEI) layers have been proposed to address the morphological evolution and chemical reactions in Li metal anodes. In this study, an ASEI layer consisting of a lithium phosphorus oxynitride (LiPON) thin film electrolyte and gold-alloying interlayer was developed and shown to promote the electrodeposition of smooth, homogeneous, mirror-like Li metal morphologies. The Au layer alloyed with Li, reducing the nucleation overpotential and resulting in a more spatially uniform metal deposit, while the LiPON layer provided a physical barrier between the Li metal and aprotic liquid electrolyte. The effectiveness and integrity of the LiPON protective layer was assessed using in operando impedance spectroscopy and ex situ SEM/EDS characterization. Smooth, homogeneous Li morphologies were realized in capacities up to 3 mAh cm-2 plated at 0.1 mA cm-2. At higher current densities up to 1 mA cm-2 or increased deposition capacities of 6 mAh cm-2, the LiPON coating fractured due to the localized, nonuniform lithium deposits and rough, dendritic Li morphologies were observed. This approach represents a new strategy in the design of artificial SEIs to enable Li metal anodes with practical areal capacities.
Collapse
Affiliation(s)
- Fei Hu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Zhuo Li
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Shaofei Wang
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Wyatt E Tenhaeff
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
14
|
High Areal Capacity Porous Sn-Au Alloys with Long Cycle Life for Li-ion Microbatteries. Sci Rep 2020; 10:10405. [PMID: 32591551 PMCID: PMC7320134 DOI: 10.1038/s41598-020-67309-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
Long-term stability is one of the most desired functionalities of energy storage microdevices for wearable electronics, wireless sensor networks and the upcoming Internet of Things. Although Li-ion microbatteries have become the dominant energy-storage technology for on-chip electronics, the extension of lifetime of these components remains a fundamental hurdle to overcome. Here, we develop an ultra-stable porous anode based on SnAu alloys able to withstand a high specific capacity exceeding 100 µAh cm-2 at 3 C rate for more than 6000 cycles of charge/discharge. Also, this new anode material exhibits low potential (0.2 V versus lithium) and one of the highest specific capacity ever reported at low C-rates (7.3 mAh cm-2 at 0.1 C). We show that the outstanding cyclability is the result of a combination of many factors, including limited volume expansion, as supported by density functional theory calculations. This finding opens new opportunities in design of long-lasting integrated energy storage for self-powered microsystems.
Collapse
|
15
|
Koshikawa H, Matsuda S, Kamiya K, Miyayama M, Kubo Y, Uosaki K, Hashimoto K, Nakanishi S. Electrochemical impedance analysis of the Li/Au-Li7La3Zr2O12 interface during Li dissolution/deposition cycles: Effect of pre-coating Li7La3Zr2O12 with Au. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Nuernberg RB, Rodrigues AC, Ribes M, Pradel A. Electrochemical properties of NASICON-structured glass-ceramics of the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Zhang Z, Wang ZL, Lu X. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. ACS NANO 2018; 12:3587-3599. [PMID: 29630825 DOI: 10.1021/acsnano.8b00703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO2, Si3N4, Ag, Ti, Ta, SnIn2O5, Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al2O3, HfO2, and TiO2) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H2-reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.
Collapse
Affiliation(s)
- Zailei Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| | - Xianmao Lu
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| |
Collapse
|
18
|
Libich J, Vondrak J, Sedlarikova M, Maca J, Cech O. Elimination of irreversible effects during first charging of lithium battery anodes. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2017. [DOI: 10.3103/s1068375517060059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Aguesse F, Manalastas W, Buannic L, Lopez Del Amo JM, Singh G, Llordés A, Kilner J. Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3808-3816. [PMID: 28055178 DOI: 10.1021/acsami.6b13925] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
All-solid-state batteries including a garnet ceramic as electrolyte are potential candidates to replace the currently used Li-ion technology, as they offer safer operation and higher energy storage performances. However, the development of ceramic electrolyte batteries faces several challenges at the electrode/electrolyte interfaces, which need to withstand high current densities to enable competing C-rates. In this work, we investigate the limits of the anode/electrolyte interface in a full cell that includes a Li-metal anode, LiFePO4 cathode, and garnet ceramic electrolyte. The addition of a liquid interfacial layer between the cathode and the ceramic electrolyte is found to be a prerequisite to achieve low interfacial resistance and to enable full use of the active material contained in the porous electrode. Reproducible and constant discharge capacities are extracted from the cathode active material during the first 20 cycles, revealing high efficiency of the garnet as electrolyte and the interfaces, but prolonged cycling leads to abrupt cell failure. By using a combination of structural and chemical characterization techniques, such as SEM and solid-state NMR, as well as electrochemical and impedance spectroscopy, it is demonstrated that a sudden impedance drop occurs in the cell due to the formation of metallic Li and its propagation within the ceramic electrolyte. This degradation process is originated at the interface between the Li-metal anode and the ceramic electrolyte layer and leads to electromechanical failure and cell short-circuit. Improvement of the performances is observed when cycling the full cell at 55 °C, as the Li-metal softening favors the interfacial contact. Various degradation mechanisms are proposed to explain this behavior.
Collapse
Affiliation(s)
- Frederic Aguesse
- CIC Energigune, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510, Miñano, Spain
| | - William Manalastas
- CIC Energigune, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510, Miñano, Spain
| | - Lucienne Buannic
- CIC Energigune, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510, Miñano, Spain
| | | | - Gurpreet Singh
- CIC Energigune, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510, Miñano, Spain
| | - Anna Llordés
- CIC Energigune, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510, Miñano, Spain
- IKERBASQUE, Basque Foundation for Science , Maria Diaz de Haro 3, 48013, Bilbao, Spain
| | - John Kilner
- CIC Energigune, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510, Miñano, Spain
- Department of Materials, Imperial College London , Exhibition Road, SW7 2AZ, London, U.K
| |
Collapse
|
20
|
Dynamics of a Blended Lithium-Ion Battery Electrode During Galvanostatic Intermittent Titration Technique. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Leenheer AJ, Jungjohann KL, Zavadil KR, Harris CT. Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy. ACS NANO 2016; 10:5670-5678. [PMID: 27243921 DOI: 10.1021/acsnano.6b02200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. Here, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge-discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed for the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Our results show that electrochemically induced solid-solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.
Collapse
Affiliation(s)
- Andrew J Leenheer
- Center for Integrated Nanotechnologies, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | - Katherine L Jungjohann
- Center for Integrated Nanotechnologies, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | - Kevin R Zavadil
- Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | - Charles T Harris
- Center for Integrated Nanotechnologies, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| |
Collapse
|