1
|
Khan NA, Jahan Z, Iqbal N, Niazi MB, Mehek R. Synergistic electrochemical performance of textile sludge based activated carbon with reduced graphene oxide as electrode for supercapacitor application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:274-283. [PMID: 39577204 DOI: 10.1016/j.wasman.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The procedure for disposing of textile waste sludge requires sustainable solutions due to numerous environmental issues associated with its disposal. The majority of textile manufacturers incinerate the waste sludge to meet their heating demands, which is harmful to the environment. It can also be used in soil amendment, biodegradable products, construction material and water treatment process as absorbent to remove the heavy metals etc. In this study we use the heavy metal containing textile waste sludge as a precursor for the fabrication of functional electrode material for supercapacitor applications. In this process the organic content within the textile sludge waste is treated at 900 °C and transformed into activated carbon, a vital component of supercapacitors electrodes. Through a series of pyrolysis and activation processes, it is further converted into porous activated carbon (AC) with a wide surface area and appropriate electrochemical properties. To enhance the overall conductivity of the electrode material for supercapacitor applications, the carbon content of the material is increased by loading of reduced graphene oxide (rGO) up to 4 wt%. It resulted in a significant increase in the surface area up to 128.68 m2/g. The effective conversion and relevance of the obtained material for supercapacitor applications is further reinforced by the excellent electrochemical performance of rGO@AC-900 °C which generated a specific capacitance of 362F/g with 4 wt% loading which is higher than the specific capacity achieved with lower rGO loading i.e., 83.2 F/g and 182.5 F/g for AC-900 °C and 2 wt% rGO@AC-900 °C, respectively. The 4 wt% rGO@AC900°C also represented improved stability with up to 82 % charge retention after 5000 charge-discharge cycles. The excellent EDLC behavior of 4 wt% rGO@AC900°C is also evident from the impedance data. The electrode material with 4 wt% rGO loading showed lower value of RCT i.e., 4.16 Ω as compared to 12.08 Ω with 2 wt% rGO loading. This novel approach offers a sustainable alternative for the handling of hazardous textile waste sludge through conversion into a potential electrode material for environmentally friendly energy storage devices.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- School of Chemical and Material Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Zaib Jahan
- School of Chemical and Material Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Naseem Iqbal
- US Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Bilal Niazi
- School of Chemical and Material Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Rimsha Mehek
- US Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Ghorbanian A, Rowshanzamir S, Mehri F. Enhanced brackish water desalination in capacitive deionization with composite Zn-BTC MOF-incorporated electrodes. Sci Rep 2024; 14:14999. [PMID: 38951566 PMCID: PMC11217474 DOI: 10.1038/s41598-024-66023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
In this study, composite electrodes with metal-organic framework (MOF) for brackish water desalination via capacitive deionization (CDI) were developed. The electrodes contained activated carbon (AC), polyvinylidene fluoride (PVDF), and zinc-benzene tricarboxylic acid (Zn-BTC) MOF in varying proportions, improving their electrochemical performance. Among them, the E4 electrode with 6% Zn-BTC MOF exhibited the best performance in terms of CV and EIS analyses, with a specific capacity of 88 F g-1 and low ion charge transfer resistance of 4.9 Ω. The E4 electrode showed a 46.7% increase in specific capacitance compared to the E1 electrode, which did not include the MOF. Physicochemical analyses, including XRD, FTIR, FESEM, BET, EDS, elemental mapping, and contact angle measurements, verified the superior properties of the E4 electrode compared to E1, showcasing successful MOF synthesis, desirable pore size, elemental and particle-size distribution of materials, and the superior hydrophilicity enhancement. By evaluating salt removal capacity (SRC) in various setups using an initially 100.0 mg L-1 NaCl feed solution, the asymmetric arrangement of E1 and E4 electrodes outperformed symmetric arrangements, achieving a 21.1% increase in SRC to 6.3 mg g-1. This study demonstrates the potential of MOF-incorporated electrodes for efficient CDI desalination processes.
Collapse
Affiliation(s)
- Amirshahriar Ghorbanian
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| | - Soosan Rowshanzamir
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Foad Mehri
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
3
|
Kotp AA, Abdelwahab A, Farghali AA, Rouby WMAE, Enaiet Allah A. Evaluating the electrocatalytic activity of flower-like Co-MOF/CNT nanocomposites for methanol oxidation in basic electrolytes. RSC Adv 2023; 13:27934-27945. [PMID: 37736558 PMCID: PMC10509782 DOI: 10.1039/d3ra05105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Efficient electrocatalysts, with high tolerance to methanol oxidation, good stability, and acceptable cost are the main requisites for promising direct methanol fuel cell (DMFC) electrode materials. This target can be achieved by the integration of different active materials with unique structures. In this work, a cobalt metal-organic framework (Co-MOF) flower structure was prepared by a hydrothermal method, and then a simple ultrasonication method was employed to anchor carbon nanotubes (CNTs) in between the MOF flower petals and fabricate a Co-MOF/CNT hybrid composite. Different ratios of CNTs were used in the composite preparations, namely 25, 50, and 75 wt% of the composite. The nanocomposites were entirely investigated using different characterization techniques, such as XRD, FTIR, SEM, TEM, and XPS. Comparative electrochemical measurements confirmed that due to the integration of highly conductive CNTs with the porous active fascinating structure of Co-MOF, Co-MOF/50% CNTs exhibited improved electrocatalytic activity with a current density of 35 mA cm-2 at a potential of 0.335 V and a scan rate of 50 mV s-1. The excellent electrochemical activity and stability could be due to the synergy between Co-MOF and the CNTs that conferred adequate active sites for methanol electro-oxidation and a lower equivalent series resistance, as revealed from the electrochemical impedance spectroscopy study. This study opens a new avenue to decrease the utilization of platinum and increase the methanol oxidation activity using low-cost catalysts.
Collapse
Affiliation(s)
- Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abdalla Abdelwahab
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
4
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
5
|
Chen F, Guo S, Yu S, Zhang C, Guo M, Li C. Hierarchical N-doped carbon nanofiber-loaded NiCo alloy nanocrystals with enhanced methanol electrooxidation for alkaline direct methanol fuel cells. J Colloid Interface Sci 2023; 646:43-53. [PMID: 37182258 DOI: 10.1016/j.jcis.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The high catalytic activity of non-precious metals in alkaline media opens a new direction for the development of alkaline direct methanol fuel cell (ADMFC) electrocatalysts. Herein, a highly dispersed N-doped carbon nanofibers (CNFs) -loaded NiCo non-precious metal alloy electrocatalyst based on metal-organic frameworks (MOFs) was prepared, which conferred excellent methanol oxidation activity and resistance to carbon monoxide (CO) poisoning through a surface electronic structure modulation strategy. The porous electrospun polyacrylonitrile (PAN) nanofibers and the P-electron conjugated structure of polyaniline chains provide fast charge transfer channels, enabling electrocatalysts with abundant active sites and efficient electron transfer. The optimized NiCo/N-CNFs@800 was tested as an anode catalyst for ADMFC single cell and exhibited a power density of 29.15 mW cm-2. Due to the fast charge transfer and mass transfer brought by its one-dimensional porous structure and the synergistic effect between NiCo alloy, NiCo/N-CNFs@800 is expected to be an economical, efficient and CO-resistant methanol oxidation reaction (MOR) electrocatalyst.
Collapse
Affiliation(s)
- Fei Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| | - Chong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Man Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Interface engineering of Ni/NiO heterostructures with abundant catalytic active sites for enhanced methanol oxidation electrocatalysis. J Colloid Interface Sci 2023; 630:570-579. [DOI: 10.1016/j.jcis.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
7
|
Askari MB, Azizi S, Moghadam MTT, Seifi M, Rozati SM, Di Bartolomeo A. MnCo 2O 4/NiCo 2O 4/rGO as a Catalyst Based on Binary Transition Metal Oxide for the Methanol Oxidation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4072. [PMID: 36432357 PMCID: PMC9694504 DOI: 10.3390/nano12224072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The demands for alternative energy have led researchers to find effective electrocatalysts in fuel cells and increase the efficiency of existing materials. This study presents new nanocatalysts based on two binary transition metal oxides (BTMOs) and their hybrid with reduced graphene oxide for methanol oxidation. Characterization of the introduced three-component composite, including cobalt manganese oxide (MnCo2O4), nickel cobalt oxide (NiCo2O4), and reduced graphene oxide (rGO) in the form of MnCo2O4/NiCo2O4/rGO (MNR), was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) analyses. The alcohol oxidation capability of MnCo2O4/NiCo2O4 (MN) and MNR was evaluated in the methanol oxidation reaction (MOR) process. The crucial role of rGO in improving the electrocatalytic properties of catalysts stems from its large active surface area and high electrical conductivity. The alcohol oxidation tests of MN and MNR showed an adequate ability to oxidize methanol. The better performance of MNR was due to the synergistic effect of MnCo2O4/NiCo2O4 and rGO. MN and MNR nanocatalysts, with a maximum current density of 14.58 and 24.76 mA/cm2 and overvoltage of 0.6 and 0.58 V, as well as cyclic stability of 98.3% and 99.7% (at optimal methanol concentration/scan rate of 20 mV/S), respectively, can be promising and inexpensive options in the field of efficient nanocatalysts for use in methanol fuel cell anodes.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Sadegh Azizi
- Department of Physics, Faculty of Science, University of Guilan, Rasht 413351914, Iran
| | | | - Majid Seifi
- Department of Physics, Faculty of Science, University of Guilan, Rasht 413351914, Iran
| | - Seyed Mohammad Rozati
- Department of Physics, Faculty of Science, University of Guilan, Rasht 413351914, Iran
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello”, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
8
|
Wang Z, Zhang M, Song Z, Yaseen M, Huang Z, Wang A, Guisheng Z, Shao S. Synergistic catalytic enhancement of metal-organic framework derived nanoarchitectures decorated on graphene as a high-efficiency bifunctional electrocatalyst for methanol oxidation and oxygen reduction. J Colloid Interface Sci 2022; 624:88-99. [PMID: 35660914 DOI: 10.1016/j.jcis.2022.05.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Designing highly efficient, long-lasting, and cost-effective cathodic and anodic functional materials as a bifunctional electrocatalyst is essential for overcoming the bottleneck in fuel cell development. Herein, a novel two-step synthesis strategy is developed to synthesize metal-organic framework (MOF) derived nitrogen-doped carbon (NC) with improved spatial isolation and a higher loading amount of cobalt (Co) and nickel carbide (Ni3C) nanocrystal decorated on graphene (denoted as Co@NC-Ni3C/G). Benefiting from multiple active sites of high N-doping level, uniform dispersion of Co and Ni3C nanocrystals, and a large active area of graphene, the Co@NC-Ni3C/G hybrids exhibit excellent methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) efficiency in an alkaline environment. For MOR, the optimized Co@NC-Ni3C/G-350 catalyst achieved a current density of 44.8 mA cm-2 at an applied potential of 1.47 V (V vs. RHE), which is significantly higher than Co@NC-Ni3C (42.07 mA cm-2) and Co@NC (24.1 mA cm-2) in 0.5 M methanol + 1.0 M KOH solutions. In addition, during the CO retention test, the Co@NC-Ni3C/G-350 catalyst exhibits excellent CO tolerance capacity. Excitingly, the as-prepared Co@NC-Ni3C/G-350 hybrid exhibits significantly improved ORR catalytic efficiency in terms of positive onset and half-wave potential (Eonset = 0.90 V, E1/2 = 0.830 V vs. RHE), small Tafel slope (34 mV dec-1) and excellent durability (only reduced 0.016 V after 5000 s test). This work provides new insights into MOF-derived functional nanomaterials for anode and cathode co-catalysts for methanol fuel cells.
Collapse
Affiliation(s)
- Zhuokai Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingmei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Zixiang Song
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Maria Yaseen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiye Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - An Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhu Guisheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Shouyan Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
9
|
CoMoO4 as Pseudocapacitor Electrode Material and Methanol Electro-Oxidation Catalyst. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Advanced LDH-MOF Derived Bimetallic NiCoP Electrocatalyst for Methanol Oxidation Reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Zhong Y, Wu Z, Liu X, Li L. Prismatic Al-MOF composite rGO immobilized PdBiMn alloy catalyst for facilitating ethylene glycol electrooxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Monsef R, Salavati-Niasari M, Masjedi-Arani M. Hydrothermal Synthesis of Spinel-Perovskite Li–Mn–Fe–Si Nanocomposites for Electrochemical Hydrogen Storage. Inorg Chem 2022; 61:6750-6763. [DOI: 10.1021/acs.inorgchem.1c03605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rozita Monsef
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box 87317-51167, Kashan 87317-51167, I. R. Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box 87317-51167, Kashan 87317-51167, I. R. Iran
| | - Maryam Masjedi-Arani
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box 87317-51167, Kashan 87317-51167, I. R. Iran
| |
Collapse
|
13
|
Asadi M, Babamiri B, Hallaj R, Salimi A. Unusual Synthesis of Nanostructured Zn-MOF by Bipolar electrochemistry in Ionic liquid-based Electrolyte: Intrinsic Alkaline phosphatase-like Activity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zaman N, Iqbal N, Noor T. Advances and challenges of MOF derived carbon-based electrocatalysts and photocatalyst for water splitting: a review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
15
|
One-step synthesis of Mn3O4@ZIF-67 on carbon cloth: As an effective non-enzymatic glucose sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Foam Synthesis of Nickel/Nickel (II) Hydroxide Nanoflakes Using Double Templates of Surfactant Liquid Crystal and Hydrogen Bubbles: A High-Performance Catalyst for Methanol Electrooxidation in Alkaline Solution. NANOMATERIALS 2022; 12:nano12050879. [PMID: 35269368 PMCID: PMC8912855 DOI: 10.3390/nano12050879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
This work demonstrates the chemical synthesis of two-dimensional nanoflakes of mesoporous nickel/nickel (II) hydroxide (Ni/Ni(OH)2-NFs) using double templates of surfactant self-assembled thin-film and foam of hydrogen bubbles produced by sodium borohydride reducing agent. Physicochemical characterizations show the formation of amorphous mesoporous 2D nanoflakes with a Ni/Ni(OH)2 structure and a high specific surface area (165 m2/g). Electrochemical studies show that the electrocatalytic activity of Ni/Ni(OH)2 nanoflakes towards methanol oxidation in alkaline solution is significantly enhanced in comparison with that of parent bare-Ni(OH)2 deposited from surfactant-free solution. Cyclic voltammetry shows that the methanol oxidation mass activity of Ni/Ni(OH)2-NFs reaches 545 A/cm2 gcat at 0.6 V vs. Ag/AgCl, which is more than five times higher than that of bare-Ni(OH)2. Moreover, Ni/Ni(OH)2-NFs reveal less charge transfer resistance (10.4 Ω), stable oxidation current density (625 A/cm2 gcat at 0.7 V vs. Ag/AgCl), and resistance to the adsorption of reaction intermediates and products during three hours of constant-potential methanol oxidation electrolysis in alkaline solution. The high-performance electrocatalytic activity of Ni/Ni(OH)2 nanoflakes is mainly derived from efficient charge transfer due to the high specific surface area of the 2D mesoporous architecture of the nanoflakes, as well as the mass transport of methanol to Ni2+/Ni3+ active sites throughout the catalyst layer.
Collapse
|
17
|
Sun H, Huang H, Hu C, Yan Y, Hu Y, Guo S, Chen JL. Synthesis of AuNPs decorated multi-valent Cu-Ni oxide Nanoplates for electrochemical oxidation of methanol. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Xu X, Tan R, Lv X, Geng C, Li Y, Cui B, Fang Y. Non-enzymatic electrochemical detection of glucose using Ni-Cu bimetallic alloy nanoparticles loaded on reduced graphene oxide through a one-step synthesis strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5628-5637. [PMID: 34780592 DOI: 10.1039/d1ay01357b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, Ni-Cu bimetallic alloy nanoparticles supported on reduced graphene oxide (Ni-Cu ANPs/RGO) was successfully fabricated through a one-step hydrothermal synthesis method, where simultaneous reduction of graphene oxide, nickel salt and copper salt was performed, and relevant characterization studies were executed. This synthetic method does not require surfactants and high temperature treatment, and is recommended as a green, convenient and effective way to produce composites. The unique two-dimensional architecture of the RGO provides a large specific surface area, contributing to loading more Ni-Cu ANPs, while the uniformly distributed Ni-Cu bimetallic alloy nanoparticles enhance the electrocatalytic performance of glucose oxidation. The non-enzymatic glucose biosensor based on Ni-Cu ANPs/RGO showed a wide linear range (from 0.01 μM to 30 μM), low detection limit (0.005 μM), and excellent sensitivity (1754.72 μA mM-1 cm-2). More importantly, the high reliability and the excellent selectivity in actual sample detection will broaden its practical application in electrochemical sensing.
Collapse
Affiliation(s)
- Xiaoyun Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Rong Tan
- College of Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
19
|
Mehek R, Iqbal N, Noor T, Amjad MZB, Ali G, Vignarooban K, Khan MA. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021; 11:29247-29266. [PMID: 35479575 PMCID: PMC9040901 DOI: 10.1039/d1ra05073g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) with efficient surface and structural properties have risen as a distinctive class of porous materials through the last few decades, which has enabled MOFs to gain attention in a wide range of applications like drug delivery, gas separation and storage, catalysis and sensors. Likewise, they have also emerged as efficient active materials in energy storage devices owing to their remarkable conducting properties. Metal-organic frameworks (MOFs) have garnered great interest in high-energy-density rechargeable batteries and super-capacitors. Herein the study presents their expanding diversity, structures and chemical compositions which can be tuned at the molecular level. It also aims to evaluate their inherently porous framework and how it facilitates electronic and ionic transportation through the charging and discharging cycles of lithium-ion batteries. In this review we have summarized the various synthesis paths to achieve a particular metal-organic framework. This study focuses mainly on the implementation of metal-organic frameworks as efficient anode and cathode materials for lithium-ion batteries (LIBs) with an evaluation of their influence on cyclic stability and discharge capacity. For this purpose, a brief assessment is made of recent developments in metal-organic frameworks as anode or cathode materials for lithium-ion batteries which would provide enlightenment in optimizing the reaction conditions for designing a MOF structure for the battery community and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Rimsha Mehek
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - M Zain Bin Amjad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Ghulam Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - K Vignarooban
- Department of Physics, Faculty of Science, University of Jaffna Jaffna 40000 Sri Lanka
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
20
|
Hanif S, Iqbal N, Noor T, Zaman N, Vignarooban K. Electrocatalytic study of NiO-MOF with activated carbon composites for methanol oxidation reaction. Sci Rep 2021; 11:17192. [PMID: 34433893 PMCID: PMC8387380 DOI: 10.1038/s41598-021-96794-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
In this work, the methanol oxidation reaction is investigated on Ni based metal organic frameworks (MOF) and its composites with biomass derived activated carbon. NiO-MOF and composites with activated carbon were synthesized using hydrothermal method. SEM, EDX, and XRD, FTIR, TGA techniques were used for characterization of composites. The electrochemical activity of catalysts for oxidation of methanol was tested using cyclic voltammetry (CV) in 1 M KOH and 3 M CH3OH on glassy carbon electrode in three electrode setup. The electrochemical performance shows the effect of activated carbon concentration on methanol oxidation. The electro-oxidation catalyzed by NiO-MOF with activated carbon (40 mg) composite exhibits a peak current density of 182.72 mA/cm2 at 0.89 V potential with a scan rate of 50 mV/s making it a potential catalyst for electrocatalysis of methanol.
Collapse
Affiliation(s)
- Saadia Hanif
- grid.412117.00000 0001 2234 2376USPCAS-E, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | - Naseem Iqbal
- grid.412117.00000 0001 2234 2376USPCAS-E, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | - Tayyaba Noor
- grid.412117.00000 0001 2234 2376SCME, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | - Neelam Zaman
- grid.412117.00000 0001 2234 2376USPCAS-E, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | - K. Vignarooban
- grid.412985.30000 0001 0156 4834Department of Physics, Faculty of Science, University of Jaffna, Jaffna, 40000 Sri Lanka
| |
Collapse
|
21
|
Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution? ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Yaqoob L, Noor T, Iqbal N, Nasir H, Mumtaz A. Electrocatalytic performance of NiNH 2BDC MOF based composites with rGO for methanol oxidation reaction. Sci Rep 2021; 11:13402. [PMID: 34183691 PMCID: PMC8238968 DOI: 10.1038/s41598-021-92660-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Present work comprehensively investigated the electrochemical response of Nickel-2 Aminoterephthalic acid Metal-Organic Framework (NiNH2BDC) and its reduced graphitic carbon (rGO) based hybrids for methanol (CH3OH) oxidation reaction (MOR) in an alkaline environment. In a thorough analysis of a solvothermally synthesized Metal-Organic Frameworks (MOFs) and its reduced graphitic carbon-based hybrids, functional groups detection was performed by FTIR, the morphological study by SEM, crystal structure analysis via XRD, and elemental analysis through XPS while electrochemical testing was accomplished by Chronoamperometry (CA), Cyclic Voltametric method (CV), Electrochemically Active Surface Area (EASA), Tafel slope (b), Electron Impedance Spectroscopy (EIS), Mass Activity, and roughness factor. Among all the fabricated composites, NiNH2BDC MOF/5 wt% rGO hybrid by possessing an auspicious current density (j) of 267.7 mA/cm2 at 0.699 V (vs Hg/HgO), a Tafel slope value of 60.8 mV dec-1, EASA value of 15.7 cm2, and by exhibiting resistance of 13.26 Ω in a 3 M CH3OH/1 M NaOH solution displays grander electrocatalytic activity as compared to state-of-the-art platinum-based electrocatalysts.
Collapse
Affiliation(s)
- Lubna Yaqoob
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Naseem Iqbal
- U.S-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Habib Nasir
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Asad Mumtaz
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
23
|
|
24
|
Meenu PC, Datta SP, Singh SA, Dinda S, Chakraborty C, Roy S. A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Cruz-Navarro JA, Mendoza-Huizar LH, Salazar-Pereda V, Cobos-Murcia JÁ, Colorado-Peralta R, Álvarez-Romero GA. Progress in the use of electrodes modified with coordination compounds for methanol electro-oxidation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Yaqoob L, Noor T, Iqbal N. A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction. RSC Adv 2021; 11:16768-16804. [PMID: 35479139 PMCID: PMC9032615 DOI: 10.1039/d1ra01841h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human craving for energy is continually mounting and becoming progressively difficult to gratify. At present, the world's massive energy demands are chiefly encountered by nonrenewable and benign fossil fuels. However, the development of dynamic energy cradles for a gradually thriving world to lessen fossil fuel reserve depletion and environmental concerns is currently a persistent issue for society. The discovery of copious nonconventional resources to fill the gap between energy requirements and supply is the extreme obligation of the modern era. A new emergent, clean, and robust alternative to fossil fuels is the fuel cell. Among the different types of fuel cells, the direct ethanol fuel cell (DEFCs) is an outstanding option for light-duty vehicles and portable devices. A critical tactic for obtaining sustainable energy sources is the production of highly proficient, economical and green catalysts for energy storage and conversion devices. To date, a broad range of research is available for using Pt and modified Pt-based electrocatalysts to augment the C2H5OH oxidation process. Pt-based nanocubes, nanorods, nanoflowers, and the hybrids of Pt with metal oxides such as Fe2O3, TiO2, SnO2, MnO, Cu2O, and ZnO, and with conducting polymers are extensively utilized in both acidic and basic media. Moreover, Pd-based materials, transition metal-based materials, as well as transition metal-based materials are also points of interest for researchers nowadays. This review article delivers a broad vision of the current progress of the EOR process concerning noble metals and transition metals-based materials.
Collapse
Affiliation(s)
- Lubna Yaqoob
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan +92 51 9085 5121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| |
Collapse
|
27
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Manganese Metal–Organic Framework: Chemical Stability, Photoluminescence Studies, and Biosensing Application. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Abstract
In this study, zeolitic imidazolate framework (ZIF-67) derived nano-porous carbon structures that were further hybridized with MnO2 were tested for oxygen reduction reaction (ORR) as cathode material for fuel cells. The prepared electrocatalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). Cyclic voltammetry was performed on these materials at different scan rates under dissolved oxygen in basic media (0.1 M KOH), inert and oxygen rich conditions to obtain their I–V curves. Electrochemical impedance spectroscopy (EIS) and Chronoamperometry was also performed to observe the materials’ impedance and stability. We report improved performance of hybridized catalyst for ORR based on cyclic voltammetry and EIS results, which show that it can be a potential candidate for fuel cell applications.
Collapse
|
30
|
Yaqoob L, Noor T, Iqbal N, Nasir H, Zaman N, Talha K. Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 850:156583. [DOI: 10.1016/j.jallcom.2020.156583] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Pashazadeh A, Habibi B. A nickel ion-incorporating zinc-mesoporous metal organic framework thin film nanocomposite modified glassy carbon electrode for electrocatalytic oxidation of methanol in alkaline media. NEW J CHEM 2021. [DOI: 10.1039/d0nj05468b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we have successfully synthesized a nickel ion-incorporating zinc-mesoporous metal–organic framework thin films (Zn-mMOFTFs) modified glassy carbon electrode (GCE), Ni/Zn-mMOFTFs/GCE, for electrooxidation of methanol in alkaline solution.
Collapse
Affiliation(s)
- Ali Pashazadeh
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| |
Collapse
|
32
|
Rapid microwave-assisted construction of ZIF-8 derived ZnO and ZnO@Ta2O5 nanocomposite as an efficient electrode for methanol and urea electro-oxidation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Ahmad R, Khan UA, Iqbal N, Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv 2020; 10:43733-43750. [PMID: 35519688 PMCID: PMC9058430 DOI: 10.1039/d0ra08560j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/31/2023] Open
Abstract
The present analysis focuses on the synthetic methods used for the application of supercapacitors with various mysterious architectures derived from zeolitic imidazolate frameworks (ZIFs). ZIFs represent an emerging and unique class of metal–organic frameworks with structures similar to conventional aluminosilicate zeolites, consisting of imidazolate linkers and metal ions. Their intrinsic porous properties, robust functionalities, and excellent thermal and chemical stabilities have resulted in a wide range of potential applications for various ZIF materials. In this rapidly expanding area, energetic research activities have emerged in the past few years, ranging from synthesis approaches to attractive applications of ZIFs. In this analysis, the development of high-performance supercapacitor electrodes and recent strategies to produce them, including the synthesis of various heterostructures and nanostructures, are analyzed and summarized. This analysis goes via the ingenuity of modern science when it comes to these nanoarchitecture electrodes. Despite these significant achievements, it is still difficult to accurately monitor the morphologies of materials derived from metal–organic frameworks (MOFs) because the induction force during structural transformations at elevated temperatures is in high demand. It is also desirable to achieve the direct synthesis of highly functionalized nanosized materials derived from zeolitic imidazolate frameworks (ZIFs) and the growth of nanoporous structures based on ZIFs encoded in specific substrates for the construction of active materials with a high surface area suitable for electrochemical applications. The latest improvements in this field of supercapacitors with materials formed from ZIFs as electrodes using ZIFs as templates or precursors are discussed in this review. Also, the possibility of usable materials derived from ZIFs for both existing and emerging energy storage technologies is discussed. The present analysis focuses on the synthetic methods used for the application of supercapacitors with various mysterious architectures derived from zeolitic imidazolate frameworks (ZIFs).![]()
Collapse
Affiliation(s)
- Rabia Ahmad
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Usman Ali Khan
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Naseem Iqbal
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
34
|
An investigation on the structure properties of platinum nanoparticle deposition on graphene sheets by gamma-ray irradiation: a study of methanol electro-oxidation by synthesis catalyst. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01430-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Enhanced photoelectrocatalytic activity of cobalt sulfide modified with porphyrin as a noble-metal-free photoelectroncatalyst towards methanol oxidation under visible-light. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
He L, Huang S, Liu Y, Wang M, Cui B, Wu S, Liu J, Zhang Z, Du M. Multicomponent Co 9S 8@MoS 2 nanohybrids as a novel trifunctional electrocatalyst for efficient methanol electrooxidation and overall water splitting. J Colloid Interface Sci 2020; 586:538-550. [PMID: 33187670 DOI: 10.1016/j.jcis.2020.10.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
In view of the importance of multifunctional catalysts that can drive different electrocatalytic reactions in the same electrolyte solution, we designed and prepared a series of multicomponent nanohybrids composed of Co9S8 and MoS2 derived from cobalt-doped polyoxometalate (Co-POMs) by one-pot calcination method. The obtained Co9S8@MoS2 nanohybrids were composed of Co9S8, MoS2, Co-Mo-S phases and assembled nanosheets, and therefore were explored as trifunctional electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction, and methanol oxidation reaction (MOR) in an alkaline medium. The nanostructure and chemical components of the series of Co9S8@MoS2 nanohybrids can be modulated by changing the mole ratios of H5Mo12O41P to Co(NO3)2 precursor. Compared with the sole component and other reported Co9S8@MoS2 nanohybrids, the Co9S8@MoS2 nanohybrid prepared from the 1:1 ratio of PMo12 and Co(NO3)2 exhibited superior MOR catalysis efficiency (121.4 mA cm-2) and an extremely low overpotential (1.49 V) for overall water splitting at a current density of 10 mA cm-2 owning to the effective synergism among Co9S8, MoS2, and Co-Mo-S phase. Overall, this study provides a feasible approach to developing efficient and stable trifunctional bimetal electrocatalysts for clean-energy applications.
Collapse
Affiliation(s)
- Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shunjiang Huang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yongkang Liu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bingbing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jiameng Liu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Miao Du
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
37
|
Wang N, Liang S, Zhang L, Cao P, Xu L, Lin M. Ionic liquid supported nickel-based metal-organic framework for electrochemical sensing of hydrogen peroxide and electrocatalytic oxidation of methanol. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Noor T, Pervaiz S, Iqbal N, Nasir H, Zaman N, Sharif M, Pervaiz E. Nanocomposites of NiO/CuO Based MOF with rGO: An Efficient and Robust Electrocatalyst for Methanol Oxidation Reaction in DMFC. NANOMATERIALS 2020; 10:nano10081601. [PMID: 32824116 PMCID: PMC7466713 DOI: 10.3390/nano10081601] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
In this work a novel bimetallic nickel oxide/copper oxide metal–organic framework (NiO/CuO MOF) has been developed by using two linkers: Benzene Dicarboxylic acid (BDC) and Pyrazine. The composites of NiO/CuO MOF with different amounts of reduced graphene oxide (rGO) were synthesized through a hydrothermal method and subsequently characterized by multiple significant techniques like XRD, SEM, EDX, FTIR and Raman IR for an investigation of their structural and morphological properties. The prepared series of material was later employed for electrochemical oxidation of methanol, tested by cyclic voltammetry (CV) in basic medium on a modified glassy carbon electrode (GCE). The electrochemical response depicts that increasing concentration of rGO enhances the electrocatalytic activity of the catalyst for methanol oxidation reaction (MOR). The catalyzed oxidation reaction of methanol by NiO/CuO MOF and rGO-NiO/CuO MOF composites give a superlative current density of 437. 28 mA/cm2 at 0.9 V potential at 50 mV/s scan rate. This activity makes it a promising catalytic material for electrolysis of methanol in direct methanol fuel cell (DMFC).
Collapse
Affiliation(s)
- Tayyaba Noor
- School of Chemical & Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan;
- Correspondence: ; Tel.: +92-51-90855121
| | - Sadaf Pervaiz
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan; (S.P.); (H.N.)
| | - Naseem Iqbal
- U.S-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan; (N.I.); (N.Z.)
| | - Habib Nasir
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan; (S.P.); (H.N.)
| | - Neelam Zaman
- U.S-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan; (N.I.); (N.Z.)
| | - Muhammad Sharif
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Erum Pervaiz
- School of Chemical & Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan;
| |
Collapse
|
39
|
Abstract
Metal-organic frameworks (MOFs) have been at the center stage of material science in the recent past because of their structural properties and wide applications in catalysis. MOFs have also been used as hard templates for the preparation of catalysts. In this study, highly active CuPt/NC electrocatalyst was synthesized by pyrolyzing Cu-tpa MOF along with Pt precursor under flowing Ar-H2 atmosphere. The catalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). Rotating disk electrode study was performed to determine the oxygen reduction reaction (ORR) activity for CuPt/NC in 0.1 M HClO4 at different revolutions per minute (400, 800, 1200, and 1600) and it was also compared with commercial Pt/C catalyst. Further the ORR performance was evaluated by K-L plots and Tafel slope. CuPt/NC shows excellent ORR performance with onset potential of 0.9 V (vs. RHE), which is comparable with commercial Pt/C. The ORR activity of CuPt/NC is demonstrated as an efficient electrocatalyst for fuel cell.
Collapse
|
40
|
Electrochemical determination of levodopa on a reduced graphene oxide paste electrode modified with a metal-organic framework. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104888] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Yang H, Guo T, Yin D, Liu Q, zhang X, Zhang X. A high-efficiency noble metal-free electrocatalyst of cobalt-iron layer double hydroxides nanorods coupled with graphene oxides grown on a nickel foam towards methanol electrooxidation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
43
|
Yaqoob L, Noor T, Iqbal N, Nasir H, Zaman N, Rasheed L, Yousuf M. Development of an Efficient Non‐Noble Metal Based Anode Electrocatalyst to Promote Methanol Oxidation Activity in DMFC. ChemistrySelect 2020. [DOI: 10.1002/slct.202000705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lubna Yaqoob
- School of Natural Sciences (SNS) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Naseem Iqbal
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS−E) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Habib Nasir
- School of Natural Sciences (SNS) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Neelam Zaman
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS−E) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Lubna Rasheed
- Department of Chemistry Division of Science and Technology University of Education, Township Lahore Pakistan
| | - Muhammad Yousuf
- Ulsan National Institute of Science and Technology Ulsan South Korea
| |
Collapse
|
44
|
El Jaouhari A, Yan L, Zhu J, Zhao D, Zaved Hossain Khan M, Liu X. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal Chim Acta 2020; 1106:103-114. [DOI: 10.1016/j.aca.2020.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|
45
|
Abd El-Lateef HM, Almulhim NF, Alaulamie AA, Saleh M, Mohamed IM. Design of ultrafine nickel oxide nanostructured material for enhanced electrocatalytic oxidation of urea: Physicochemical and electrochemical analyses. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Zhao J, Zhang Y, Kang X, Li Y. The preparation of NiO/Ni–N/C nanocomposites and its electrocatalytic performance for methanol oxidation reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj02045a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The NiO/Ni–N/C nanocomposites were prepared through hydrothermal method and further carbonization. The NiO/Ni–N/C500 displays the highest MA (1043 mA mgNi−1) and SA (18.57 mA cm−2) for methanol oxidation reaction.
Collapse
Affiliation(s)
- Jingchuang Zhao
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Yingzhen Zhang
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Xianyu Kang
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Yancai Li
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| |
Collapse
|
47
|
Rizvi SAM, Iqbal N, Haider MD, Noor T, Anwar R, Hanif S. Synthesis and Characterization of Cu-MOF Derived Cu@AC Electrocatalyst for Oxygen Reduction Reaction in PEMFC. Catal Letters 2019. [DOI: 10.1007/s10562-019-03024-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Rahmani K, Habibi B. NiCo alloy nanoparticles electrodeposited on an electrochemically reduced nitrogen-doped graphene oxide/carbon-ceramic electrode: a low cost electrocatalyst towards methanol and ethanol oxidation. RSC Adv 2019; 9:34050-34064. [PMID: 35528884 PMCID: PMC9073643 DOI: 10.1039/c9ra06290d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 01/24/2023] Open
Abstract
In this work, nickel-cobalt alloy nanoparticles were electrodeposited on/in an electrochemically reduced nitrogen-doped graphene oxide (ErN-GO)/carbon-ceramic electrode (CCE) and the resulting nanocomposite (NiCo/ErN-GO/CCE) was evaluated as a low cost electrocatalyst for methanol and ethanol electrooxidation. Field-emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were used for the physical characterization of the electrocatalyst. To study the electrochemical behavior and electrocatalytic activity of the prepared electrocatalyst towards the oxidation of methanol and ethanol in alkaline media, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were utilized. Electrochemical investigation of the introduced electrocatalysts (NiCo alloy and Ni nanoparticles alone electrodeposited on/in different substrates) indicated that NiCo/ErN-GO/CCE has highest activity and stability towards methanol (J p = 88.04 mA cm-2) and ethanol (J p = 64.23 mA cm-2) electrooxidation, which highlights its potential use as an anodic material in direct alcohol fuel cells.
Collapse
Affiliation(s)
- Kaveh Rahmani
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452079
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452079
| |
Collapse
|
49
|
Development of Nickel-BTC-MOF-Derived Nanocomposites with rGO Towards Electrocatalytic Oxidation of Methanol and Its Product Analysis. Catalysts 2019. [DOI: 10.3390/catal9100856] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, electrochemical oxidation of methanol to formic acid using the economical and highly active catalytic Nickel Benzene tricarboxylic acid metal organic framework (Ni-BTC-MOF) and reduced graphene oxide (rGO) nanocomposites modified glassy carbon electrode GCE in alkaline media, which was examined via cyclic voltammetry technique. Nickel based MOF and rGO nanocomposites were prepared by solvothermal approach, followed by morphological and structural characterization of prepared samples through X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and energy dispersive X-ray (EDX) analysis. The electrochemical testing of synthesized materials represents the effect of the sequential increase in rGO concentration on electrocatalytic activity. The Ni-BTC/4 wt % rGO composite with a pronounced current density of 200.22 mA/cm2 at 0.69 V versus Hg/HgO electrode at 50 mV/s was found to be a potential candidate for methanol oxidation in Direct Methanol Fuel Cell (DMFC) applications. Product analysis was carried out through Gas Chromatography (GC) and Nuclear Magnetic Resonance (NMR) spectroscopy, which confirmed the formation of formic acid during the oxidation process, with approximately 62% yield.
Collapse
|
50
|
Kuang C, Xu Y, Lai W, Xie G, Pan Z, Zheng L, Talawar MP, Ling J, Ye S, Zhou X. Novel electrodes for cathode electro-Fenton oxidation coupled with anodic oxidation system for advanced treatment of livestock wastewater. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|