1
|
Brillas E. Solar photoelectro-Fenton: A very effective and cost-efficient electrochemical advanced oxidation process for the removal of organic pollutants from synthetic and real wastewaters. CHEMOSPHERE 2023; 327:138532. [PMID: 37003440 DOI: 10.1016/j.chemosphere.2023.138532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Recalcitrant and toxic organic pollutants from wastewaters are scarcely removed in conventional wastewater treatment plants. To preserve the water quality, organics need to be removed by developing powerful oxidation technologies. Our laboratory proposed in 2007 a potent electrochemical advanced oxidation process (EAOP) for wastewater remediation, so-called solar photoelectro-Fenton (SPEF). This review summarizes the advances of this emerging technology up to 2022, making evident its effectiveness and cost-efficiency for the destruction of usual organic pollutants. The simultaneous action of generated hydroxyl radicals and the photolysis by sunlight explains the high oxidation power of SPEF respect to other EAOPs. The review is initiated by describing the fundamentals of the process to remark the role of the produced oxidants and the benefits of using solar irradiation in its performance. The photoelectrochemical systems used (bench tank reactor and solar pre-pilot flow plant) and the assessment of the operating variables are discussed. The characteristics of the most common homogeneous SPEF for the degradation and mineralization of several synthetic solutions of industrial chemicals, herbicides, pharmaceuticals, and synthetic organic dyes, as well as of some real wastewaters, are further described. The influence of the photoelectrochemical cell, electrodes, solution pH, electrolyte composition, Fe2+ and pollutant concentration, and current density is analyzed. The performance of a homogeneous SPEF-like process with active chlorine and heterogeneous SPEF processes with solid catalysts such as Fe3O4 and sodium vermiculite is also discussed. Finally, the advances of homogeneous SPEF combined with other techniques like solar photocatalysis, solar photoelectrocatalysis, anaerobic digestion, and nanofiltration are reported.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materialsi del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Fil BA, Günaslan S. Electrooxidation treatment of slaughterhouse wastewater: investigation of efficiency of Ti/Pt anode. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2119905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Baybars Ali Fil
- Department of Environmental Engineering, Faculty of Engineering, Balikesir Universitesi, Balıkesir, Turkey
| | - Sermin Günaslan
- Department of Environmental Engineering, Faculty of Engineering, Balikesir Universitesi, Balıkesir, Turkey
| |
Collapse
|
3
|
Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Commercialization in the meat-processing industry has emerged as one of the major agrobusiness challenges due to the large volume of wastewater produced during slaughtering and cleaning of slaughtering facilities. Slaughterhouse wastewater (SWW) contains proteins, fats, high organic contents, microbes, and other emerging pollutants (pharmaceutical and veterinary residues). It is important to first characterize the wastewater so that adequate treatment techniques can be employed so that discharge of this wastewater does not negatively impact the environment. Conventional characterization bulk parameters of slaughterhouse wastewater include pH, color, turbidity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), and coliform counts. Characterization studies conducted have revealed the effects of the pollutants on microbial activity of SWW through identification of toxicity of antibiotic-resistant strains of bacteria. Due to the high-strength characteristics and complex recalcitrant pollutants, treatment techniques through combined processes such as anaerobic digestion coupled with advanced oxidation process were found to be more effective than stand-alone methods. Hence, there is need to explore and evaluate innovative treatments and techniques to provide a comprehensive summary of processes that can reduce the toxicity of slaughterhouse wastewater to the environment. This work presents a review of recent studies on the characterization of SWW, innovative treatments and technologies, and critical assessment for future research.
Collapse
|
4
|
Saghir A, Hajjar S. Biological Treatment of Slaughterhouse Wastewater using Up flow Anaerobic Sludge Blanket (UASB) - anoxic-aerobic system. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Martinez-Burgos WJ, Bittencourt Sydney E, Bianchi Pedroni Medeiros A, Magalhães AI, de Carvalho JC, Karp SG, Porto de Souza Vandenberghe L, Junior Letti LA, Thomaz Soccol V, de Melo Pereira GV, Rodrigues C, Lorenci Woiciechowski A, Soccol CR. Agro-industrial wastewater in a circular economy: Characteristics, impacts and applications for bioenergy and biochemicals. BIORESOURCE TECHNOLOGY 2021; 341:125795. [PMID: 34523570 DOI: 10.1016/j.biortech.2021.125795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The generation of agroindustrial byproducts is rising fast worldwide. The slaughter of animals, the production of bioethanol, and the processing of oil palm, cassava, and milk are industrial activities that, in 2019, generated huge amounts of wastewaters, around 2448, 1650, 256, 85, and 0.143 billion liters, respectively. Thus, it is urgent to reduce the environmental impact of these effluents through new integrated processes applying biorefinery and circular economy concepts to produce energy or new products. This review provides the characteristics of some of the most important agro-industrial wastes, including their physicochemical composition, worldwide average production, and possible environmental impacts. In addition, some alternatives for reusing these materials are addressed, focusing mainly on energy savings and the possibilities of generating value-added products. Finally, this review considers recent research and technological innovations and perspectives for the future.
Collapse
Affiliation(s)
- Walter José Martinez-Burgos
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210, Ponta Grossa Paraná, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Antonio Irineudo Magalhães
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Júlio Cesar de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil; Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210, Ponta Grossa Paraná, Brazil
| | - Luiz Alberto Junior Letti
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Vanete Thomaz Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Gilberto Vinícius de Melo Pereira
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Cristine Rodrigues
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Adenise Lorenci Woiciechowski
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil.
| |
Collapse
|
6
|
Navarro-Franco JA, Garzón-Zúñiga MA, Drogui P, Buelna G, Gortares-Moroyoqui P, Barragán-Huerta BE, Vigueras-Cortés JM. Electro-Oxidation in Combination with Biological Processes for Removal of Persistent Pollutants in Wastewater: A Review. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2020.01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Mashhadizadeh MH, Azhdeh A, Moazami HR, Sheydaei M. Development of a wireless feeding system for highly effective electro-photocatalytic degradation of organic pollutants from aqueous solutions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Divyapriya G, Singh S, Martínez-Huitle CA, Scaria J, Karim AV, Nidheesh PV. Treatment of real wastewater by photoelectrochemical methods: An overview. CHEMOSPHERE 2021; 276:130188. [PMID: 33743419 DOI: 10.1016/j.chemosphere.2021.130188] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
An inadequate and inefficient performance ability of conventional methods to remove persistent organic pollutants urges the need of alternative or complementary advanced wastewater treatments methods to ensure the safer reuse of reclaimed water. Photoelectrochemical methods are emerging as promising options among other advanced oxidation processes because of the higher treatment efficiency achieved due to the synergistic effects of combined photochemical and electrolysis reactions. Synergistic effects of integrated photochemical, electrochemical and photoelectrochemical processes not only increase the hydroxyl radical production; an enhancement on the mineralization ability through various side reactions is also achieved. In this review, fundamental reaction mechanisms of different photoelectrochemical methods including photoelectrocatalysis, photo/solar electro-Fenton, photo anodic oxidation, photoelectroperoxone and photocatalytic fuel cell are discussed. Various integrated photochemical, electrochemical and photoelectrochemical processes and their synergistic effects are elaborated. Different reactor configurations along with the positioning of electrodes, photocatalysts and light source of the individual/combined photoelectrochemical treatment systems are discussed. Modified photoanode and cathode materials used in the photoelectrochemical reactors and their performance ability is presented. Photoelectrochemical treatment of real wastewater such as landfill leachate, oil mill, pharmaceutical, textile, and tannery wastewater are reviewed. Hydrogen production efficiency in the photoelectrochemical process is further elaborated. Cost and energy involved in these processes are briefed, but the applicability of photocatalytic fuel cells to reduce the electrical dependence is also summarised. Finally, the use of photoelectrochemical approaches as an alternative for treating soil washing effluents is currently discussed.
Collapse
Affiliation(s)
- G Divyapriya
- Virginia Polytechnic Institute and State University, USA
| | - Seema Singh
- Omvati Devi Degree College, Bhalaswagaj, Haridwar, India
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil.
| | - Jaimy Scaria
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
9
|
Zheng Y, Qiu S, Deng F, Zhu Y, Ma F, Li G. A charcoal-shaped catalyst NiFe 2O 4/Fe 2O 3 in electro-Fenton: high activity, wide pH range and catalytic mechanism. ENVIRONMENTAL TECHNOLOGY 2021; 42:1996-2008. [PMID: 31672098 DOI: 10.1080/09593330.2019.1687586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
A charcoal-shaped catalyst NiFe2O4/Fe2O3 in electro-Fenton (EF) was synthesized by a facile precipitation approach via sintering products of oxalate co-precipitation. This obtained NiFe2O4/Fe2O3 catalyst was easily separated via an external magnetic field and was used as a heterogeneous electro-Fenton catalyst for rhodamine B (RhB, a target pollutant) degradation. Characteristics of NiFe2O4/Fe2O3 catalyst were assessed using scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Barrett-Emmett-Teller (BET), respectively. SEM results revealed that the proposed NiFe2O4/Fe2O3 was charcoal-shaped with the size in the range of 0.5-5 μm. Experiment results show that the EF process with the proposed catalyst could work in a wide pH range from 3 to 9. Under optimized conditions, estimated 90% RhB degradation was achieved in 60 min under the following conditions: 0.6 g/L NiFe2O4/Fe2O3, pH 3. Radical scavengers and electron spin resonance (ESR) spectra results demonstrated that the main oxidant species involved was ⋅OH, accounting for RhB degradation in EF. Moreover, according to our research on interfacial reaction, ⋅OH was mainly generated from the homogenous Fenton reaction rather than the surface Fenton reaction, stimulating by the dissolved Fe2+, Fe3+ and Ni2+ from catalyst. The reusability of NiFe2O4/Fe2O3 catalyst was evaluated for recycling the same catalyst for 5 runs. In conclusion, the facile fabrication NiFe2O4/Fe2O3 catalyst shows great potential in wastewater treatment with promising activity.
Collapse
Affiliation(s)
- Yanshi Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yingshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Guojun Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
10
|
Wang A, Zhang Y, Han S, Guo C, Wen Z, Tian X, Li J. Electro-Fenton oxidation of a β-lactam antibiotic cefoperazone: Mineralization, biodegradability and degradation mechanism. CHEMOSPHERE 2021; 270:129486. [PMID: 33418225 DOI: 10.1016/j.chemosphere.2020.129486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
Oxidation of a commonly-used β-lactam pharmaceutical, cefoperazone (CFPZ), was systematically investigated by anodic oxidation (AO), AO in presence of H2O2 electro-generation (AO-H2O2) and electro-Fenton (EF) processes with an activated carbon fiber cathode from the biodegradability viewpoint. The degradation and mineralization rates increased in a sequence of AO < AO-H2O2 < EF. Even CPFZ could be efficiently degraded in EF process, achieving complete CFPZ mineralization was rather difficult. Thereby, the biodegradability of the effluent after electrochemical pretreatment was examined to test the feasibility of the combination of electrochemical and biological processes. The results suggested that compared with AO and AO-H2O2, EF process could effectively transform the non-biodegradable CFPZ into biocompatible materials with a high BOD5/COD value (0.33 after 720 min), allowing the possible biotreatment for further remediation. This behavior was relatively accorded with the average oxidation state (AOS) results, evidencing the potential of EF process in enhancing the biodegradability of CFPZ. The determination of inorganic ions revealed that N in CFPZ molecular was oxidized into NH4+ and NO3- ions in EF process. Oxalic, succinic, oxamic, fumaric and formic acids were also formed. Besides, six aromatic by-products were qualified and a possible pathway involving hydrolysis, hydroxylation and decarboxylation during CFPZ mineralization was proposed.
Collapse
Affiliation(s)
- Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yanyu Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Shanshan Han
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunxiao Guo
- Machinery Technology Development Co. Ltd., Beijing, 100044, China
| | - Zhenjun Wen
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
11
|
Svierzoski NDS, Matheus MC, Bassin JP, Brito YD, Mahler CF, Webler AD. Treatment of a slaughterhouse wastewater by anoxic-aerobic biological reactors followed by UV-C disinfection and microalgae bioremediation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:409-420. [PMID: 32777158 DOI: 10.1002/wer.1435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, removal of organic matter and nitrogen from a cattle slaughterhouse wastewater was investigated in a two-stage anoxic-aerobic biological system, followed by UV-C disinfection. Ecotoxicity of the raw, biotreated, and disinfected wastewater against the microalgae Scenedesmus sp. was evaluated in short-term tests, while the potential of the microalgae as a nutrient removal step was addressed in long-term experiments. Throughout 5 operational phases, the biological system was subjected to gradual reduction of the hydraulic retention time (8-1.5 day), increasing the organic (0.21-1.11 kgCOD·m-3 ·day-1 ) and nitrogen (0.05-0.28 kgN·m-3 · day-1 ) loading rates. COD and total ammoniacal nitrogen (TAN) removal ranged within 83%-97% and 83%-99%, respectively. While providing alkalinity source, effluent TAN concentrations were below 5 mg·L-1 . Nitrate was the main nitrification product, while nitrite levels remained low (<1 mgN·L-1 ). Upon supplementation of external COD as ethanol, total nitrogen removal reached up to 90% at the highest load (0.28 kgN·m-3 ·day-1 ). After UV-C treatment, 3-log reduction of total coliforms was attained. The 96-hr ecotoxicity tests showed that all non-diluted samples tested (raw, biologically treated and UV-C irradiated wastewater) were toxic to microalgae. Nevertheless, these organisms were able to acclimate and grow under the imposed conditions, allowing to achieve nitrogen and phosphorous removal up to 99.1% and 43.0%, respectively. PRACTITIONER POINTS: The treatment of a slaughterhouse wastewater in an anoxic-aerobic biological system followed by a UV-C disinfection step was assessed. The pre-denitrification system showed efficient simultaneous removal of organic matter and nitrogen from the wastewater under increasing applied loads. UV-C disinfection worked effectively in reducing coliforms from the biotreated effluent, boosting the performance of microalgae on nutrients removal. Despite the toxicity to microalgae, they were capable to acclimate to the aqueous matrices tested, reducing efficiently the nutrients content. The combined stages of treatment presented great capacity for depleting up to 97% COD, 99% nitrogen, and 43% phosphorous.
Collapse
Affiliation(s)
| | | | - João Paulo Bassin
- COPPE, Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yves Dias Brito
- Department of Environmental Engineering, Federal University of Rondônia, Rondônia, Brazil
| | - Claudio Fernando Mahler
- COPPE, Civil Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Dresch Webler
- Department of Environmental Engineering, Federal University of Rondônia, Rondônia, Brazil
| |
Collapse
|
12
|
Besharati Fard M, Mirbagheri SA, Pendashteh A. Removal of TCOD and phosphate from slaughterhouse wastewater using Fenton as a post-treatment of an UASB reactor. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:413-422. [PMID: 33312570 PMCID: PMC7721763 DOI: 10.1007/s40201-020-00469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/30/2020] [Indexed: 06/12/2023]
Abstract
A pilot was designed to study the removal efficiencies of total chemical oxygen demand (TCOD) and phosphate by a combined biological and chemical method. Two stages of Up-flow anaerobic sludge blanket (UASB) reactor and advanced oxidation processes was operated in batch mode. The UASB reactor was operated with hydraulic retention time of 26 h. UASB removal efficiency of TCOD and phosphate were 62.2 and 36.5%, respectively. Fenton process was used as a post-treatment so as to remove organic matter and nutrients. At this stage, the removal efficiencies of TCOD and phosphate were investigated considering the effect of parameters such as pH, hydrogen peroxide and Fe (II) dose based on Taguchi experimental design. Accordingly, under optimum conditions, pH = 3, 1000 mg/l of H2O2 and 400 mg/l of Fe (II) the removal efficiencies of TCOD and phosphate reached 95.41 and 85.29%, respectively. The combined method removed TCOD and phosphate up to 98.6 and 90.5%, respectively.
Collapse
Affiliation(s)
- Moein Besharati Fard
- Department of Civil Engineering, K. N, Toosi University of Technology, Tehran, Iran
| | | | | |
Collapse
|
13
|
Mramba AS, Ndibewu PP, Sibali LL, Makgopa K. A Review on Electrochemical Degradation and Biopolymer Adsorption Treatments for Toxic Compounds in Pharmaceutical Effluents. ELECTROANAL 2020. [DOI: 10.1002/elan.202060454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Anita S. Mramba
- Department of Chemistry, Faculty of Science Tshwane University of Technology, Private Bag X680 175 Nelson Mandela Drive Arcadia Pretoria 0001 South Africa
| | - Peter P. Ndibewu
- Department of Chemistry, Faculty of Science Tshwane University of Technology, Private Bag X680 175 Nelson Mandela Drive Arcadia Pretoria 0001 South Africa
| | - Linda L. Sibali
- University of South Africa, Department of Environmental Sciences, Florida Campus postcode is missing Florida South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science Tshwane University of Technology, Private Bag X680 175 Nelson Mandela Drive Arcadia Pretoria 0001 South Africa
| |
Collapse
|
14
|
Agabo-García C, Solera R, Pérez M. First approaches to valorizate fat, oil and grease (FOG) as anaerobic co-substrate with slaughterhouse wastewater: Biomethane potential, settling capacity and microbial dynamics. CHEMOSPHERE 2020; 259:127474. [PMID: 32603962 DOI: 10.1016/j.chemosphere.2020.127474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is the biological preferred treatment applied to Slaughterhouse wastewaters (SWW) due to its effectiveness. The aim of the study is to investigate the effect of different percentages of fats, oil and grease (FOG) on biomethane production in anaerobic co-digestion with slaughterhouse wastewater using BMP tests under mesophilic conditions (35 °C). For this purpose, three percentages of FOG from 1% to 10% were tested. Biodegradability, biomethane production and the microbial population were studied. In addition, settling capacity has been evaluated at different conditions: i) before and after anaerobic co-digestion; ii) at different temperature 25 °C and 35 °C. The settling rates as well as the characterization of the digestate were recorded. Experimental results showed that all the co-digestion mixtures (FOG percentages = 1-10%) enhanced biomethane production and biodegradability compared to AD of sole SWW. The best conditions were achieved at 5-10% of FOG, showing biodegradability of 66-70% CODtremoval and specific biomethane productions of 562 and 777 mLCH4·g-1CODsremoved, respectively. Regarding microbial dynamics, Eubacteria was reduced with the increase in %FOG but Acetate utilizing methanogens was increased. Regarding settling capacity, mesophilic temperatures (35 °C) increased the settling rate of digestate in 1.76 times and reduced the lag-phase to 0.92 min; obtaining a more concentrated sludge and leaving a clarified whose TSS represent only 8% of TS.
Collapse
Affiliation(s)
- Cristina Agabo-García
- Department of Environmental Technologies, University of Cadiz, Campus de Puerto Real, 11500, Puerto Real, Cadiz, Spain.
| | - Rosario Solera
- Department of Environmental Technologies, University of Cadiz, Campus de Puerto Real, 11500, Puerto Real, Cadiz, Spain.
| | - Montserrat Pérez
- Department of Environmental Technologies, University of Cadiz, Campus de Puerto Real, 11500, Puerto Real, Cadiz, Spain.
| |
Collapse
|
15
|
Brillas E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. CHEMOSPHERE 2020; 250:126198. [PMID: 32105855 DOI: 10.1016/j.chemosphere.2020.126198] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 05/03/2023]
Abstract
Wastewaters containing recalcitrant and toxic organic pollutants are scarcely decontaminated in conventional wastewater facilities. Then, there is an urgent challenge the development of powerful oxidation processes to ensure their organic removal in order to preserve the water quality in the environment. This review presents the recent development of an electrochemical advanced oxidation process (EAOP) like the photoelectro-Fenton (PEF) process, covering the period 2010-2019, as an effective treatment for wastewater remediation. The high oxidation ability of this photo-assisted Fenton-based EAOP is due to the combination of in situ generated hydroxyl radicals and the photolytic action of UV or sunlight irradiation over the treated wastewater. Firstly, the fundamentals and characteristics of the PEF process are described to understand the role of oxidizing agents. Further, the properties of the homogeneous PEF process with iron catalyst and UV irradiation and the benefit of sunlight in the homogeneous solar PEF one (SPEF) are discussed, supported with examples over their application to the degradation and mineralization of synthetic solutions of industrial chemicals, herbicides, dyes and pharmaceuticals, as well as real wastewaters. Novel heterogeneous PEF processes involving solid iron catalysts or iron-modified cathodes are subsequently detailed. Finally, the oxidation power of hybrid processes including photocatalysis/PEF, solar photocatalysis/SPEF, photoelectrocatalysis/PEF and solar photoelectrocatalysis/SPEF, followed by that of sequential processes like electrocoagulation/PEF and biological oxidation coupled to SPEF, are analyzed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
Prazeres AR, Fernandes F, Madeira L, Luz S, Albuquerque A, Simões R, Beltrán F, Jerónimo E, Rivas J. Treatment of slaughterhouse wastewater by acid precipitation (H 2SO 4, HCl and HNO 3) and oxidation (Ca(ClO)₂, H 2O 2 and CaO₂). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109558. [PMID: 31545176 DOI: 10.1016/j.jenvman.2019.109558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The treatment of slaughterhouse wastewater was investigated by both acid precipitations and by oxidation processes. Precipitation tests were developed using three acids (H2SO4, HCl and HNO3) at different operating pH (1-6). A decrease of the precipitation pH led to an increase of the conductivity values of the supernatant. Precipitation processes allowed the removal of chemical oxygen demand (COD) (41-97%), turbidity (56-99%) and total phosphorus (27-56%). Total phenols were removed (15-96%) from pH ≥ 2, depending on the precipitation process. Generally, precipitation processes decreased the hydroxide and bicarbonates species. Additionally, three different oxidation processes were tested at different concentrations (1-15 g L-1): Ca(ClO)₂, H2O2 and CaO₂. When Ca(ClO)₂ and CaO₂ were applied, an increase of the supernatant conductivity was achieved. COD removal ≥71% and turbidity elimination in the range of 85-100% were achieved by using oxidation processes. CaO₂ was very effective to remove total phosphorus (81-96%). The increase of the oxidant concentration in H2O2 and Ca(ClO)₂ oxidation processes led to a decrease in the removal of total phenols and bicarbonates species. Optical density of the microorganism cultures was efficiently eliminated (up to 100%) by oxidation processes. In addition, acid precipitation and oxidation allowed to remove total solids (TS), total volatile solids (TVS), total suspended solids (TSS), ammonia nitrogen, nitrates and biochemical oxygen demand (BOD5). Acid precipitation and oxidation produced sludge rich in organic matter and nutrients (Ca, Mg, P, Cl, Na and K). Despite the high removal efficiencies, a post-treatment following the precipitation and oxidation processes can be required.
Collapse
Affiliation(s)
- Ana R Prazeres
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Flávia Fernandes
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Luís Madeira
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Silvana Luz
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal; Escola Superior Agrária de Beja, Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Apartado 6155, 7800-295, Beja, Portugal; Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Av. Elvas s/n, 06071, Badajoz, Spain
| | - António Albuquerque
- Departamento de Engenharia Civil e Arquitetura, Universidade da Beira Interior (UBI) & FibEnTech - Materiais Fibrosos e Tecnologias Ambientais, Edifício 2 das Engenharias, Calçada Fonte do Lameiro, 6201-001, Covilhã, Portugal
| | - Rogério Simões
- Departamento de Engenharia Civil e Arquitetura, Universidade da Beira Interior (UBI) & FibEnTech - Materiais Fibrosos e Tecnologias Ambientais, Edifício 2 das Engenharias, Calçada Fonte do Lameiro, 6201-001, Covilhã, Portugal
| | - Fernando Beltrán
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Av. Elvas s/n, 06071, Badajoz, Spain
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Javier Rivas
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Av. Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|
17
|
Espinoza LC, Aranda M, Contreras D, Henríquez A, Salazar R. Effect of the sp
3
/sp
2
Ratio in Boron‐Doped Diamond Electrodes on the Degradation Pathway of Aniline by Anodic Oxidation. ChemElectroChem 2019. [DOI: 10.1002/celc.201901218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- L. Carolina Espinoza
- Laboratorio de Electroquímica del Medio Ambiente. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH Av. Libertador Bernardo O'Higgins 3363 Casilla 40 Santiago Chile
| | - Mario Aranda
- Laboratorio de Estudios Avanzados en Fármacos y Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de FarmaciaUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - David Contreras
- Centro de Biotecnología, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH Av. Libertador Bernardo O'Higgins 3363 Casilla 40 Santiago Chile
| |
Collapse
|
18
|
Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb (II). Microchem J 2019. [DOI: 10.1016/j.microc.2019.103998] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Garduño-Pineda L, Linares-Hernández I, Solache-Ríos MJ, Teutli-Sequeira A, Martínez-Miranda V. Removal of inorganic chemical species and organic matter from slaughterhouse wastewater via calcium acetate synthesized from eggshell. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:295-305. [PMID: 30741124 DOI: 10.1080/10934529.2018.1548190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
The physicochemical treatment (PT) of slaughterhouse wastewater (SWW) was investigated. In the first stage, calcium acetate (Ca(Ac)2) was synthesized in five different ways: (1) acetic acid (HAc) and chicken eggshell (CaAc1), (2) lime (CaAc2), (3) a 1:1 eggshell and lime mixture (CaAc3), (4) a 1:2 eggshell and lime mixture (CaAc4), and (5) calcium oxide via the calcination of eggshell (CaAc5). The synthesized Ca(Ac)2 samples were characterized by IR, SEM, XRD, and EDS. Subsequently, the samples were used to precipitate oxyanions and organic matter. The experiments were carried out at pH 4 and 12. For the treatment with CaAc1 at pH 4, an acid (HCl, H2SO4, or HAc) was also added. The best results for CaAc1 in acid media were attained with HCl, where removal efficiencies of 82.23% total suspended solids, 76% turbidity, 81.43% color, 53.86% Fe, 69.74% Cu, and 14.64% Na were observed. This treatment also removed ∼99% fecal and total coliforms, 26.49% COD, and 78.39% TOC. The experiments were also performed at pH 12 using CaAc1. These afforded removal efficiencies of 92.7% turbidity, 84.7% color, 40.5% phosphates (PO43-), and 64.7% sulfates (SO42-). In addition, this method removed metals, 35.37% COD and 99% fecal and total coliforms.
Collapse
Affiliation(s)
- Laura Garduño-Pineda
- a Instituto Interamericano de Tecnología y Ciencias del Agua , Universidad Autónoma del Estado de México , Toluca , México
| | - Ivonne Linares-Hernández
- a Instituto Interamericano de Tecnología y Ciencias del Agua , Universidad Autónoma del Estado de México , Toluca , México
| | - Marcos J Solache-Ríos
- b Department of Chemistry , Instituto Nacional de Investigaciones Nucleares (ININ) , La Marquesa , Mexico
| | - Alejandra Teutli-Sequeira
- a Instituto Interamericano de Tecnología y Ciencias del Agua , Universidad Autónoma del Estado de México , Toluca , México
| | - Verónica Martínez-Miranda
- a Instituto Interamericano de Tecnología y Ciencias del Agua , Universidad Autónoma del Estado de México , Toluca , México
| |
Collapse
|
20
|
Vidal J, Huiliñir C, Santander R, Silva-Agredo J, Torres-Palma RA, Salazar R. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4404-4414. [PMID: 29770941 DOI: 10.1007/s11356-018-2234-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 05/03/2023]
Abstract
Ampicillin (AMP) is an antibiotic widely used in hospitals and veterinary clinics around the world for treating infections caused by bacteria. Therefore, it is common to find traces of this antibiotic in wastewater from these entities. In this work, we studied the mineralization of this antibiotic in solution as well as the elimination of its antimicrobial activity by comparing different electrochemical advanced oxidation processes (EAOPs), namely electro-oxidation with hydrogen peroxide (EO-H2O2), electro-Fenton (EF), and photo electro-Fenton (PEF). With PEF process, a high degradation, mineralization, and complete elimination of antimicrobial activity were achieved in 120-min electrolysis with high efficiency. In the PEF process, fast mineralization rate is caused by hydroxyl radicals (·OH) that are generated in the bulk, on the anode surface, by UV radiation, and most importantly, by the direct photolysis of complexes formed between Fe3+ and some organic intermediates. Moreover, some products and intermediates formed during the degradation of the antibiotic Ampicillin, such as inorganic ions, carboxylic acids, and aromatic compounds, were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2.
Collapse
Affiliation(s)
- Jorge Vidal
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo, 33, Santiago, Chile
| | - Cesar Huiliñir
- Departamento de Ingeniería Química. Laboratorio de Biotecnología Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Rocío Santander
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo, 33, Santiago, Chile
| | - Javier Silva-Agredo
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Calle 70 No 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Calle 70 No 52-21, Medellín, Colombia
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo, 33, Santiago, Chile.
| |
Collapse
|
21
|
Martín de Vidales MJ, Castro MP, Sáez C, Cañizares P, Rodrigo MA. Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Vidal J, Huiliñir C, Santander R, Silva-Agredo J, Torres-Palma RA, Salazar R. Effective removal of the antibiotic Nafcillin from water by combining the Photoelectro-Fenton process and Anaerobic Biological Digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1095-1105. [PMID: 29625524 DOI: 10.1016/j.scitotenv.2017.12.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
The elimination of the antibiotic Nafcillin (NAF), which is usually used in hospitals and veterinary clinics around the world, was assessed through a combination of three advanced electrochemical oxidation processes followed by anaerobic digestion process. In the first stage different electrochemical advanced oxidation processes (EAOPs) were used: electro-oxidation with hydrogen peroxide (EO-H2O2), electro-Fenton (EF) and Photo electro-Fenton (PEF). After PEF, almost complete and highly efficient degradation and elimination of NAF was achieved, with the concomitant elimination of the associated antimicrobial activity. The fast degradation rate produced by PEF is explained by the oxidative action of hydroxyl radicals (•OH) together with the direct UV photolysis of complexes formed between Fe3+ and some organic intermediates. Total removal of NAF occurs after 90min of electrolysis by PEF, with the generation of organic intermediates that remain in solution. However, when this post PEF process solution was treated with an anaerobic biological process, the intermediates generated in the electrochemical degradation of NAF were completely eliminated after 24h. The kinetic degradation of NAF as well as the identification/quantification of products and intermediates formed during the degradation of antibiotic, such as inorganic ions, carboxylic acids and aromatic compounds, were determined by chromatographic and photometric methods. Finally, an oxidation pathway is proposed for the complete conversion to CO2.
Collapse
Affiliation(s)
- Jorge Vidal
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile
| | - Cesar Huiliñir
- Departamento de Ingeniería Química, Laboratorio de Biotecnología Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Chile
| | - Rocío Santander
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile
| | - Javier Silva-Agredo
- Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
23
|
Dos Santos AJ, Costa ECTDA, da Silva DR, Garcia-Segura S, Martínez-Huitle CA. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7002-7011. [PMID: 29273989 DOI: 10.1007/s11356-017-1039-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm-2. Thus, electrochemical technologies emerge as promising water-sustainable approaches.
Collapse
Affiliation(s)
- Alexsandro Jhones Dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Emily Cintia Tossi de Araújo Costa
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Djalma Ribeiro da Silva
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Sergi Garcia-Segura
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| | - Carlos Alberto Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada (LEAA), Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, Natal, RN, 59078-970, Brazil.
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Unesp, P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
24
|
Cai Y, Yang S, Chen D, Li N, Xu Q, Li H, He J, Lu J. A novel strategy to immobilize bacteria on polymer particles for efficient adsorption and biodegradation of soluble organics. NANOSCALE 2017; 9:11530-11536. [PMID: 28767111 DOI: 10.1039/c7nr02610b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel strategy was used to immobilize bacterial cells on the surface of functional polymer particles for the efficient adsorption and biodegradation of organics in wastewater. First, the bacterial cells were aggregated using a vinyl-containing pre-polymer, and the obtained bacteria-pre-polymer complex was then used as a particle stabilizer to construct a stable Pickering emulsion of functional cross-linking monomers and hydrophobic superparamagnetic iron oxide nanoparticles (the oil phase) in water. After polymerization, the bacteria-pre-polymer complex was covalently fixed to the surface of the polymer particles. Two species of bacterial cells (Pseudomonas putida andParacoccus denitrificans) were used as models to study their removal capacity for phenol and DMF, respectively. Batch experiments showed that the as-prepared magnetic bacteria-polymer (MPB) composites could efficiently remove organics from the aqueous solutions, and the encapsulated iron oxide nanoparticles enabled the MPB composites to be magnetically separated.
Collapse
Affiliation(s)
- Yahui Cai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Davarnejad R, Nasiri S. Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:1-10. [PMID: 28129953 DOI: 10.1016/j.envpol.2016.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
In this paper, a poultry slaughterhouse wastewater (PSW) was treated in terms of chemical oxygen demand (COD) and color reduction using electro-Fenton (EF) technique under response surface methodology (RSM). The effects of five significant independent variables such as reaction time, pH, H2O2/Fe2+ molar ratio, current density, volume ratio of H2O2/PSW (ml/l) were investigated on the COD and color removal. Experimental data were optimized by Box-Behnken design (BBD) and RSM. The optimum conditions were experimentally found at pH of 4.38, reaction time of 55.60 min, H2O2/Fe2+ molar ratio of 3.73, current density of 74.07 mA/cm2, volume ratio of H2O2/PSW of 1.63 ml/l for 92.37%COD removal and at pH of 3.39, reaction time of 49.22 min, H2O2/Fe2+ molar ratio of 3.62, current density of 67.90 mA/cm2, volume ratio of H2O2/PSW of 1.44 ml/l for 88.06% color removal.
Collapse
Affiliation(s)
- Reza Davarnejad
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Samaneh Nasiri
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| |
Collapse
|
26
|
Bio-electro-Fenton: A New Combined Process – Principles and Applications. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2017. [DOI: 10.1007/698_2017_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Steter JR, Brillas E, Sirés I. On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.125] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|