1
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
2
|
Feng J, Liu Y, Shan Y, Xie Y, Chu Z, Jin W. In-situ growth of Cu@CuFe Prussian blue based core-shell nanowires for non-enzymatic electrochemical determination of ascorbic acid with high sensitivity and reusability. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
4
|
Fabrication of flexible graphene oxide paper-like adsorbent doped with magnetite nanoparticles for removal of dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Curulli A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020; 25:E5759. [PMID: 33297366 PMCID: PMC7730649 DOI: 10.3390/molecules25235759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
6
|
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review. SENSORS 2019; 20:s20010054. [PMID: 31861855 PMCID: PMC6983230 DOI: 10.3390/s20010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
Collapse
Affiliation(s)
- Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| | - Tan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Yanqing Duan
- Business school, University of Bedfordshire, Luton LU1 3BE, UK;
| |
Collapse
|
7
|
Gill A, Zajda J, Meyerhoff ME. Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples. Anal Chim Acta 2019; 1077:167-173. [PMID: 31307706 PMCID: PMC6636846 DOI: 10.1016/j.aca.2019.05.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Nitrite is a naturally occurring species present in various food samples and also present in our bodies as a product of nitric oxide (NO) oxidation. Considering the ubiquity of nitrite, its determination is of great importance in both biological and food samples. Herein, a very facile indirect method of nitrite determination in meat samples via selective reduction to nitric oxide (NO) is presented. The resulting gaseous product is quantified via portable and cost-effective electrochemical sensors. Both a novel laboratory prepared Pt-Nafion based NO sensor and a commercially available amperometric NO sensor are compared. Excellent correlations between the nitrite amount found in tested samples using both of the electrochemical sensors and a reference chemiluminescence method are demonstrated (r = 0.997 and r = 0.999 for Pt-Nafion based and commercially available NO-B4 electrochemical sensors, respectively, n = 12). Moreover, the slope of the linear regression curves are very close to unity for the comparison of the three systems tested. The amperometric sensors compared within this work exhibit good precision and accuracy and are shown to be an attractive alternative to the costly chemiluminescence detection method for accurately determining nitrite levels in food samples.
Collapse
Affiliation(s)
- Alyssa Gill
- Department of Chemistry, 930 N. University Avenue, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joanna Zajda
- Department of Chemistry, 930 N. University Avenue, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mark E Meyerhoff
- Department of Chemistry, 930 N. University Avenue, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Rajaji U, Manavalan S, Chen SM, Chinnapaiyan S, Chen TW, Jothi Ramalingam R. Facile synthesis and characterization of erbium oxide (Er 2O 3) nanospheres embellished on reduced graphene oxide nanomatrix for trace-level detection of a hazardous pollutant causing Methemoglobinaemia. ULTRASONICS SONOCHEMISTRY 2019; 56:422-429. [PMID: 31101280 DOI: 10.1016/j.ultsonch.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The nanomaterials have received enormous attention in the catalysis applications. Particularly, we have focused on the fabrication of nanocomposite for an electrochemical sensor with improved electrocatalytic performance. Herein, a rapid and sensitive electrochemical detection of nitrite is essential for assessing the risks facing ecosystems in environment. We report a simple and robust ultrasonic-assisted synthetical route via prepared Er2O3 nanoparticles decorated reduced graphene oxide nanocomposite (Er2O3 NPs@RGO) modified electrode for nitrite detection. The composition and morphological formation were characterized by XRD, XPS, FESEM, and HRTEM. The amperometric (i-t) and cyclic voltammetry were exhibits tremendous electrocatalytic capability and superior performance toward nitrite oxidation. A sensitive and reproducible amperometric nitrite sensor was fabricated which able to detect trace concentration as 3.69 nM and excellent sensitivity (24.17 µA µM-1 cm-2). The method worked well even in cured meat and water samples and the results has indicates the reliability of the method in real-time analysis.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Sathishkumar Chinnapaiyan
- International Master Program in Mechanical and Automation Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Zhang YN, Niu Q, Gu X, Yang N, Zhao G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. NANOSCALE 2019; 11:11992-12014. [PMID: 31140537 DOI: 10.1039/c9nr02935d] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rapid global industrialization and explosive population growth have resulted in an increase in the discharge of harmful and toxic compounds. These toxic inorganic gases, volatile organic compounds, heavy metals, personal care products, endocrine-disrupting chemicals, dyes, and pharmaceuticals are destroying the balance in the Earth and increasing environmental toxicity at an alarming rate. Thus, their detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots, and boron-doped diamond have been extensively utilized and further proven to be ideal candidates for resolving environmental problems, emerging as adsorbents, electrochemical sensors and electrodes. Herein, we review the recent advances, progress and achievements in the design and properties of carbon nanomaterials and their applications for the electrochemical detection and removal of environmental pollutants.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Qiongyan Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Xiaotong Gu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
10
|
Li C, Chen D, Wang Y, Lai X, Peng J, Wang X, Zhang K, Cao Y. Simultaneous Electrochemical Detection of Nitrite and Hydrogen Peroxide Based on 3D Au-rGO/FTO Obtained Through a One-Step Synthesis. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1304. [PMID: 30875888 PMCID: PMC6471323 DOI: 10.3390/s19061304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
In this paper, Au and reduced graphene oxide (rGO) were successively deposited on fluorine-doped SnO₂ transparent conductive glass (FTO, 1 × 2 cm) via a facile and one-step electrodeposition method to form a clean interface and construct a three-dimensional network structure for the simultaneous detection of nitrite and hydrogen peroxide (H₂O₂). For nitrite detection, 3D Au-rGO/FTO displayed a sensitivity of 419 μA mM-1 cm-2 and a linear range from 0.0299 to 5.74 mM, while for the detection of H₂O₂, the sensitivity was 236 μA mM-1 cm-2 and a range from 0.179 to 10.5 mM. The combined results from scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction measurements (XRD) and electrochemical tests demonstrated that the properties of 3D Au-rGO/FTO were attributabled to the conductive network consisting of rGO and the good dispersion of Au nanoparticles (AuNPs) which can provide better electrochemical properties than other metal compounds, such as a larger electroactive surface area, more active sites, and a bigger catalytic rate constant.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuanyuan Wang
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xiaoyong Lai
- Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Juan Peng
- Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiaohong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Zhang J, Zhang Y, Zhou J, Wang L. Construction of a highly sensitive non-enzymatic nitrite sensor using electrochemically reduced holey graphene. Anal Chim Acta 2018; 1043:28-34. [DOI: 10.1016/j.aca.2018.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
12
|
In-situ insertion of carbon nanotubes into metal-organic frameworks-derived α-Fe2O3 polyhedrons for highly sensitive electrochemical detection of nitrite. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.228] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Bayındır O, Alanyalıoğlu M. Formation Mechanism of Polymeric Thin Films of Azure B on Gold Electrodes. ChemistrySelect 2018. [DOI: 10.1002/slct.201702699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oğuz Bayındır
- Atatürk University; Sciences Faculty; Department of Chemistry; 25240 Erzurum Turkey
| | - Murat Alanyalıoğlu
- Atatürk University; Sciences Faculty; Department of Chemistry; 25240 Erzurum Turkey
| |
Collapse
|