1
|
Singh A, Kumar V, Anand S, Phukan D, Pandey N. Fungi-derived Chitosan-CTAB composite-based electrode for electrochemical simultaneous detection of Cd (II) and Pb (II). Int J Biol Macromol 2024; 280:136113. [PMID: 39343271 DOI: 10.1016/j.ijbiomac.2024.136113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Organic polymers have found diverse applications in the industrial and scientific world. One such application is using chitosan-based electrochemical sensors, which have gained rapid popularity due to their unique properties. To further enhance the material's porosity and adsorption capacity, the incorporation of a surfactant into the film has been explored. This study focuses on a rarely investigated combination of fungi-derived chitosan and cationic surfactant N-Cetyl-N, N, N-trimethyl-ammonium bromide (CTAB). The resultant composite was transformed into a thin film on the surface of a graphite electrode, by drop casting method, followed by curing at 65 °C hot air. The low-cost sensor thus obtained was characterized by electrochemical studies, and surface study techniques including AFM, SEM, and XPS. The results showed the properties of the film were strongly governed by the ratio of components in the composite. Under optimal conditions, the affinity for composite film increased 3 to 4 folds for Pb and Cd. The developed electrochemical sensors had a limit of detection of 0.317 μM and 0.572 μM for Pb and Cd respectively. The linear range of detection was found to be 1 × 10-6 M to 1.2 × 10-4 M for Pb (II) and 2 × 10-6 M to 1.4 × 10-4 M for Cd (II).
Collapse
Affiliation(s)
- Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India.
| | - Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| | - Dixita Phukan
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| | - Nishant Pandey
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826 004, India
| |
Collapse
|
2
|
Zhang L, Han Y, Sun M, Li S. Non-enzymatic electrochemical sensor based on ionic liquid [BMIM][PF 6] functionalized zirconium‑copper bimetallic MOF composite for the detection of nitrite in food samples. Food Chem 2024; 456:140023. [PMID: 38878537 DOI: 10.1016/j.foodchem.2024.140023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
In this study, we developed an electrochemical sensor utilizing a composite material consisting of zirconium‑copper bimetallic metal-organic framework functionalized with ionic liquid [BMIM][PF6]. This composite material was fabricated by simple wet impregnation method, which not only maintains excellent electrocatalytic activity but also enhances electron transfer rate and electroactive surface area. The ZrCu-MOF-818/ILs composite modified electrode has been demonstrated as an effective tool for the detection of nitrite. The electrode exhibited a remarkable limit of detection (LOD) of 0.148 μM and wide linear ranges of 6-3000 μM and 3000-5030 μM. It is worth noting that the sensor displayed excellent reproducibility and repeatability, with relative standard deviation (RSD) values of 1.06% and 1.37%, respectively. Furthermore, the proposed method was successfully applied for the detection of nitrite in tap water and pickle juice.
Collapse
Affiliation(s)
- Li Zhang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Yu Han
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Ming Sun
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
3
|
Mu R, Zhu D, Wei G. Ti 3C 2 Nanosheets Functionalized with Ferritin-Biomimetic Platinum Nanoparticles for Electrochemical Biosensors of Nitrite. BIOSENSORS 2024; 14:258. [PMID: 38785732 PMCID: PMC11117932 DOI: 10.3390/bios14050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Nitrites widely exist in human life and the natural environment, but excessive contents of nitrites will result in adverse effects on the environment and human health; hence, sensitive and stable nitrite detection systems are needed. In this study, we report the synthesis of Ti3C2 nanosheets functionalized with apoferritin (ApoF)-biomimetic platinum (Pt) nanoparticle (Pt@ApoF/Ti3C2) composite materials, which were formed by using ApoF as a template and protein-inspired biomineralization. The formed nanohybrid exhibits excellent electrochemical sensing performance towards nitrite (NaNO2). Specifically, the Pt@ApoF catalyzes the conversion of nitrites into nitrates, converting the chemical signal into an electrical signal. The prepared Pt@ApoF/Ti3C2-based electrochemical NaNO2 biosensors demonstrate a wide detection range of 0.001-9 mM with a low detection limit of 0.425 μM. Additionally, the biosensors possess high selectivity and sensitivity while maintaining a relatively stable electrochemical sensing performance within 7 days, enabling the monitoring of NaNO2 in complex environments. The successful preparation of the Pt@ApoF/Ti3C2 nanohybrid materials provides a new approach for constructing efficient electrochemical biosensors, offering a simple and rapid method for detecting NaNO2 in complex environments.
Collapse
Affiliation(s)
| | | | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (R.M.); (D.Z.)
| |
Collapse
|
4
|
Liang M, Gao Y, Sun X, Kong RM, Xia L, Qu F. Metal-organic framework-based ratiometric point-of-care testing for quantitative visual detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134021. [PMID: 38490146 DOI: 10.1016/j.jhazmat.2024.134021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Nitrite (NO2-) is categorized as a carcinogenic substance and is subjected to severe limitations in water and food. To safeguard the public's health, developing fast and convenient methods for determination of NO2- is of significance. Point-of-care testing (POCT) affords demotic measurement of NO2- and shows huge potential in future technology beyond those possible with traditional methods. Here, a novel ratiometric fluorescent nanoprobe (Ru@MOF-NH2) is developed by integrating UiO-66-NH2 with tris(2,2'-bipyridyl)ruthenium(II) ([Ru(bpy)3]2+) through a one-pot approach. The special diazo-reaction between the amino group of UiO-66-NH2 and NO2- is responsible for the report signal (blue emission) with high selectivity and the red emission from [Ru(bpy)3]2+ offers the reference signal. The proposed probe shows obviously distinguishable color change from blue to red towards NO2- via naked-eye. Moreover, using a smartphone as the detection device to read color hue, ultra-sensitive quantitative detection of NO2- is achieved with a low limit of detection at 0.6 μΜ. The accuracy and repeatability determined in spiked samples through quantitative visualization is in the range of 105 to 117% with a coefficient of variation below 4.3%. This POCT sensing platform presents a promising strategy for detecting NO2- and expands the potential applications for on-site monitoring in food and environment safety assessment.
Collapse
Affiliation(s)
- Maosheng Liang
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yifan Gao
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Xiaoling Sun
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Rong-Mei Kong
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Fengli Qu
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| |
Collapse
|
5
|
Ahmad R, Abdullah, Rehman MT, AlAjmi MF, Alam S, Bhat KS, Mishra P, Lee BI. An Electroanalytical Enzymeless α-Fe 2O 3-ZnO Hybrid Nanostructure-Based Sensor for Sensitive Quantification of Nitrite Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:706. [PMID: 38668200 PMCID: PMC11054654 DOI: 10.3390/nano14080706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Nitrite monitoring serves as a fundamental practice for protecting public health, preserving environmental quality, ensuring food safety, maintaining industrial safety standards, and optimizing agricultural practices. Although many nitrite sensing methods have been recently developed, the quantification of nitrite remains challenging due to sensitivity and selectivity limitations. In this context, we present the fabrication of enzymeless iron oxide nanoparticle-modified zinc oxide nanorod (α-Fe2O3-ZnO NR) hybrid nanostructure-based nitrite sensor fabrication. The α-Fe2O3-ZnO NR hybrid nanostructure was synthesized using a two-step hydrothermal method and characterized in detail utilizing x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). These analyses confirm the successful synthesis of an α-Fe2O3-ZnO NR hybrid nanostructure, highlighting its morphology, purity, crystallinity, and elemental constituents. The α-Fe2O3-ZnO NR hybrid nanostructure was used to modify the SPCE (screen-printed carbon electrode) for enzymeless nitrite sensor fabrication. The voltammetric methods (i.e., cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) were employed to explore the electrochemical characteristics of α-Fe2O3-ZnO NR/SPCE sensors for nitrite. Upon examination of the sensor's electrochemical behavior across a range of nitrite concentrations (0 to 500 µM), it is evident that the α-Fe2O3-ZnO NR hybrid nanostructure shows an increased response with increasing nitrite concentration. The sensor demonstrates a linear response to nitrite concentrations up to 400 µM, a remarkable sensitivity of 18.10 µA µM-1 cm-2, and a notably low detection threshold of 0.16 µM. Furthermore, its exceptional selectivity, stability, and reproducibility make it an ideal tool for accurately measuring nitrite levels in serum, yielding reliable outcomes. This advancement heralds a significant step forward in the field of environmental monitoring, offering a potent solution for the precise assessment of nitrite pollution.
Collapse
Affiliation(s)
- Rafiq Ahmad
- ‘New-Senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Republic of Korea
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Abdullah
- Future Energy Convergence Core Center, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA;
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Prabhash Mishra
- Quantum Materials and Devices Laboratory, Faculty of Engineering and Technology, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India;
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Dai YX, Li YX, Zhang XJ, Marks RS, Cosnier S, Shan D. Micelle-Assisted Confined Coordination Spaces for Benzimidazole: Enhanced Electrochemiluminescence for Nitrite Determination. ACS Sens 2024; 9:337-343. [PMID: 38194413 DOI: 10.1021/acssensors.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Selective and sensitive detection of nitrite has important medical and biological implications. In the present work, to obtain an enhanced electrochemiluminescence (ECL) determination of nitrite, a novel nano-ECL emitter CoBIM/cetyltrimethylammonium bromide (CTAB) was prepared via a micelle-assisted, energy-saving, and ecofriendly method based on benzimidazole (BIM) and CTAB. Unlike conventional micelle assistance, the deprotonated BIM (BIM-) preferential placement was in the palisade layer of cationic CTAB-based micelles. Enriching the original CTAB micelle with BIM- disrupted its stability and resulted in the formation of considerably smaller BIM/CTAB-based micelles, providing a confined coordination environment for BIM- and Co2+. As a result, the growth of CoBIM/CTAB was also limited. Owing to the unusual nitration reaction between BIM and nitrite, the prepared CoBIM/CTAB was successfully applied as a novel ECL probe for the detection of nitrite with a wide linear range of 1-1500 μM and a low detection limit of 0.67 μM. This work also provides a promising ECL platform for ultrasensitive monitoring of nitrite and it was applied with sausages and pickled vegetables.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, PR China
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Serge Cosnier
- University Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble F-38000, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
7
|
Zhang M, Yang Y, Guo W. Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe 3O 4@SiO 2 nanoparticles. Food Chem 2024; 430:137004. [PMID: 37542964 DOI: 10.1016/j.foodchem.2023.137004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
In this work, a simple electrochemical sensing platform based on acid-treated Fe3O4@SiO2 nanoparticles was successfully prepared for nitrite and sulfite detection. Fe3O4@SiO2 nanoparticles were synthesized through the sol-gel and hydrothermal methods. Fe3O4@SiO2 presented positive charges after acid treatment, which could enhance the electrostatic attraction between Fe3O4@SiO2 and nitrite and sulfite. The Fe3O4@SiO2(acid-treated) modified magnetic glassy carbon electrode (MGCE) was applied to detect nitrite and sulfite using differential pulse voltammetry and cyclic voltammetry. Under optimized conditions, the developed electrochemical sensor presented good analytical properties for nitrite and sulfite detection with detection limits of 3.33 μmol/L and 31.57 μmol/L, respectively. The good recoveries varied from 85.18% to 111.02%, with a relative standard deviation of 0.23-4.80%. Furthermore, the Fe3O4@SiO2(acid-treated) modified MGCE showed better selectivity, reproducibility, and repeatability in nitrite and sulfite detection. Therefore, this proposed electrochemical sensor provides a new method for developing a nitrite and sulfite detection sensor.
Collapse
Affiliation(s)
- Maosai Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Deng L, Liu J, Huang H, Deng C, Lu L, Wang L, Wang X. A Molecularly Imprinted Electrochemical Sensor Based on TiO 2@Ti 3C 2T x for Highly Sensitive and Selective Detection of Chlortetracycline. Molecules 2023; 28:7475. [PMID: 38005196 PMCID: PMC10673498 DOI: 10.3390/molecules28227475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In view of the serious side effects of chlortetracycline (CTC) on the human body, it is particularly important to develop rapid, sensitive, and selective technologies for the detection of CTC in food. In this work, a molecularly imprinted electrochemical sensor with [Fe(CN)6]3-/4- as signal probe was proposed for the highly sensitive and selective detection of CTC. For this purpose, TiO2, which acts as an interlayer scaffold, was uniformly grown on the surface of Ti3C2Tx sheets through a simple two-step calcination process using Ti3C2Tx as the precursor to effectively avoid the stacking of Ti3C2Tx layers due to hydrogen bonding and van der Waals forces. This endowed TiO2@Ti3C2Tx with large specific surface, abundant functional sites, and rapid mass transfer. Then, polypyrrole molecularly imprinted polymers (MIPs) with outstanding electrical conductivity were modified on the surface of TiO2@Ti3C2Tx via simple electro-polymerization, where the pyrrole was employed as a polymeric monomer and the CTC provided a source of template molecules. This will not only provide specific recognition sites for CTC, but also facilitate electron transport on the electrode surface. The synergistic effects between TiO2@Ti3C2Tx and polypyrrole MIPs afforded the TiO2@Ti3C2Tx/MIP-based electrochemical sensor excellent detection properties toward CTC, including ultra-low limits of detection (LOD) (0.027 nM), a wide linear range (0.06-1000 nM), and outstanding stability, reproducibility, selectivity, and feasibility in real samples. The results indicate that this strategy is feasible and will broaden the horizon for highly sensitive and selective detection of CTC.
Collapse
Affiliation(s)
| | | | | | | | | | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (J.L.); (H.H.); (C.D.); (L.L.)
| | - Xiaoqiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (J.L.); (H.H.); (C.D.); (L.L.)
| |
Collapse
|
9
|
Cheng H, Zhang L, Feng J, Tang T, Qin D. A novel sensor based on Ti 3C 2 MXene/Co 3O 4/carbon nanofibers composite for the sensitive detection of 4-aminophenol. CHEMOSPHERE 2023; 341:139981. [PMID: 37648159 DOI: 10.1016/j.chemosphere.2023.139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A novel, sensitive Ti3C2 MXene/Co3O4/carbon nanofibers (Ti3C2 MXene/Co3O4/CNFs) composite was synthesized via a HF exfoliating Ti3AlC2 strategy, followed by doping Co3O4 and Ti3C2 MXene into the CNFs via a combination electrospinning and thermal annealing process. Ti3C2 MXene/Co3O4/CNFs composite exhibits higher catalytic effect, conductivity, chemical stability, and electrochemical performance than Co3O4 and Ti3C2 MXene in electrochemical impedance, differential pulse stripping voltammetry, chronocoulometry, and cyclic voltammetry tests. This Ti3C2 MXene/Co3O4/CNFs hybrid modified electrode provides fast analysis of 4-aminophenol (4-AP) with ultrahigh sensitivity, enhanced reproducibility and strong anti-interference capability. Furthermore, the level of 4-AP was quantified by this electrode with a wide linear range from 0.5 to 150 μM (R2 > 0.99) and a low detection limit about 0.018 μM was achieved. Finally, the fabricated electrode was used for fast and sensitive analysis of 4-AP spiked in tap water and blood serum samples. This work presents the new Ti3C2 MXene/Co3O4/CNFs electrode provides a platform for 4-AP monitoring and has the advantages of high selectivity, accuracy, simplicity, and rapid analysis.
Collapse
Affiliation(s)
- Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Province, PR China
| | - Liwen Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; School of Medicine Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; School of Medicine Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China.
| |
Collapse
|
10
|
Niyitanga T, Chaudhary A, Ahmad K, Kim H. Titanium Carbide (Ti 3C 2T x) MXene as Efficient Electron/Hole Transport Material for Perovskite Solar Cells and Electrode Material for Electrochemical Biosensors/Non-Biosensors Applications. MICROMACHINES 2023; 14:1907. [PMID: 37893344 PMCID: PMC10609296 DOI: 10.3390/mi14101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Recently, two-dimensional (2D) MXenes materials have received enormous attention because of their excellent physiochemical properties such as high carrier mobility, metallic electrical conductivity, mechanical properties, transparency, and tunable work function. MXenes play a significant role as additives, charge transfer layers, and conductive electrodes for optoelectronic applications. Particularly, titanium carbide (Ti3C2Tx) MXene demonstrates excellent optoelectronic features, tunable work function, good electron affinity, and high conductivity. The Ti3C2Tx has been widely used as electron transport (ETL) or hole transport layers (HTL) in the development of perovskite solar cells (PSCs). Additionally, Ti3C2Tx has excellent electrochemical properties and has been widely explored as sensing material for the development of electrochemical biosensors. In this review article, we have summarized the recent advances in the development of the PSCs using Ti3C2Tx MXene as ETL and HTL. We have also compiled the recent progress in the fabrication of biosensors using Ti3C2Tx-based electrode materials. We believed that the present mini review article would be useful to provide a deep understanding, and comprehensive insight into the research status.
Collapse
Affiliation(s)
- Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Archana Chaudhary
- Department of Chemistry, Medi-Caps University, Indore 453331, Madhya Pradesh, India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Guan H, Xing K, Liu S. Green Synthesis of Au Magnetic Nanocomposites Using Waste Chestnut Skins and Their Application as a Peroxidase Mimic Nanozyme Electrochemical Sensing Platform for Sodium Nitrite. Foods 2023; 12:3665. [PMID: 37835318 PMCID: PMC10572894 DOI: 10.3390/foods12193665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
An electrochemical sensor with high sensitivity for the detection of sodium nitrite was constructed based on the peroxidase-like activity of Au magnetic nanocomposites (Au@Fe3O4). The Au@Fe3O4 composite nanoparticles were green-synthesized via the reduction of gold nanoparticles (AuNPs) from waste chestnut skins combined with the sonochemical method. The nanoparticles have both the recoverability of Fe3O4 and the advantage of being able to amplify electrical signals. Furthermore, the synergistic effect of green reduction and sonochemical synthesis provides a functional approach for the preparation of Au@Fe3O4 with significant peroxidase-like activities. The physicochemical properties were characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), the Brunauer-Emmett-Teller (BET) method, and Fourier transform infrared spectroscopy (FT-IR). The electrochemical properties of sodium nitrite were determined with cyclic voltammetry (CV) and chronoamperometry (i-t). The results revealed that Au@Fe3O4 acted as a peroxidase mimic to decompose hydrogen peroxide to produce free radicals, while ·OH was the primary free radical that promoted the oxidation of sodium nitrite. With the optimal detection system, the constructed electrochemical sensor had a high sensitivity for sodium nitrite detection. In addition, the current response had a good linear relationship with the sodium nitrite concentration in the range of 0.01-100 mmol/L. The regression equation of the working curve was y = 1.0752x + 4.4728 (R2 = 0.9949), and the LOD was 0.867 μmol/L (S/N = 3). Meanwhile, the constructed detection system was outstanding in terms of recovery and anti-interference and had a good detection stability of more than 96.59%. The sensor has been successfully applied to a variety of real samples. In view of this, the proposed novel electrochemical analysis method has great prospects for application in the fields of food quality and environmental testing.
Collapse
Affiliation(s)
- Huanan Guan
- School of Gain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212000, China
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
| | - Ke Xing
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
| | - Shuping Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
- College of Tourism and Culinary Science, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
12
|
Bolourinezhad M, Rezayi M, Meshkat Z, Soleimanpour S, Mojarrad M, Zibadi F, Aghaee-Bakhtiari SH, Taghdisi SM. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta 2023; 265:124804. [PMID: 37329753 PMCID: PMC10259158 DOI: 10.1016/j.talanta.2023.124804] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Since the rapid spread of the SARS-CoV-2 (2019), the need for early diagnostic techniques to control this pandemic has been highlighted. Diagnostic methods based on virus replication, such as RT-PCR, are exceedingly time-consuming and expensive. As a result, a rapid and accurate electrochemical test which is both available and cost-effective was designed in this study. MXene nanosheets (Ti3C2Tx) and carbon platinum (Pt/C) were employed to amplify the signal of this biosensor upon hybridization reaction of the DNA probe and the virus's specific oligonucleotide target in the RdRp gene region. By the differential pulse voltammetry (DPV) technique, the calibration curve was obtained for the target with varying concentrations ranging from 1 aM to 100 nM. Due to the increase in the concentration of the oligonucleotide target, the signal of DPV increased with a positive slope and a correlation coefficient of 0.9977. Therefore, at least a limit of detection (LOD) was obtained 0.4 aM. Furthermore, the specificity and sensitivity of the sensors were evaluated with 192 clinical samples with positive and negative RT-PCR tests, which revealed 100% accuracy and sensitivity, 97.87% specificity and limit of quantification (LOQ) of 60 copies/mL. Besides, various matrices such as saliva, nasopharyngeal swabs, and serum were assessed for detecting SARS-CoV-2 infection by the developed biosensor, indicating that this biosensor has the potential to be used for rapid Covid-19 test detection.
Collapse
Affiliation(s)
- Monireh Bolourinezhad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Genetics, School of Medicine Medical Genetics Research Center Basic Sciences Research Institute Mashhad University of Medical Sciences, Iran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Wang F, Li Y, Yan C, Ma Q, Yang X, Peng H, Wang H, Du J, Zheng B, Guo Y. Bismuth-Decorated Honeycomb-like Carbon Nanofibers: An Active Electrocatalyst for the Construction of a Sensitive Nitrite Sensor. Molecules 2023; 28:molecules28093881. [PMID: 37175296 PMCID: PMC10180303 DOI: 10.3390/molecules28093881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 μA mM-1 cm-2) in a wide range of 0.1~800 μM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.
Collapse
Affiliation(s)
- Fengyi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Ye Li
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Chenglu Yan
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Qiuting Ma
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaofeng Yang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huaqiao Peng
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Huiyong Wang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| | - Juan Du
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Guo
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
14
|
Xue S, Shi M, Wang J, Li J, Peng G, Xu J, Gao Y, Duan X, Lu L. TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein. Molecules 2023; 28:molecules28073262. [PMID: 37050025 PMCID: PMC10096780 DOI: 10.3390/molecules28073262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 μM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis.
Collapse
Affiliation(s)
- Shuya Xue
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Min Shi
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinye Wang
- Shandong Liaocheng Ecological Environment Monitoring Center, Liaocheng 252000, China
| | - Jiapeng Li
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Guanwei Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuemin Duan
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Yang J, Deng C, Zhong W, Peng G, Zou J, Lu Y, Gao Y, Li M, Zhang S, Lu L. Electrochemical activation of oxygen vacancy-rich TiO 2@MXene as high-performance electrochemical sensing platform for detecting imidacloprid in fruits and vegetables. Mikrochim Acta 2023; 190:146. [PMID: 36943487 DOI: 10.1007/s00604-023-05734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
Heterostructured TiO2@MXene rich in oxygen vacancies defects (VO-TiO2@MXene) has been developed to construct an electrochemical sensing platform for imidacloprid (IMI) determination. For the material design, TiO2 nanoparticles were firstly in situ grown on MXene and used as a scaffolding to prevent the stack of MXene nanosheets. The obtained TiO2@MXene heterostructure displays excellent layered structure and large specific surface area. After that, electrochemical activation is utilized to treat TiO2@MXene, which greatly increases the concentration of surface oxygen vacancies (VOs), thereby remarkably enhancing the conductivity and adsorption capacity of the composite. Accordingly, the prepared VO-TiO2@MXene displays excellent electrocatalytic activity toward the reduction of IMI. Under optimum conditions, cyclic voltammetry and linear sweep voltammetry techniques were utilized to investigate the electrochemical behavior of IMI at the VO-TiO2@MXene/GCE. The proposed sensor based on VO-TiO2@MXene presents an obvious reduction peak at -1.05 V(vs. Hg|Hg2Cl2) with two linear ranges from 0.07 - 10.0 μM and 10.0 - 70.0 μM with a detection limit of 23.3 nM (S/N= 3). Furthermore, the sensor provides a reliable result for detecting IMI in fruit and vegetable samples with a recovery of 97.9-103% and RSD≤ 4.3%. A sensitive electrochemical sensing platform was reported for imidacloprid (IMI) determination based on heterostructured TiO2@MXene rich in oxygen vacancy defects.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China
| | - Changxi Deng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guanwei Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingfang Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Songbai Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
16
|
Singh L, Ranjan N. Highly Selective and Sensitive Detection of Nitrite Ion by an Unusual Nitration of a Fluorescent Benzimidazole. J Am Chem Soc 2023; 145:2745-2749. [PMID: 36716209 DOI: 10.1021/jacs.2c10850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrite (NO2-) is a physiologically significant anion having implications for cellular signaling. Here we report our serendipitous discovery of highly selective fluorescence-based nitrite sensing using a benzimidazole which stems from hitherto-unknown direct nitration of a benzimidazole using sodium nitrite. Using one- and two-dimensional NMR techniques, we elucidate the chemical structures of the new nitrated benzimidazoles and show differences in the nitration products using conventional nitration with nitric acid. We also show its utility in robust sensing of nitrite-containing samples.
Collapse
Affiliation(s)
- Lachhman Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
17
|
Zhong W, Zou J, Yu Q, Gao Y, Qu F, Liu S, Zhou H, Lu L. Ultrasensitive indirect electrochemical sensing of thiabendazole in fruit and water by the anodic stripping voltammetry of Cu2+ with hierarchical Ti3C2Tx-TiO2 for signal amplification. Food Chem 2023; 402:134379. [DOI: 10.1016/j.foodchem.2022.134379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
|
18
|
Soares RRA, Hjort RG, Pola CC, Jing D, Cecon VS, Claussen JC, Gomes CL. Ion-selective electrodes based on laser-induced graphene as an alternative method for nitrite monitoring. Mikrochim Acta 2023; 190:43. [PMID: 36595104 DOI: 10.1007/s00604-022-05615-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.
Collapse
Affiliation(s)
- Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Robert G Hjort
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Victor S Cecon
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Wang H, Cai L, Wang Y, Liu C, Fang G, Wang S. Covalent molecularly imprinted electrochemical sensor modulated by borate ester bonds for hygromycin B detection based on the synergistic signal amplification of Cu-MOF and MXene. Food Chem 2022; 383:132382. [DOI: 10.1016/j.foodchem.2022.132382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/23/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
|
20
|
Jing H, Ouyang H, Li W, Long Y. Molten salt synthesis of BCNO nanosheets for the electrochemical detection of clenbuterol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Li X, Yang X, Cui M, Liu Y, Wang J, Zhang L, Zhan G. A novel electrochemical sensor based on nitrite-oxidizing bacteria for highly specific and sensitive detection of nitrites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154178. [PMID: 35240169 DOI: 10.1016/j.scitotenv.2022.154178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Real-time nitrite control in water is necessary for environmental safety and human health, and has triggered the research and development of novel detection methods. Previous studies have made great progress on enzyme-free and enzyme electrochemical sensors. However, enzyme-free sensors have low selectivity and a complex preparation process, and enzyme sensors have short lifetimes, and these issues need to be addressed. In this work, we proposed for the first time a highly specific and sensitive biofilm sensor based on nitrite-oxidizing bacteria (NOB) for the bio-electrochemical detection of nitrite in water. The mechanism of nitrite detection was attributed to the competition of oxygen between aerobic respiration of the NOB and the cathode oxygen reduction on the carbon felt electrode, resulting in a decrease in current. This decrease in current (ΔI) had a linear relationship with the nitrite concentration in the range of 0.1 to 1 mg L-1 and 1 to 10 mg L-1, which was corresponding to the sensitivities of 48.62 and 2.24 μA mM-1 cm-2, respectively. And the limit of detection (LOD) was calculated to be 0.033 mg L-1 (2.39 μM) with a signal-to-noise ratio of 3. Moreover, several common interfering ions had no effect on the nitrite detection owing to the functional microbial species (NOB) and weakly electrochemical behavior of electrode at the low potential of -0.1 V, showing high specificity for nitrite detection of biofilm sensor. Therefore, the actual nitrified wastewater was well detected by the biofilm sensor. In addition, allylthiourea (ATU) took good effect on the resistance of the influence of ammonia oxidizing bacteria (AOB) in the biofilm sensor, maintaining the high selectivity of biofilm sensor in case the biofilm sensor was fouled with AOB. The biofilm sensor in our work showed good selectivity, sensitivity and stability in long-term detection.
Collapse
Affiliation(s)
- Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
22
|
Han E, Zhang M, Pan Y, Cai J. Electrochemical Self-Assembled Gold Nanoparticle SERS Substrate Coupled with Diazotization for Sensitive Detection of Nitrite. MATERIALS 2022; 15:ma15082809. [PMID: 35454502 PMCID: PMC9028913 DOI: 10.3390/ma15082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/16/2023]
Abstract
The accurate determination of nitrite in food samples is of great significance for ensuring people's health and safety. Herein, a rapid and low-cost detection method was developed for highly sensitive and selective detection of nitrite based on a surface-enhanced Raman scattering (SERS) sensor combined with electrochemical technology and diazo reaction. In this work, a gold nanoparticle (AuNP)/indium tin oxide (ITO) chip as a superior SERS substrate was obtained by electrochemical self-assembled AuNPs on ITO with the advantages of good uniformity, high reproducibility, and long-time stability. The azo compounds generated from the diazotization-coupling reaction between nitrite, 4-aminothiophenol (4-ATP), and N-(1-naphthyl) ethylenediamine dihydrochloride (NED) in acid condition were further assembled on the surface of AuNP/ITO. The detection of nitrite was realized using a portable Raman spectrometer based on the significant SERS enhancement of azo compounds assembled on the AuNP/ITO chip. Many experimental conditions were optimized such as the time of electrochemical self-assembly and the concentration of HAuCl4. Under the optimal conditions, the designed SERS sensor could detect nitride in a large linear range from 1.0 × 10-6 to 1.0 × 10-3 mol L-1 with a low limit of detection of 0.33 μmol L-1. Additionally, nitrite in real samples was further analyzed with a recovery of 95.1-109.7%. Therefore, the proposed SERS method has shown potential application in the detection of nitrite in complex food samples.
Collapse
Affiliation(s)
- En Han
- Correspondence: (E.H.); (J.C.)
| | | | | | | |
Collapse
|
23
|
Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. CHEMOSPHERE 2022; 291:132921. [PMID: 34798114 DOI: 10.1016/j.chemosphere.2021.132921] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/28/2023]
Abstract
Since the discovery of MXenes at Drexel University in the United States in 2011, there has been extensive research regarding various applications of MXenes including environmental remediation. MXenes with a general formula of Mn+1XnTx are a class of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with unique chemical and physical characteristics as nanomaterials. MXenes feature characteristics such as high conductivity, hydrophobicity, and large specific surface areas that are attracting attention from researchers in many fields including environmental water engineering such as desalination and wastewater treatment as well as designing and building efficient sensors to detect hazardous pollutants in water. In this study, we review recent developments in MXene-based nanocomposites for electrochemical (bio) sensing with a particular focus on the detection of hazardous pollutants, such as organic components, pesticides, nitrite, and heavy metals. Integration of these 2D materials in electrochemical enzyme-based and affinity-based biosensors for environmental pollutants is also discussed. In addition, a summary of the key challenges and future remarks are presented. Although this field is relatively new, future research on biosensors of MXene-based nanocomposites need to exploit the remarkable properties of these 2D materials.
Collapse
Affiliation(s)
- Amina Rhouati
- Laboratoire Bioengineering, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, And Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Cheng Z, Song H, Zhang X, Cheng X, Xu Y, Zhao H, Gao S, Huo L. Non-enzymatic nitrite amperometric sensor fabricated with near-spherical ZnO nanomaterial. Colloids Surf B Biointerfaces 2022; 211:112313. [PMID: 34990880 DOI: 10.1016/j.colsurfb.2021.112313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
A unique near-spherical ZnO nanostructure was synthesized by using mixed solvents composed of polyethylene glycol-400 (PEG-400) and water at the volume ratio of 12:1 via the solvo-thermal method, and it possessed an ideal morphology with higher uniformity, better dispersion and small particle size. Such ZnO was employed to modify glass carbon electrode (GCE) for the construction of electrochemical sensor, i.e. near-spherical ZnO/GCE, whose nitrite sensing performance was evaluated by Chronoamperometry (CA) and Linear Sweep Voltammetry (LSV). In order to emphasis the superior sensing property and extensive suitability for different electrochemical detection techniques, the excellent but not the same nitrite detection performance obtained from CA and LSV was individually given in detail. This sensor based on CA showed broad linearity range of 0.6 μM-0.22 mM and 0.46 mM-5.5 mM, improved sensitivity of 0.785 μA μM-1 cm-2 accompanied with low LOD of 0.39 μM. With regard to LSV, wide linearity response of 1.9 μM-0.8 mM and 1.08 mM-5.9 mM, high sensitivity of 0.646 μA μM-1 cm-2 with LOD of 0.89 μM were obtained. Meanwhile, this sensor displayed outstanding repeatability with RSD of 2.96% (n = 4), high reproducibility with low RSD (1.72%-2.35%, n = 4), strong selectivity towards nitrite with the concentration set at one-tenth of the interfering substances, ideal stability with the peak current intensity above 90% of its initial value after storage for one month and acceptable recovery of 1.72-2.35% to actual samples including ham sausage, pickle and tap water. The near-spherical ZnO nanomaterial may be a preferred candidate for the fabrication of nitrite electrochemical sensor, which may exhibit a fascinating application in terms of food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Haiyan Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; College of Chemistry & Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
25
|
Rizwan K, Rahdar A, Bilal M, Iqbal HMN. MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. CHEMOSPHERE 2022; 291:132820. [PMID: 34762881 DOI: 10.1016/j.chemosphere.2021.132820] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Fabricating new biosensing constructs with high selectivity and sensitivity is the most needed environmental detection tool. In this context, several nanostructured materials have been envisaged to construct biosensors to achieve superior selectivity and sensitivity. Among them, MXene is regarded as the most promising to develop biosensors due to its fascinating attributes, like high surface area, excellent thermal resistance, good hydrophilicity, unique layered topology, high electrical conductivity, and environmentally-friendlier properties. MXenes-based materials have emerged as a prospective for catalysis, energy storage, electronics, and environmental sensing and remediation applications thanks to the above-mentioned exceptional characteristics. This review elaborates on the contemporary and state-of-the-art advancements in MXene-based electrochemical and biosensing tools to detect toxic elements, pharmaceutically active residues, and pesticide contaminants from environmental matrices. At first, the surface functionalization/modification of MXenes is discussed. Afterwards, a particular focus has been devoted to exploiting MXene to construct electrochemical (bio) sensors to detect various environmentally-related pollutants. Lastly, current challenges in this arena accompanied by potential solutions and directions are also outlined.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 35856-98613, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
26
|
Ganesh PS, Kim SY. Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: A concise review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Wang T, Xu X, Wang C, Li Z, Li D. A Novel Highly Sensitive Electrochemical Nitrite Sensor Based on a AuNPs/CS/Ti 3C 2 Nanocomposite. NANOMATERIALS 2022; 12:nano12030397. [PMID: 35159742 PMCID: PMC8840747 DOI: 10.3390/nano12030397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Nitrite is common inorganic poison, which widely exists in various water bodies and seriously endangers human health. Therefore, it is very necessary to develop a fast and online method for the detection of nitrite. In this paper, we prepared an electrochemical sensor for highly sensitive and selective detection of nitrite, based on AuNPs/CS/MXene nanocomposite. The characterization of the nanocomposite was demonstrated by scanning electron microscopy (SEM), a transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the fabricated electrode showed good performance with the linear range of 0.5–335.5 μM and 335.5–3355 μM, the limit of detection is 69 nM, and the sensitivity is 517.8 and 403.2 μA mM−1 cm−2. The fabricated sensors also show good anti-interference ability, repeatability, and stability, and have the potential for application in real samples.
Collapse
Affiliation(s)
- Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
28
|
Yang Y, Zhang J, Li YW, Shan Q, Wu W. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Wu X, Ma P, Sun Y, Du F, Song D, Xu G. Application of MXene in Electrochemical Sensors: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinzhao Wu
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
| | - Pinyi Ma
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Ying Sun
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Daqian Song
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
30
|
Huang Y, Han Y, Gao Y, Gao J, Ji H, He Q, Tu J, Xu G, Zhang Y, Han L. Electrochemical sensor array with nanoporous gold nanolayer and ceria@gold corona-nanocomposites enhancer integrated into microfluidic for simultaneous ultrasensitive lead ion detection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|