1
|
Ji W, Wang Y, Zhao B, Liu J. Identifying high-risk volatile organic compounds in residences of Chinese megacities: A comprehensive health-risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135630. [PMID: 39216248 DOI: 10.1016/j.jhazmat.2024.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Indoor volatile organic compounds (VOCs) pose considerable health hazards. However, research on hazardous VOCs in Chinese residences has been conducted on a limited spectrum. This study used Monte Carlo simulations with data from Beijing, Shanghai, and Shenzhen to assess VOC health risks in Chinese homes. We identified high-risk VOCs and analyzed the impact of geographic location, age group, activity duration, and inhalation rate on VOC exposure, including lifetime risks. Formaldehyde, acrolein, naphthalene, and benzene posed the highest risks. Notably, acrolein made the leading contribution to non-cancer risks across all megacities. Naphthalene had elevated cancer and non-cancer risks in Shenzhen. This study highlights the need to investigate acrolein and naphthalene, which are currently unregulated but pose substantial health risks. The cumulative cancer risk (TCR) decreases from adults to children, while the cumulative non-cancer risk (HI) is higher for children. In all cities, the average TCR for adults exceeds the tolerable threshold of 10-4, and the average HI values surpass the safety threshold of 1. Nearly 100 % of the population faces a lifetime cancer risk above 10-4, and over 71 % face a non-cancer risk exceeding 10 (tenfold the benchmark). This study underscores the critical need for developing control strategies tailored to VOCs.
Collapse
Affiliation(s)
- Wenjing Ji
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Yanting Wang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Viteri G, Rodríguez A, Aranda A, Díaz de Mera Y, Rodríguez D, Rodriguez-Fariñas N, Valiente N, Belinchón G, Seseña S. Air quality in olive mill wastewater evaporation ponds: Assessment of chemical and microbiological pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125222. [PMID: 39486675 DOI: 10.1016/j.envpol.2024.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Olive mill wastewater (OMW), a pollutant residue from the olive oil industry, is typically stored as sludge in evaporation ponds. This study examines the long-term emissions of OMW sludge and its impact on local air quality, analysing chemical pollutants like PM2.5, volatile organic compounds (VOCs), and trace elements (TEs), along with microbial communities (bacteria and fungi). The study also considered meteorological conditions and back-trajectories to identify sources of these elements. The ecological risk index (ERI) was found to be over 720 due to high Hg levels in the sludge (19.0 ± 0.9 ng/g) and air (0.28 ± 0.13 ng/m³), indicating a significant ecological threat. VOCs, particularly oxygenated compounds such as aldehydes and phenol, contributed to the area's strong odour. Meteorological conditions and Sahara dust intrusions influenced bioaerosol loads and seasonal bacterial diversity, whose composition is closely associated with VOC concentrations. The results could contribute to a better understanding of the environmental dynamics in the OMW sludge evaporation ponds, and they could also assist in formulating effective management strategies.
Collapse
Affiliation(s)
- G Viteri
- Faculty of Chemical Sciences and Technologies, Avenida Camilo José Cela S/n, 13071, Ciudad Real, University of Castilla-La Mancha (UCLM), Spain
| | - A Rodríguez
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain.
| | - A Aranda
- Faculty of Chemical Sciences and Technologies, Avenida Camilo José Cela S/n, 13071, Ciudad Real, University of Castilla-La Mancha (UCLM), Spain
| | - Y Díaz de Mera
- Faculty of Chemical Sciences and Technologies, Avenida Camilo José Cela S/n, 13071, Ciudad Real, University of Castilla-La Mancha (UCLM), Spain
| | - D Rodríguez
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain
| | - N Rodriguez-Fariñas
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain
| | - N Valiente
- Department of Science and Agroforestry Technology and Genetics, Campus Universitario s/n, 02071, Albacete, UCLM, Spain
| | - G Belinchón
- Department of Science and Agroforestry Technology and Genetics, Campus Universitario s/n, 02071, Albacete, UCLM, Spain
| | - S Seseña
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain
| |
Collapse
|
3
|
Gómez Ó, Ramírez N, Vallecillos L, Borrull F. Determining personal exposure to high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) with silicone wristbands: A pilot study. ENVIRONMENTAL RESEARCH 2024; 263:120107. [PMID: 39368597 DOI: 10.1016/j.envres.2024.120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
High production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic compounds (semi-VOCs) of great environmental concern because of their presence worldwide and health problems resulting from long-term exposure to some of them. It is essential to have robust analytical methods to monitor the concentrations of these compounds not only in environmental samples but also individual exposure. In this pilot study we develop and validate a multiresidue analytical method based on ultrasound-assisted extraction and gas-chromatography mass spectrometry for the simultaneous determination of 56 semi-VOCs using silicone wristbands (SWBs) as personal passive samplers. The developed method provided recoveries between 43% and 114% on sampled SWBs and method detection and quantification limits in the range of 0.1-35 ng/g and 0.3-119 ng/g, respectively. A preliminary study was performed with a small group of adults living in the industrial city of Tarragona (north-eastern Spain) to evaluate the applicability of SWBs for monitoring individual exposure to the studied HPVCs and PAHs. Benzothiazoles, benzenesulfonamides, UV stabilisers and phenolic antioxidants were determined for the first time in SWBs. Phthalates (PAEs), stood out above the rest, accounting for 52% of the total concentrations. Diethylhexyl phthalate was the compound found at the highest concentrations with values between 1.1 and 82 μg/g. Carcinogenic and non-carcinogenic dermal risk assessment was performed for adults and considering two scenarios (low and high). PAHs were the compounds with the highest carcinogenic and non-carcinogenic dermal risk regardless of the exposure scenario. The second family of compounds that contributed the most to the total risk were PAEs but high punctual concentrations of these compounds caused significant differences between exposure scenarios.
Collapse
Affiliation(s)
- Óscar Gómez
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain; Universitat Rovira i Virgili, Department of Electrical and Automatic control Engineering, Sescelades Campus Building E4, Av. Països Catalans, 26, 43007, Tarragona, Spain
| | - Noelia Ramírez
- Institut d'Investigació Sanitària Pere Virgili, Excorxador, s/n, 43007, Tarragona, Spain; Universitat Rovira i Virgili, Paediatrics Research Unit, Nutrition & Human Development, Sescelades Campus Building E4, Països Catalans, 26, 43007, Tarragona, Spain
| | - Laura Vallecillos
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain.
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain
| |
Collapse
|
4
|
Viteri G, Aranda A, de Mera YD, Rodríguez A, Rodríguez D, Rodríguez-Fariñas N, Valiente N, Seseña S. Air quality in a small city: criteria pollutants, volatile organic compounds, metals, and microbes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58119-58135. [PMID: 39312116 DOI: 10.1007/s11356-024-35096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
This work presents a year-long integral study of air quality parameters in Ciudad Real, a small city in the center of Spain, and its influence on the nearby national park, Las Tablas de Daimiel. The study covers meteorological parameters and criteria pollutants such as O3, NO, NO2, SO2, and PM10. Additionally, for each month, a 1-week campaign was performed sampling air in sorbent tubes with 8-h time resolution to analyze anthropogenic volatile organic compounds and the effects of seasons, daytime, and working-weekend days. During these campaigns, 24-h PM2.5 samples were also collected to measure the load of bacteria and fungi, as well as the trace concentrations of elements.The city and the national park NOx profiles showed that emissions from the town had a non-perceivable effect on the protected area. PM10 levels in Ciudad Real were influenced by Saharan intrusions, as was the national park; however, Ciudad Real had a higher contribution from anthropogenic sources. Ozone levels were lower in the city during the cold season due to the higher concentration of NOx and have not changed significantly in the last decade.The VOCs with higher average concentrations were toluene, m,p-xylene, benzene, methylene chloride, and o-xylene, with traffic being the main source of these pollutants in the city. For benzene and carbon tetrachloride levels, weak carcinogenic risks were estimated. In PM2.5, the most abundant metals were Na, Zn, Mg, Ca, Al, Fe, and K. The carcinogenic and non-carcinogenic risks estimated from the levels of the studied metals were negligible. Bacterial and fungal counts positively correlated with the concentration of PM2.5. Microbial community composition showed seasonal variability, with the dominance of human pathogenic bacteria which correlated with certain pollutants such as SO2. Bacillus and Cutibacterium were the most abundant genera.
Collapse
Affiliation(s)
- Gabriela Viteri
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/N, 13071, Ciudad Real, Spain
| | - Alfonso Aranda
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/N, 13071, Ciudad Real, Spain.
| | - Yolanda Díaz de Mera
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela S/N, 13071, Ciudad Real, Spain
| | - Ana Rodríguez
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III S/N, 45071, Toledo, Spain
| | - Diana Rodríguez
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III S/N, 45071, Toledo, Spain
| | | | - Nicolas Valiente
- Departamento de Cienciay , Tecnología Agroforestal y Genética, Campus Universitario S/N, 02071, Albacete, Spain
| | - Susana Seseña
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III S/N, 45071, Toledo, Spain
| |
Collapse
|
5
|
Zhao D, Wang Q, Hui Y, Liu Y, Wang F, Chu B. Characteristics, sources, and health risks of volatile organic compounds in different functional regions of Shenyang. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173148. [PMID: 38735334 DOI: 10.1016/j.scitotenv.2024.173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The concentration of 56 volatile organic compounds (VOCs) in the ambient air of Shenyang was continuously monitored at four sites in 2021. The characteristics, sources, secondary pollution potential and health risks of VOCs in different functional regions of Shenyang were discussed. The results indicate that the concentration of VOCs in industrial regions was significantly higher than that in non-industrial regions, with a mean of 41.09 ± 69.82 parts per billion volumes (ppbv) compared to 19.99 ± 17.86 ppbv (commercial & residential region in urban fringe), 27.51 ± 28.81 ppbv (educational & scenic region) and 29.71 ± 23.97 ppbv (commercial & residential region in urban center). The positive matrix factorization (PMF) model was utilized to assign the sources of VOCs in Shenyang, and six factors were recognized: gasoline vehicles (34.8 %), diesel vehicles (28.3 %), combustion (11.4 %), biogenic emissions (9.7 %), industrial processes (8.2 %), and fuel evaporation (7.7 %). The results of the reactivity evaluation indicated that the ozone (O3) formation potential (OFP) was primarily influenced by industrial processes (29.2 %), diesel vehicles (25.7 %), biogenic emissions (17.0 %). These three factors were also the top three contributors to secondary organic aerosol formation potential (SOAP), accounting for 44.2 %, 9.4 % and 30.3 %, respectively. At the all four sites, the non-carcinogenic and carcinogenic risks of VOCs ranged from 1.6 × 10-2 to 3.8 × 10-2 and from 2.3 × 10-6 to 3.3 × 10-6, respectively. And the main risks can be attributed to emissions from industrial processes and gasoline vehicles. These findings suggested to strengthen the control of vehicle emissions throughout all regions in Shenyang and industrial processes emissions in industrial regions.
Collapse
Affiliation(s)
- Di Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Qi Wang
- Department of Transfusion, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Yu Hui
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Yan Liu
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Fan Wang
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang Y, Xu W, Zhou W, Li Y, Zhang Z, Du A, Qiao H, Kuang Y, Liu L, Zhang Z, He X, Cheng X, Pan X, Fu Q, Wang Z, Ye P, Worsnop DR, Sun Y. Characterization of organic vapors by a Vocus proton-transfer-reaction mass spectrometry at a mountain site in southeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170633. [PMID: 38340865 DOI: 10.1016/j.scitotenv.2024.170633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Biogenic and anthropogenic organic vapors are crucial precursors of ozone and secondary organic aerosol (SOA) in the atmosphere. Here we conducted real-time measurements of gaseous organic compounds using a Vocus proton-transfer-reaction mass spectrometer (Vocus PTR-MS) at the Shanghuang mountain site (1128 m a.s.l.) in southeastern China during November 2022. Our results revealed a substantial impact of mixed biogenic and anthropogenic compounds at the mountain site, with oxygenated volatile organic compounds (OVOCs) comprising 74 % of the organic vapors. Two distinct periods, characterized by sunny days (P1) and persistent cloud events (P2), were observed. P1 exhibited higher concentrations of biogenic-related emissions compared to P2. For instance, isoprene, monoterpenes, and sesquiterpenes during P1 were 2.4-2.9 times higher than those during P2. OVOCs such as acetaldehyde, MVK + MACR, acetone, and MEK also showed higher concentrations during P1, indicating a dominant source from the photochemical oxidation of biogenic VOCs. Anthropogenic-related VOCs like benzene and toluene had higher concentrations during P2, displaying different diurnal cycles compared to P1. Our analysis identified four biogenic-related factors dominated by isoprene and sesquiterpene oxidation products, and two anthropogenic-related factors. During P1, biogenic sources contributed approximately 80 % to total organic compounds, while during P2, anthropogenic sources, particularly the aromatic-related factor, increased from 16 % to 35 %. Furthermore, a unique factor characterized by C2 amines and C3 amides and periodic plumes indicated the influence of industrial emissions from regional transport. The study highlights the significant variations in sources and compositions of gaseous organic compounds at regional mountain sites due to changes in meteorology and photochemical processing, potentially impacting regional ozone and SOA formation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijun Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqin Qiao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Lanzhong Liu
- Shanghuang Atmospheric Boundary Layer and Eco-Environment Observatory, Institute of Atmospheric Physics, Chinese Academy of Sciences, Jinhua 321203, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xueling Cheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai 200235, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penglin Ye
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland; Aerodyne Research Inc., Billerica, MA 01821, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Kondo M, Sakamoto Y, Hara J, Komai T, Watanabe N. Clarification of generation mechanism of volatilization flux based on detailed analysis of transport phenomena near the ground surface and quantitative evaluation of influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133356. [PMID: 38183936 DOI: 10.1016/j.jhazmat.2023.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Assessing human health risks associated with inhalation exposure of volatile chemical substances (VCSs) volatilized from contaminated soil requires quantitative evaluation of volatilization fluxes (VFs) and an understanding of how environmental factors impact VF generation. We developed a numerical model that considers advection-dispersion and VCSs volatilization in unsaturated soil, enabling VF prediction through parameter optimization using soil column tests. We conducted parametric analyses to assess how key parameters, such as soil particle size, contamination depth, temperature, and surface soil thickness affect VF generation. By analyzing VCS transport near the ground surface, we uncovered the mechanisms underlying VF generation. We also identified characteristic differences in VF generation behavior linked to soil particle size and gas saturation at the ground surface. Under specific soil particle size conditions, significant VF generation occurred even when contamination was deep underground. This was primarily observed when capillary effect was pronounced, and VCSs continued to be supplied to the ground surface through upward advection. Considering the significant impact of VF generation on human health, our parametric study provides valuable insights into relationships between different parameters and VF behavior, especially under varying ground surface temperatures and surface soil thicknesses. This study contributes to developing effective remediation and risk-reduction strategies. ENVIRONMENTAL IMPLICATION: This research examines the environmental implications of volatile chemical substances (VCSs), including hazardous materials like benzene and trichloroethylene, in contaminated soil. VCSs pose health risks when they volatilize from soil. The study quantifies volatilization fluxes (VF) and elucidates the environmental factors affecting VF generation. These findings are vital for effective environmental management. By comprehending the mechanisms governing VF generation, particularly regarding soil properties like particle size, this research enhances the effectiveness of soil contamination remediation and risk reduction. It emphasizes the essential need for a comprehensive VCS assessment in contaminated soils to protect both human health and the environment.
Collapse
Affiliation(s)
- Monami Kondo
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Yasuhide Sakamoto
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Junko Hara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Takeshi Komai
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Noriaki Watanabe
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
8
|
Chen X, Zhu W, Feng S, Chen J. Photodegradation of xylene isomers: Kinetics, mechanism, secondary pollutant formation potential and health risk evaluation. J Environ Sci (China) 2024; 136:658-669. [PMID: 37923474 DOI: 10.1016/j.jes.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 11/07/2023]
Abstract
Photodegradation technology has been widely applied in the purification of industrial aromatic hydrocarbons. However, whether this technology efficiently removes the pollutants to prevent secondary pollution and health risk is still unclear. Here, the photodegradation processes of three xylenes were compared under designed reaction atmospheres and light sources. Xe lamp showed poor photodegradation ability toward xylenes, no matter in N2 or N2+O2 system, while much higher photodegradation performance of xylenes were obtained under ultraviolet (UV) and vacuum ultraviolet (VUV) irradiation, especially in N2+O2+VUV system, where 97.9% of m-xylene, 99.0% of o-xylene or 87.5% of p-xylene with the initial concentration of 860 mg/m3 was removed within 240 min. The xylenes underwent three processes of photo-isomerization, photodecomposition and photo-oxidation to produce intermediates of aromatics, alkanes and carbonyls. Among them, the photo-isomerization products showed the highest concentration percentage (e.g., ≥50% in o-xylene system), confirming that photo-isomerization reaction was the dominated photodegradation process of xylenes. Moreover, these isomerized products not only contributed about 97% and 91% to the formation potential of O3 (OFP) and secondary organic aerosols (SOAFP), but also displayed obvious non-carcinogenic risk, although one of photodecomposition product-benzene showed the highest occupational exposure risk. Therefore, the secondary pollution and health risks of photodegradation products of xylenes were non-ignorable, although the OFP, SOAFP and health risks of the generated products reduced at least 4.5 times in comparison with that of the degraded xylenes. The findings are helpful for the appropriate application of this technology in the purification of industrial organic waste gas.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Weikun Zhu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Sufen Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Zuo H, Jiang Y, Yuan J, Wang Z, Zhang P, Guo C, Wang Z, Chen Y, Wen Q, Wei Y, Li X. Pollution characteristics and source differences of VOCs before and after COVID-19 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167694. [PMID: 37832670 DOI: 10.1016/j.scitotenv.2023.167694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
During the outbreak of the COVID-19, the change in the way of people's living and production provided the opportunity to study the influence of human activity on Volatile organic compounds (VOCs) in the atmosphere. Therefore, this study analyzed VOCs concentration and composition characteristics in urban area of Beijing from 2019 to 2020. The results showed that the concentration of VOCs in Chaoyang district in 2020 was 73.1ppbv, lower than that in 2019 (92.8ppbv), and alkanes (45 % and 47 %) were the most dominant components. The concentrations of isopentane, n-pentane, n-hexane, and OVOCs significantly increased in 2020. According to the results of the PMF model, the contribution of VOCs from vehicle and pharmaceutical-related emissions increased to 45.8 % and 27.1 % in 2020, while coal combustion decreased by 23.7 %. This is likely linked to the strict implementation of the coal conversion policy, as well as the increment in individual travel and pharmaceutical production during the pandemic. The calculation results of OFP and SOAFP indicated that toluene had an increased impact on the formation of O3 and SOA in the Chaoyang district in 2020. Notably, VOCs emitted by vehicles have the highest potential for secondary generation. In addition, VOCs from vehicles and industries pose the greatest health risks, together accounting for 77.4 % and 79.31 % of the total carcinogenic risk in 2019 and 2020. Although industrial emission with the high proportions of halocarbons was controlled to some extent during the pandemic, the carcinogenic risk in 2020 was 3.74 × 10-6, which still exceeded the acceptable level, and more attention and governance efforts should be given to.
Collapse
Affiliation(s)
- Hanfei Zuo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yuchun Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Ziqi Wang
- College of Arts and Sciences, University of Cincinnati, Cincinnati, State of Ohio 45221, USA
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ye Chen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Qing Wen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China.
| |
Collapse
|
10
|
Ma J, Li L. VOC emitted by biopharmaceutical industries: Source profiles, health risks, and secondary pollution. J Environ Sci (China) 2024; 135:570-584. [PMID: 37778828 DOI: 10.1016/j.jes.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 10/16/2022] [Indexed: 10/03/2023]
Abstract
The biopharmaceutical industry contributes substantially to volatile organic compounds (VOCs) emissions, causing growing concerns and social developmental conflicts. This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises. In the workshops of the three enterprises, 26 VOCs were detected, which could be sorted into 4 classes: hydrocarbons, aromatic hydrocarbons, oxygen-containing compounds, and nitrogen-containing compounds. Ketones were the main components of waste gases, accounting for 44.13%-77.85% of the overall VOCs. Process-based source profiles were compiled for each process unit, with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions. Dimethyl heptanone, vinyl acetate, diethylamine, propylene glycol methyl ether (PGME), and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system. Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high, indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind. Furthermore, the process-based formation potentials of ozone and secondary organic aerosols (SOAs) were determined and indicated that N-methyl-2-pyrrolidone, dimethyl heptanone, and PGME should be preferentially controlled to reduce the ozone formation potential, whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs. Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion, potentially allowing the development of measures to reduce health risks and secondary pollution.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
11
|
Hoseini M, Samaei MR, Shahesmaeili A, Martínez SS, Amiri H. Using biomonitoring as a complementary approach in BTEX exposure assessment in the general population and occupational settings: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:493-510. [PMID: 35751850 DOI: 10.1515/reveh-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hazardous organic compounds such as benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene (known as BTEX) found at work and at home can cause adverse health effects of human beings throughout their lives. Biological monitoring, an exposure assessment method, considers all exposed organic and non-organic compounds. Our goal was to perform a systematic review and a statistical analysis (meta-analysis) of peer-reviewed publications to assess urinary concentrations of BTEX biomarkers in both occupationally-exposed population and the general population. Several major electronic databases, including Scopus, Embase, Medline, Web of Science, and Google scholar (grey literature), were searched for biomonitoring studies of BTEX. Overall, 33 studies met the eligible criteria for the systematic review and six met the full inclusion criteria for meta-analysis. For meta-analysis, we included studies in which unmetabolized BTEX compounds were measured in urine samples. Due to insufficient data, studies that measured BTEX metabolites in urine samples and unmetabolized BTEX compounds in blood samples were excluded from the meta-analysis but were analyzed in the qualitative synthesis. Most studies showed increased urinary concentrations of BTEX in exposed individuals (mainly workers) compared to unexposed individuals. The results showed that the highest total BTEX concentrations were recorded in painters and policemen. This study showed that the undoubted associations between lifestyle and environmental factors and urinary levels of BTEX or its metabolites have not yet been confirmed in current biomonitoring studies. This is attributed to the few studies reported in this research area, the lack of homogeneous information, and the disagreement in the published results of the studies.
Collapse
Affiliation(s)
- Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armita Shahesmaeili
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health Kerman University of Medical Sciences, Kerman, Iran
| | - Susana Silva Martínez
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Rahman S, Al-Gawati MA, Alfaifi FS, Alenazi WK, Alarifi N, Albrithen H, Alodhayb AN, Georghiou PE. Detection of Aromatic Hydrocarbons in Aqueous Solutions Using Quartz Tuning Fork Sensors Modified with Calix[4]arene Methoxy Ester Self-Assembled Monolayers: Experimental and Density Functional Theory Study. Molecules 2023; 28:6808. [PMID: 37836651 PMCID: PMC10574471 DOI: 10.3390/molecules28196808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Quartz tuning forks (QTFs), which were coated with gold and with self-assembled monolayers (SAM) of a lower-rim functionalized calix[4]arene methoxy ester (CME), were used for the detection of benzene, toluene, and ethylbenzene in water samples. The QTF device was tested by measuring the respective frequency shifts obtained using small (100 µL) samples of aqueous benzene, toluene, and ethylbenzene at four different concentrations (10-12, 10-10, 10-8, and 10-6 M). The QTFs had lower limits of detection for all three aromatic hydrocarbons in the 10-14 M range, with the highest resonance frequency shifts (±5%) being shown for the corresponding 10-6 M solutions in the following order: benzene (199 Hz) > toluene (191 Hz) > ethylbenzene (149 Hz). The frequency shifts measured with the QTFs relative to that in deionized water were inversely proportional to the concentration/mass of the analytes. Insights into the effects of the alkyl groups of the aromatic hydrocarbons on the electronic interaction energies for their hypothetical 1:1 supramolecular host-guest binding with the CME sensing layer were obtained through density functional theory (DFT) calculations of the electronic interaction energies (ΔIEs) using B3LYP-D3/GenECP with a mixed basis set: LANL2DZ and 6-311++g(d,p), CAM-B3LYP/LANL2DZ, and PBE/LANL2DZ. The magnitudes of the ΔIEs were in the following order: [Au4-CME⊃[benzene] > [Au4-CME]⊃[toluene] > [Au4-CME]⊃[ethylbenzene]. The gas-phase BSSE-uncorrected ΔIE values for these complexes were higher, with values of -96.86, -87.80, and -79.33 kJ mol-1, respectively, and -86.39, -77.23, and -67.63 kJ mol-1, respectively, for the corresponding BSSE-corrected values using B3LYP-D3/GenECP with LANL2dZ and 6-311++g(d,p). The computational findings strongly support the experimental results, revealing the same trend in the ΔIEs for the proposed hypothetical binding modes between the tested analytes with the CME SAMs on the Au-QTF sensing surfaces.
Collapse
Affiliation(s)
- Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.S.A.)
| | - Fatimah S. Alfaifi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.S.A.)
| | - Wadha Khalaf Alenazi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.S.A.)
| | - Nahed Alarifi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.S.A.)
| | - Hamad Albrithen
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.S.A.)
| | - Abdullah N. Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.S.A.)
| | - Paris E. Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
13
|
Kumar N, Kumari M, Ismael M, Tahir M, Sharma RK, Kumari K, Koduru JR, Singh P. Graphitic carbon nitride (g-C 3N 4)-assisted materials for the detection and remediation of hazardous gases and VOCs. ENVIRONMENTAL RESEARCH 2023; 231:116149. [PMID: 37209982 DOI: 10.1016/j.envres.2023.116149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Graphitic carbon nitride (g-C3N4)-based materials are attracting attention for their unique properties, such as low-cost, chemical stability, facile synthesis, adjustable electronic structure, and optical properties. These facilitate the use of g-C3N4 to design better photocatalytic and sensing materials. Environmental pollution by hazardous gases and volatile organic compounds (VOCs) can be monitored and controlled using eco-friendly g-C3N4- photocatalysts. Firstly, this review introduces the structure, optical and electronic properties of C3N4 and C3N4 assisted materials, followed by various synthesis strategies. In continuation, binary and ternary nanocomposites of C3N4 with metal oxides, sulfides, noble metals, and graphene are elaborated. g-C3N4/metal oxide composites exhibited better charge separation that leads to enhancement in photocatalytic properties. g-C3N4/noble metal composites possess higher photocatalytic activities due to the surface plasmon effects of metals. Ternary composites by the presence of dual heterojunctions improve properties of g-C3N4 for enhanced photocatalytic application. In the later part, we have summarised the application of g-C3N4 and its assisted materials for sensing toxic gases and VOCs and decontaminating NOx and VOCs by photocatalysis. Composites of g-C3N4 with metal and metal oxide give comparatively better results. This review is expected to bring a new sketch for developing g-C3N4-based photocatalysts and sensors with practical applications.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Monika Kumari
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Mohammed Ismael
- Electrical energy storage system, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | | | - Kavitha Kumari
- Baba Mastnath University, Asthal Bohar, Rohtak, 124001, India
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
14
|
Khoshakhlagh AH, Yazdanirad S, Saberi HR, Liao PC. Health risk assessment of exposure to various vapors and fumes in a factory of automobile manufacturing. Heliyon 2023; 9:e18583. [PMID: 37576203 PMCID: PMC10413063 DOI: 10.1016/j.heliyon.2023.e18583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
This study aimed to comprehensively evaluate the health risk of exposure to various vapors and fumes in a factory of automobile manufacturing. This study was performed in 2021 on 115 workers. Vapors and fumes were gathered by the adsorbent tubes of activated charcoal and mixed cellulose esters (MCE) membrane filter, respectively. The flow rate for vapors and fumes were between 0.05 and 0.20 L per min and 1 to 4 L per min, respectively. After preparing, samples were analyzed. To assess the non-cancer and cancer risk of the pollutants, the method proposed environmental protection agency (EPA) was applied. The total concentration of copper (1.031 ppm), manganese (0.114), and 2-butoxyethanol (91.767 ppm) were found to be higher than The threshold limit values (TLVs). The values of non-cancer risk (HQ) due to exposure to vapors of benzene (6.583), toluene (1.396), ethyl benzene (1.212), xylene (31.148), 2-butoxyethanol (89.302), 2-propanol (4.695), 1,2,3-trimethylbenzene (1.923), copper (2.336), manganese (715.82), aluminum (3.772), and chromium (107.066) were higher than the acceptable limit. Moreover, the estimated LCR for benzene (2.15 × 10-4), ethyl benzene (3.97 × 10-4), vinyl chloride (1.25 × 10-4), and chromium (2.11 × 10-2) were higher than the threshold risk level set by EPA. It is emphasized that preventive measures are performed.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Yazdanirad
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Saberi
- Occupational Health & Safety Department, Kashan University of Medical Sciences, Kashan, Iran
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 704, Taiwan
| |
Collapse
|
15
|
Jafari A, Asadyari S, Moutab Sahihazar Z, Hajaghazadeh M. Monte Carlo-based probabilistic risk assessment for cement workers exposed to heavy metals in cement dust. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5961-5979. [PMID: 37195567 DOI: 10.1007/s10653-023-01611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
This study assessed the carcinogenic and non-carcinogenic health risks of cement plant workers exposed to chromium (Cr), arsenic (As), cadmium (Cd), and lead (Pb) in cement dust using a probabilistic approach. Air samples were collected according to NIOSH 7900 and OSHA ID-121 methods and analyzed by an graphite furnace atomic absorption spectrometer. The EPA inhalation risk assessment model and Monte Carlo simulation were utilized to assess the health risks. Sensitivity analysis was used to determine the influencing parameters on health risk. The average concentrations of As and Pb exceeded the occupational exposure limit (OEL), reaching a maximum of 3.4 and 1.7 times the OEL, respectively, in the cement mill. Individual metals' cancer risk exceeded the 1E-4 threshold in ascending order of Cd < As < Cr. The mean cancer risk of Cr ranged from 835E-4 (in raw mill) to 2870E-4 (in pre-heater and kiln). Except for Cd, the non-cancer risk of metals exceeded the standard (hazard index, HQ = 1) in the ascending order of Pb < As < Cr. The mean HQ of Cr ranged from 162.13 (in raw mill) to 558.73 (in pre-heater and kiln). After adjusting for control factors, the cancer and non-cancer risks remained over the respective recommended levels. Sensitivity analysis revealed that the concentration of Cr was the most influential parameter on both carcinogenic (78.5%) and non-carcinogenic (88.06%) risks. To protect the health of cement factory employees, it is recommended to minimize cement dust emissions, implement job rotation, and use raw materials with low levels of heavy metals.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Asadyari
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Moutab Sahihazar
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Hajaghazadeh
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
16
|
Isinkaralar K, Meruyert K. Adsorption Behavior of Multi-Component BTEX on the Synthesized Green Adsorbents Derived from Abelmoschus esculentus L. Waste Residue. Appl Biochem Biotechnol 2023; 195:4864-4880. [PMID: 37093534 DOI: 10.1007/s12010-023-04556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) removal is one of the most common difficulties in air pollution control. They are emitted from several processes, prejudicial to the environment and humans. BTEX leads to various environmental risks, and there is a significant need for a creating process for the complete removal of BTEX from air streams. This study's objective is the multi-component adsorption of BTEX pollutants from an air stream, by synthesizing activated carbons (ACs) under several operations. A lignocellulosic waste biomass, Abelmoschus esculentus L. (AE), was utilized as the precursor for synthesizing activated carbons (AE-ACs), and their surface chemical characteristics were investigated. Optimization processes were examined, and the change in the surface area of AE-ACs was investigated as change of some variables results like activation agent, impregnation ratio, temperature, and activation time. The maximum surface area of 968 m2/g and total pore volume of 0.51 cm3/g were attained at 1:2 impregnation ratio, activation time of 110 min, and activation temperature of 800 °C, under N2 atmosphere. A mixture of BTEX pollutants was employed to consider the effect of humidity (0.5, 1, 1.5, and 2 wt%) and initial concentrations (from 5 to 300 mg/m3), using a contact time of 120 min at the temperature of 25 °C. Under the studied conditions, the multi-component and single-component BTEX adsorption capacities by HCl-activated carbon, AE-ACH, were specifically achieved to 6.86-51.36 mg/g and 22-93.62 mg/g, respectively. Overall, Abelmoschus esculentus L. was exploited for the synthesis of AE-ACH which was successfully utilized for efficient BTEX capture from a polluted air stream.
Collapse
Affiliation(s)
- Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| | | |
Collapse
|
17
|
Wang Z, Zhang P, Pan L, Qian Y, Li Z, Li X, Guo C, Zhu X, Xie Y, Wei Y. Ambient Volatile Organic Compound Characterization, Source Apportionment, and Risk Assessment in Three Megacities of China in 2019. TOXICS 2023; 11:651. [PMID: 37624157 PMCID: PMC10458435 DOI: 10.3390/toxics11080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
In order to illustrate pollution characterization, source apportionment, and risk assessment of VOCs in Beijing, Baoding, and Shanghai, field observations of CO, NO, NO2, O3, and volatile organic compounds (VOCs) were conducted in 2019. Concentrations of VOCs were the highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). Concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the three seasons tested, followed by summer (98.1 + 50.8 ppb) and autumn (75.5 + 33.4 ppb). Alkenes were the most reactive VOC species in all cities, accounting for 56.0%, 53.7%, and 39.4% of ozone formation potential in Beijing, Baoding, and Shanghai, respectively. Alkenes and aromatics were the reactive species, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. Vehicular exhaust was the principal source in all three cities, accounting for 27.0%, 30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Industrial manufacturing was the second largest source in Baoding (23.6%) and Shanghai (21.3%), and solvent utilization was the second largest source in Beijing (25.1%). The empirical kinetic modeling approach showed that O3 formation was limited by both VOCs and nitric oxides at Fangshan (the suburban site) and by VOCs at Xuhui (the urban site). Acrolein was the only substance with an average hazard quotient greater than 1, indicating significant non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10-4 and posed a definite carcinogenic risk.
Collapse
Affiliation(s)
- Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Libo Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Yuanyuan Xie
- Foreign Environmental Cooperation Centre, Ministry of Ecology and Environment, Beijing 100035, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| |
Collapse
|
18
|
Teng W, Liu W, Shao X, Wu Q. Emission characteristics, environmental impact assessment and priority control strategies derived from VOCs speciation sourcely through measurement for wooden furniture-manufacturing industry in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162287. [PMID: 36801329 DOI: 10.1016/j.scitotenv.2023.162287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 05/06/2023]
Abstract
Volatile organic compounds (VOCs) from wooden furniture-manufacturing industry is an important emission source. The VOC content levels, source profiles, emission factors and inventories, O3 and SOA formation, and priority control strategies were investigated from the source. One hundred sixty-eight representative woodenware coatings were sampled, and VOC species and contents were determined. The VOC, O3 and SOA emission factors per gram of coatings for three types of woodenware coatings were quantified. The total VOC, O3 and SOA emissions from wooden furniture-manufacturing industry in 2019 were 976,976 t/a, 2,840,282 t/a, 24,970 t/a, and solvent-based coatings accounted for 98.53 %, 99.17 % and 99.6 % of the total VOC, O3 and SOA emissions, respectively. Aromatics and esters were major organic groups, contributing 49.80 % and 36.03 % to total VOC emissions, respectively. Aromatics contributed 86.14 % and 100 % to total O3 and SOA emissions, respectively. The top 10 species contributing to VOC, O3 and SOA had been identified. Four benzene series, including o-Xylene, m-Xylene, toluene and ethylbenzene, were ranked as the first-class priority control species, accounting for 85.90 % and 99.89 % of the total O3 and SOA, respectively. Priority should be given to solvent-based coatings, aromatics and four benzene series for future O3 and SOA reduction for wooden furniture-manufacturing industry.
Collapse
Affiliation(s)
- Wei Teng
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100041, China
| | - Wenwen Liu
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Xia Shao
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| | - Qionghui Wu
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100041, China
| |
Collapse
|
19
|
Lin Q, Gao Z, Zhu W, Chen J, An T. Underestimated contribution of fugitive emission to VOCs in pharmaceutical industry based on pollution characteristics, odorous activity and health risk assessment. J Environ Sci (China) 2023; 126:722-733. [PMID: 36503797 DOI: 10.1016/j.jes.2022.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/17/2023]
Abstract
Fugitive emission has been becoming an important source of volatile organic compounds (VOCs) in pharmaceutical industry, but the exact contribution of fugitive emission remains incompletely understood. In present study, pollution characteristics, odorous activity and health risk of stack and fugitive emissions of VOCs from four functional units (e.g., workshop, sewage treatment station, raw material storage and hazardous waste storage) of three representative pharmaceutical factories were investigated. Workshop was the dominant contributor to VOCs of fugitive emission in comparison with other functional units. Extreme high concentration of VOCs from fugitive emission in unsealed workshop (94.87 mg/m3) was observed relative to sealed one (1.18 mg/m3), accounting for 31% and 5% of total VOCs, respectively. Fugitive emission of VOCs in the unsealed workshop mainly consisted of n-hexane, 1-hexene and dichloromethane. Odorous activity indexes and non-cancer hazard ratios of these VOCs from fugitive emission in the unsealed workshop were as high as that from stack exhaust. Furthermore, cancer risk of dichloromethane from fugitive emission and stack exhaust was up to (1.6-1.8) × 10-5. Odorous activity or health risk index of the VOCs from fugitive emission was up to 13 or 11 times of the corresponding threshold value, posing remarkable health threat on pharmaceutical workers. Our findings highlighted the possibly underestimated contribution of fugitive emission on VOCs in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Weikun Zhu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Wang C, Wang W, Deng W, Zhang S, Shao S, Wen M, Li G, An T. Distribution characteristics, air-water exchange, ozone formation potential and health risk assessments of VOCs emitted from typical coking wastewater treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160845. [PMID: 36526193 DOI: 10.1016/j.scitotenv.2022.160845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Coking industry has been considered as important source of volatile organic compounds (VOCs) emissions. However, few studies have emphasized the occurrence and adverse effects of VOCs from coking wastewater treatment processes. In this research, pollution profiles of both air and water phase VOCs in a typical coking wastewater treatment plant were investigated in terms of distribution characteristics, air-water exchange, ozone formation potential (OFP) and associated human health risks. Thirty VOCs were detected in the air phase, in which benzene and naphthalene were found to be the major VOCs with total contribution of 87.81 %. Nineteen VOCs were detected in the water phase, in which benzene, naphthalene and toluene contribute most to total VOCs with total contribution of 75.1 %. The regulating tank (RT) was the major source of VOCs, and the emission rate of total VOCs from all unites was 2711.03 g/d with annual emission of 0.99 t. The emission factor was estimated to be 1.36 g VOCs/m3 wastewater. The air-water exchange was assessed using the Fugacity model, and water-to-air volatilization was predominant based on the net flux of air-water exchange. OFP evaluated by emission factor indicated that the total OFP in RT was the highest (1.52 g O3/m3 wastewater), and toluene contributed 41.8 % of the total OFP, followed by naphthalene accounting for 38.7 % The total carcinogenic risks were in the range of 8.60 × 10-6 to 2.18 × 10-3, in which the RT exceeded the significant risk threshold (>1 × 10-4). The non-carcinogenic risks of hazard quotient value in RT also exceeded the risk threshold (>1), and naphthalene was the major contributor accounting for 79.02 %. These results not only provided comprehensive knowledge on pollution profiles and environmental risks of VOCs during coking wastewater treatment processes, but also facilitated the implement of VOCs regulation and occupational health protection strategies in coking industries.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Weiqiang Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaobin Shao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Singh BP, Sohrab SS, Athar M, Alandijany TA, Kumari S, Nair A, Kumari S, Mehra K, Chowdhary K, Rahman S, Azhar EI. Substantial Changes in Selected Volatile Organic Compounds (VOCs) and Associations with Health Risk Assessments in Industrial Areas during the COVID-19 Pandemic. TOXICS 2023; 11:165. [PMID: 36851040 PMCID: PMC9963041 DOI: 10.3390/toxics11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
During the COVID-19 pandemic, governments in many countries worldwide, including India, imposed several restriction measures, including lockdowns, to prevent the spread of the infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air. In the present study, we investigated the substantial changes in selected volatile organic compounds (VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before, during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 µg/m3 for 2019, 2020, and 2021, respectively. As a result, the TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic sources during the pre-pandemic period. The present findings indicated that TVOC levels had positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with correlation coefficients (r) of -0.168 and -0.150, respectively. The lifetime cancer risk (LCR) value for benzene was reported to be higher in children, followed by females and males, for the pre-pandemic, pandemic, and post-pandemic periods. A nationwide scale-up of this study's findings might be useful in formulating future air pollution reduction policies associated with a reduction in health risk factors. Furthermore, the present study provides baseline data for future studies on the impacts of anthropogenic activities on the air quality of a region.
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi 110019, India
- Delhi School of Climate Change and Sustainability (Institute of Eminence), University of Delhi, New Delhi 110007, India
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Athar
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saumya Kumari
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Arathi Nair
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Sweety Kumari
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Kriti Mehra
- Department of Life Science, Deshbadhu College, University of Delhi, New Delhi 110019, India
| | - Khyati Chowdhary
- Department of Life Science, Deshbadhu College, University of Delhi, New Delhi 110019, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110019, India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Liu C, Xin Y, Zhang C, Liu J, Liu P, He X, Mu Y. Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158873. [PMID: 36126704 DOI: 10.1016/j.scitotenv.2022.158873] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Field measurements of volatile organic compounds (VOCs) were conducted simultaneously at an urban site and one industrial park site in Beijing in summer. The VOCs concentrations were 94.3 ± 157.8 ppbv and 20.7 ± 8.9 ppbv for industrial and urban sites, respectively. Alkanes and aromatics were the major contributors to VOCs in industrial site, while oxygenated volatile organic compounds (OVOCs) contributed most in urban site. The most abundant VOC species were n-pentane and formaldehyde for industrial site and urban site, respectively. The calculated ozone formation potential (OFP) and OH loss rates (LOH) were 621.1 ± 1491.9 ppbv (industrial site), 102.9 ± 37.3 ppbv (urban site), 22.0 ± 39.0 s-1 (industrial site) and 5.3 ± 2.2 s-1 (urban site), respectively. Based on the positive matrix factorization (PMF) model, solvent utilization I (34.1 %), solvent utilization II (27.9 %), mixture combustion source (19.3 %), OVOCs related source (9.6 %) and biogenic source (9.1 %) were identified in the industrial site, while OVOCs related source (27.8 %), vehicle exhaust (22.1 %), solvent utilization (19.3 %), coal combustion (16.0 %) and biogenic source (14.8 %) were identified in the urban site. The results of O3-VOCs-NOx sensitivity indicated that O3 formation were respectively under the VOC-limited and NOx-limited conditions in Beijing urban and industrial regions. Additionally, aromatics accounted remarkable SOA formation ability both in the two sites, and SOA potentials of xylene, toluene and ethylbenzene as the indicator species for the solvent utilization in industrial site were remarkable higher than those obtained in urban regions. The hazard index values in the industrial and urban sites were 1.72 and 3.39, respectively, suggesting a high non-carcinogenic risks to the exposed population. Formaldehyde had the highest carcinogenic risks in the two sites, and the cumulative carcinogenic risks in the industrial site and urban site were 1.95 × 10-5 and 1.21 × 10-5, respectively.
Collapse
Affiliation(s)
- Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yanyan Xin
- College of Environmental Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
23
|
Xu X, Li L, Zhou H, Fan M, Wang H, Wang L, Hu Q, Cai Q, Zhu Y, Ji S. MRTCM: A comprehensive dataset for probabilistic risk assessment of metals and metalloids in traditional Chinese medicine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114395. [PMID: 36508783 DOI: 10.1016/j.ecoenv.2022.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Traditional Chinese medicine (TCM) is still considered a global complementary or alternative medical system, but exogenous hazardous contaminants remain in TCM even after decocting. Besides, it is time-consuming to conduct a risk assessment of trace elements in TCMs with a non-automatic approach due to the wide variety of TCMs. Here, we present MRTCM, a cloud-computing infrastructure for automating the probabilistic risk assessment of metals and metalloids in TCM. MRTCM includes a consumption database and a pollutant database involving forty million rows of consumption data and fourteen types of TCM potentially toxic elements concentrations. The algorithm of probabilistic risk assessment was also packaged in MRTCM to assess the risks of eight elements with Monte Carlo simulation. The results demonstrated that 96.64% and 99.46% had no non-carcinogenic risk (hazard indices (HI) were < 1.0) for animal and herbal medicines consumers, respectively. After twenty years of exposure, less than 1% of the total carcinogenic risk (CRt) was > 10-4 for TCM consumers, indicating that they are at potential risk for carcinogenicity. Sensitivity analysis revealed that annual consumption and concentration were the main variables affecting the assessment results. Ultimately, a priority management list of TCMs was also generated, indicating that more attention should be paid to the non-carcinogenic risks of As, Mn, and Hg and the carcinogenic risks of As and Cr in Pheretima and Cr in Arcae Conch. In general, MRTCM could significantly enhance the efficiency of risk assessment in TCM and provide reasonable guidance for policymakers to optimize risk management.
Collapse
Affiliation(s)
- Xiaohui Xu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Limin Li
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Heng Zhou
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingcong Fan
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Hongliang Wang
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Lingling Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Qing Hu
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Shen Ji
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
24
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
25
|
Arı A, Arı PE, İlhan SÖ, Gaga EO. Handheld two-stroke engines as an important source of personal VOC exposure for olive farm workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78711-78725. [PMID: 35699878 DOI: 10.1007/s11356-022-21378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Personal exposure to volatile organic compounds (VOCs) is mainly associated with indoor exposures; however, elevated short-term exposures may also occur during ambient activities. Handheld two-stroke gasoline-powered engines have widespread use in agriculture, but so far, no studies have been conducted on the potential health risks due to the inhalation of emitted VOCs. A one-week passive sampling has been conducted on olive farm workers during the harvesting season to monitor personal exposure levels to VOCs. The first group of workers was selected to represent the contribution of gasoline-powered shaker to daily personal VOC exposures, and one another group of workers was selected as the control, whose have not been using the device. Higher concentrations of 1-pentene, n-hexane, isopentane, n-pentene, and toluene were observed in personal samples collected from machine operators. Personal exposure concentrations of a total of 45 monitored VOCs varied between 29.2 ± 10.7 and 3733.4 ± 3300.1 µg m-3 among 20 volunteer workers. Estimated carcinogenic risks were between the acceptable levels of 10-4 and 10-6 for all workers. All individual chronic HQs and HIs (as the sum of individual HQs) were below the benchmark value of 1 for regular workers in 3 different sampling sites, whereas HI values in both acute (short term) and chronic exposure scenarios were exceeded 1 for shaker machine operators. This represented potential non-carcinogenic health hazards for exposed shaker operators, along with elevated VOCs.
Collapse
Affiliation(s)
- Akif Arı
- Department of Environmental Engineering, Faculty of Engineering, Bolu Abant İzzet Baysal University, Bolu, Turkey.
| | - Pelin Ertürk Arı
- Department of Environmental Engineering, Faculty of Engineering, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Soner Özenç İlhan
- Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Turkey
| | - Eftade O Gaga
- Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Turkey
| |
Collapse
|
26
|
Fang L, Liu N, Liu W, Mo J, Zhao Z, Kan H, Deng F, Huang C, Zhao B, Zeng X, Sun Y, Qian H, Sun C, Guo J, Zheng X, Zhang Y. Indoor formaldehyde levels in residences, schools, and offices in China in the past 30 years: A systematic review. INDOOR AIR 2022; 32:e13141. [PMID: 36305078 DOI: 10.1111/ina.13141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Exposure to formaldehyde causes a variety of adverse health outcomes, while the distributions of indoor formaldehyde in different building types are still not clear in China. In this study, based on the systematic review of previously published data and Monte Carlo simulation, we assessed geographical and temporal distributions of indoor formaldehyde concentrations in residences, schools, and offices across China. A total of 397 studies covered 34 provincial-level regions since 1986 were collected. The results showed that indoor formaldehyde concentrations in residences, schools, and offices in nationwide were decreasing over years due to the publishment of indoor air quality standards since 2002. During 2011 to 2015, the median concentrations of indoor formaldehyde in newly renovated residences, schools, and offices were 153 μg/m3 , 163 μg/m3 , and 94 μg/m3 , with an exceeding rate of 82%, 46%, and 91% considering a standard threshold of 100 μg/m3 at that time, while the exceeding rate was less than 5% for buildings that were renovated beyond one year. Our findings release the temporal trends and geographic distributions of indoor formaldehyde concentrations in residences, schools, and offices in China in the past 30 years, and provide basic data for the comprehensive evaluation of disease burden attributable to indoor formaldehyde exposure.
Collapse
Affiliation(s)
- Lin Fang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
- Daikin industries, LTD, Osaka, Japan
| | - Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
27
|
Courtier A, Roig B, Cariou S, Cadiere A, Bayle S. Evaluation of Coriolis Micro Air Sampling to Detect Volatile and Semi-Volatile Organic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196462. [PMID: 36234999 PMCID: PMC9572053 DOI: 10.3390/molecules27196462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
There are several analytical procedures available for the monitoring of volatile organic compounds (VOCs) in the air, which differ mainly on sampling procedures. The Coriolis micro air sampler is a tool normally designed for biological air sampling. In this paper, the Coriolis micro bio collector is used to evaluate its ability to sample organic contaminants sampling and detecting them when combined GC-MS. We also compare the use of the Coriolis micro with a standardized sampling method, which is the use of a lung box with a Nalophan® bag. The results show that the Coriolis micro sampling method is suitable for the sampling of organic contaminants. Indeed, the Coriolis micro allows to sample and detect mainly semi-volatile molecules, while the lung box/Nalophan® bags allow to sample more volatile molecules (highly volatile and volatile). These results were confirmed in the controlled air lab with a slight difference with the field. The simultaneous use of the both techniques allow to sample and detect a larger number of molecules with specific physicochemical properties to each sampling technique. In conclusion, the Coriolis micro can sample and detect volatile organic compounds present in air. We have shown that the development of alternative sampling methods and the use of non-target analysis are essential for a more comprehensive risk assessment. Moreover, the use of the Coriolis micro allows the detection of emergent molecules around the Thau lagoon.
Collapse
Affiliation(s)
- Audrey Courtier
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
- Correspondence:
| | - Benoit Roig
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
| | - Stephane Cariou
- Laboratoire des Sciences des Risques (LSR), IMT Alès, 6 Av. de Clavières, 30100 Alès, France
| | - Axelle Cadiere
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
| | - Sandrine Bayle
- Laboratoire des Sciences des Risques (LSR), IMT Alès, 6 Av. de Clavières, 30100 Alès, France
| |
Collapse
|
28
|
Kim SJ, Lee SJ, Lee HY, Son JM, Lim HB, Kim HW, Shin HJ, Lee JY, Choi SD. Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156344. [PMID: 35654203 DOI: 10.1016/j.scitotenv.2022.156344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric volatile organic compounds (VOCs) in Seoul, the capital of South Korea, have attracted increased attention owing to their emission, secondary formation, and human health risk. In this study, we collected 24 hourly samples once a month at an urban site in Seoul for a year (a total of 288 samples) using a sequential tube sampler. Analysis results revealed that toluene (9.08 ± 8.99 μg/m3) exhibited the highest annual mean concentration, followed by ethyl acetate (5.55 ± 9.09 μg/m3), m,p-xylenes (2.79 ± 4.57 μg/m3), benzene (2.37 ± 1.55 μg/m3), ethylbenzene (1.81 ± 2.27 μg/m3), and o-xylene (0.91 ± 1.47 μg/m3), indicating that these compounds accounted for 77.8-85.6% of the seasonal mean concentrations of the total (Σ59) VOCs. The concentrations of the Σ59 VOCs were statistically higher in spring and winter than in summer and fall because of meteorological conditions, and the concentrations of individual VOCs were higher during the daytime than nighttime owing to higher human activities during the daytime. The conditional bivariate probability function and concentration weighted trajectory analysis results suggested that domestic effects (e.g., vehicular exhaust and solvents) exhibited a dominant effect on the presence of VOCs in Seoul, as well as long-range atmospheric transport of VOCs. Further, the most important secondary organic aerosol formation potential (SOAFP) compounds included benzene, toluene, ethylbenzene, and m,p,o-xylenes, and the total SOAFP of nine VOCs accounted for 5-29% of the seasonal mean PM2.5 concentrations. The cancer and non-cancer risks of the selected VOCs were below the tolerable (1 × 10-4) and acceptable (Hazard quotient: HQ < 1) levels, respectively. Overall, this study highlighted the feasibility of the sequential sampling of VOCs and hybrid receptor modeling to further understand the source-receptor relationship of VOCs.
Collapse
Affiliation(s)
- Seong-Joon Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Jin Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Min Son
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyung-Bae Lim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hyeon-Woong Kim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
29
|
Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X, Sun Y, Qian H, Mo J, Sun C, Guo J, Zheng X, Weschler LB, Zhang Y. Indoor exposure levels and risk assessment of volatile organic compounds in residences, schools, and offices in China from 2000 to 2021: A systematic review. INDOOR AIR 2022; 32:e13091. [PMID: 36168233 DOI: 10.1111/ina.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/16/2023]
Abstract
The last two decades have witnessed rapid urbanization and economic growth accompanied by severe indoor air pollution of volatile organic compounds (VOCs) in China. However, indoor VOC pollution across China has not been well characterized and documented. This study is a systematic review of field measurements of eight target VOCs (benzene, toluene, xylenes, acetaldehyde, p-dichlorobenzene, butadiene, trichloroethylene, and tetrachloroethylene) in residences, offices, and schools in China from 2000 to 2021. The results show that indoor pollution of benzene, toluene, and xylenes has been more serious in China than in other countries. Spatiotemporal distribution shows lower indoor VOC levels in east and south-east regions and a declining trend from 2000 to 2021. Moving into a dwelling more than 1 year after decoration and improving ventilation could significantly reduce exposure to indoor VOCs. Reducing benzene exposure is urgently needed because it is associated with greater health risks (4.5 × 10-4 for lifetime cancer risk and 8.3 for hazard quotient) than any other VOCs. The present study enriches the database of indoor VOC levels and provides scientific evidence for improving national indoor air quality standards as well as estimating the attributable disease burden caused by VOCs in China.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | | | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
30
|
Ninyà N, Vallecillos L, Marcé RM, Borrull F. Evaluation of air quality in indoor and outdoor environments: Impact of anti-COVID-19 measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155611. [PMID: 35504390 PMCID: PMC9057935 DOI: 10.1016/j.scitotenv.2022.155611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/18/2023]
Abstract
This study monitors the presence of 88 volatile organic compounds (VOCs) and semi-volatile organic compounds (semi-VOCs) at the gas phase of seven indoor settings in a school in the city of Tarragona, Spain, and five outdoor locations around the city. The VOCs and semi-VOCs monitored were solvents (∑Solvents), aldehydes (∑Aldehydes), emerging organic compounds (∑EOCs), and other VOCs and semi-VOCs (∑Others). Passive sampling campaigns were performed using Carbopack X tubes followed by thermal desorption coupled to gas chromatography with mass spectrometry (TD-GC-MS). Overall, 70 of the target compounds included in the method were determined in the indoor air samples analysed, and 42 VOCs and semi-VOCs in the outdoor air samples. Our results showed that solvents were ubiquitous throughout the school at concentrations ranging from 272 μg m-3 to 423 μg m-3 and representing 68%-83% of total target compounds (∑Total). The values of ∑Total in 2021 were three times as high as those observed at the same indoor settings in 2019, with solvents experiencing the greatest increase. A plausible explanation for these observations is the implementation of anti-COVID-19 measures in the indoor settings, such as the intensification of cleaning activities and the use of hydroalcoholic gels as personal hygiene. The ∑Total values observed in the indoor settings evaluated were twenty times higher than those found outdoors. ∑Solvents were the most representative compounds found indoors (74% of the ∑Total). The concentrations of VOCs and semi-VOCs observed in the outdoors were strictly related to combustion processes from automobile traffic and industrial activities, with ∑Others contributing 58%, ∑Solvents 31%, and ∑Aldehydes 11% of the ∑Total. EOCs, on the other hand, were not detected in any outdoor sample.
Collapse
Affiliation(s)
- Nicole Ninyà
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel∙lí Domingo, 1, Tarragona 43007, Spain
| | - Laura Vallecillos
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel∙lí Domingo, 1, Tarragona 43007, Spain
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel∙lí Domingo, 1, Tarragona 43007, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel∙lí Domingo, 1, Tarragona 43007, Spain.
| |
Collapse
|
31
|
Singh BP, Kumari S, Nair A, Kumari S, Wabaidur SM, Avtar R, Rahman S. Temporary reduction in VOCs associated with health risk during and after COVID-19 in Maharashtra, India. JOURNAL OF ATMOSPHERIC CHEMISTRY 2022; 80:53-76. [PMID: 35992767 PMCID: PMC9382016 DOI: 10.1007/s10874-022-09440-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
A novel coronavirus has affected almost all countries and impacted the economy, environment, and social life. The short-term impact on the environment and human health needs attention to correlate the Volatile organic compounds (VOCs) and health assessment for pre-, during, and post lockdowns. Therefore, the current study demonstrates VOC changes and their effect on air quality during the lockdown. The findings of result, the levels of the mean for total VOC concentrations were found to be 15.45 ± 21.07, 2.48 ± 1.61, 19.25 ± 28.91 µg/m3 for all monitoring stations for pre-, during, and post lockdown periods. The highest value of TVOCs was observed at Thane, considered an industrial region (petroleum refinery), and the lowest at Bandra, which was considered a residential region, respectively. The VOC levels drastically decreased by 52%, 89%, 80%, and 97% for benzene, toluene, ethylbenzene, and m-xylene, respectively, during the lockdown period compared to the previous year. In the present study, the T/B ratio was found lower in the lockdown period as compared to the pre-lockdown period. This can be attributed to the complete closure of non-traffic sources such as industries and factories during the lockdown. The Lifetime Cancer Risk values for all monitoring stations for benzene for pre-and-post lockdown periods were higher than the prescribed value, except during the lockdown period. Supplementary Information The online version contains supplementary material available at 10.1007/s10874-022-09440-5.
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Delhi School of Climate Change and Sustainability (Institute of Eminence) & Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi, India
| | - Saumya Kumari
- Delhi School of Climate Change and Sustainability (Institute of Eminence) & Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi, India
| | - Arathi Nair
- Delhi School of Climate Change and Sustainability (Institute of Eminence) & Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi, India
| | - Sweety Kumari
- Delhi School of Climate Change and Sustainability (Institute of Eminence) & Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi, India
| | | | - Ram Avtar
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Boom YJ, Enfrin M, Grist S, Giustozzi F. Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155037. [PMID: 35395294 DOI: 10.1016/j.scitotenv.2022.155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A key aspect when investigating the use of recycled plastics in bitumen relates considerably to the issues relating to occupational, health and safety for humans and the environment from a fuming and emissions perspective. This research investigates laboratory-generated fumes in the forms of volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) generated from producing polymer modified bitumen using five different types of recycled plastics. A comparative analysis of recycled plastic modified bitumen fumes was conducted based on a series of optimized parameters, including working temperatures (160 °C, 180 °C and 200 °C) and polymer contents (1%, 2%, 4% and 6% by weight of bitumen) against neat bitumen and polymer-modified bitumen. Forty-eight volatile organic compounds (VOCs) and sixteen polycyclic aromatic hydrocarbons (PAHs) were quantified using gas chromatography-mass spectrometry (GC-MS). The results from the comparative analysis revealed that the incorporation of recycled plastics could reduce overall emissions from both VOCs and PAHs perspectives. The reduction in emissions can be attributed to the enhancement in thermal stability of the bitumen blend when recycled plastics are added. The reduction rate is heavily dependent on the type and source of recycled plastics used in the blending process. Furthermore, a specific compound concentration analysis of the top-four weighted compounds emitted reveals that the total concentration of emissions can be deceiving as specific compounds can spike when adding recycled plastics in bitumen despite a reduction trend for the overall concentration.
Collapse
Affiliation(s)
- Yeong Jia Boom
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Marie Enfrin
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Stephen Grist
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Filippo Giustozzi
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia.
| |
Collapse
|
33
|
Volatile Organic Compound Emission Status and Control Perspectives in the Petroleum Refining Industry in China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Given the increasingly serious ozone pollution, petroleum refining has received more attention, since it is one of the dominant volatile organic compound-emitting industries in China. Volatile organic compound emission source identification, control efficiency classification, emissions calculation, emission factor generation and uncertainty analysis were performed in this study. According to the VOC emission control level, petroleum refining enterprises were divided into three levels, accounting for 10.6%, 54.4% and 35% of the total refining capacity, and 0.6%, 1.2%, and 3% were generated as the emission factor for each designed level, respectively. The total volatile organic compound emissions of the China petroleum refining industry in 2020 are estimated to be 1150 Kt by applying the hierarchical accounting method. Furthermore, the spatial distribution of volatile organic compound emissions was analyzed. The emission intensity of 15 cities is greater than the national average value of 0.12 tons/km2, where the highest level is approximately 2.7 tons/km2. To reduce the volatile organic compound emissions of PR enterprises, the collection efficiency and operation effect of treatment facilities are the most important points based on the analysis of the current situation of volatile organic compound emissions in the PR industry in China.
Collapse
|
34
|
Gielen GJHP, Andrews JP, Karbiwnyk CM, Riddell MJC, Husheer SW, Gapes DJ. Hydrothermal conversion of toilet waste: effect of processing conditions on gas phase emissions. Heliyon 2022; 8:e09708. [PMID: 35756115 PMCID: PMC9213707 DOI: 10.1016/j.heliyon.2022.e09708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, many populations suffer from a lack of access to basic sanitation facilities. This is partly caused by a combination of water resource shortages and the high cost of conventional centralised treatment systems. A novel decentralised treatment technology based on sub-critical hydrothermal processing of organic wastes at toilet-scale, contributes to addressing these economic and resource limitations. To be effective, this technology needs to satisfy a broad range of environmental and safety considerations, including the nature and quantity of formed gas products. We investigated the impact of four process parameters (temperature; O2: COD ratio (λ); time; feed solids content) on off-gas composition by quantifying volatile organic compounds (VOCs), CO, H2 and CO2 in factorial experiments. Temperature and λ influenced VOCs generation greatly. The lowest VOC emissions occurred at 200% λ and 300 °C. Aldehydes and ketones were mostly generated at 200% λ and intermediate temperatures, sulphur compounds in the absence of oxygen, and aromatics, furans, and pyrroles at intermediate oxygen levels and elevated temperatures. Most CO was created at 300 °C but its concentration decreased at longer processing times. Processing conditions have complex impacts and require careful consideration when designing for real world deployment.
Collapse
Affiliation(s)
| | - John P Andrews
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | | | - Mark J C Riddell
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Sean W Husheer
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Daniel J Gapes
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| |
Collapse
|
35
|
BTEX Emissions in the Logistics of Middle Distillates: Diesel Oil. ENERGIES 2022. [DOI: 10.3390/en15103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Besides technological processes; logistics; and the use of petrol and light solvents, which are widely known as pollutants, the sources of BTEX hydrocarbon contributing to air pollution may also include other petroleum products and fuels that feature higher boiling points and that have not yet been associated with this issue. In this study, the contents of benzene; toluene; ethylbenzene; and o-, m-, and p-xylene were evaluated in 25 commercial samples of diesel oils; the gaseous phase in thermodynamic equilibrium with liquid diesel oil at 40 °C was then evaluated. Based on the experimental results, it was found that benzene concentration in the gaseous phase is five to more than fifteen times higher than the limits set by regulations for benzene concentration in the air at a work place (1.6 mg/m3) and cannot be compared with the limits set by regulations for annual average basal levels of benzene concentration in the air (5 µg/m3). The research revealed that diesel oil is a potential source of environmental contamination from BTEX hydrocarbons, in particular benzene.
Collapse
|
36
|
Hsu CY, Wu PY, Chen YC, Chen PC, Guo YL, Lin YJ, Lin P. An integrated strategy by using long-term monitoring data to identify volatile organic compounds of high concern near petrochemical industrial parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153345. [PMID: 35085637 DOI: 10.1016/j.scitotenv.2022.153345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Exposure to ambient volatile organic compounds (VOCs) is associated with a risk of cancer in the residents living near petrochemical facilities. However, research on the contribution of different VOCs to the lifetime cancer risk remains inconclusive. The variability in source emissions, geographical locations, seasons, and meteorological conditions can be assessed through long-term measurement of ambient VOCs with a wide spatial distribution, thus reducing the uncertainty of health risk assessment from source emissions. This study analyzed comprehensive measurement data of 109 VOCs at 17 monitoring stations around petrochemical industrial parks, collected once every six days during 2015-2018 by the Taiwan Environmental Protection Agency. We calculated the annual mean concentration of selected VOCs and then integrated the probability risk assessment (PRA) and positive matrix factorization (PMF) models to identify the sources of VOCs of high concern. First, we prioritized 12 out of 23 carcinogenic VOCs based on the PRA results. Further, the results obtained from the PMF model revealed that petrochemical industrial parks contributed to more than 50% of the emissions of six VOCs, namely 1,3-butadiene, benzene, 1,2-dichloroethane, chloroform, vinyl chloride, and acrylonitrile, measured at a few monitoring stations. This integrated approach can help regulatory agencies to efficiently propose control strategies on the emissions of VOCs of high concern, thereby reducing the population's health risk.
Collapse
Affiliation(s)
- Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Pei-Yu Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
37
|
Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X, Sun Y, Qian H, Mo J, Sun C, Guo J, Zheng X, Weschler LB, Zhang Y. Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis. INDOOR AIR 2022; 32:e13038. [PMID: 35622720 DOI: 10.1111/ina.13038] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Exposure to volatile organic compounds (VOCs) indoors is thought to be associated with several adverse health effects. However, we still lack concentration-response (C-R) relationships between VOC levels in civil buildings and various health outcomes. For this paper, we conducted a systematic review and meta-analysis of observational studies to summarize related associations and C-R relationships. Four databases were searched to collect all relevant studies published between January 1980 and December 2017. A total of 39 studies were identified in the systematic review, and 32 of these were included in the meta-analysis. We found that the pooled relative risk (RR) for leukemia was 1.03 (95% CI: 1.01-1.05) per 1 μg/m3 increase of benzene and 1.25 (95%CI: 1.14-1.37) per 0.1 μg/m3 increase of butadiene. The pooled RRs for asthma were 1.08 (95% CI: 1.02-1.14), 1.02 (95% CI: 1.00-1.04), and 1.04 (95% CI: 1.02-1.06) per 1 μg/m3 increase of benzene, toluene, and p-dichlorobenzene, respectively. The pooled RR for low birth weight was 1.12 (95% CI: 1.05-1.19) per 1 μg/m3 increase of benzene. Our findings provide robust evidence for associations between benzene and leukemia, asthma, and low birth weight, as well as for health effects of some other VOCs.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | | | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
38
|
Reaction Mechanisms of Toluene Decomposition in Non-Thermal Plasma: How does It Compare with Benzene? FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Wang H, Hao R, Nie L, Zhang X, Zhang Y. Pollution characteristics and risk assessment of air multi-pollutants from typical e-waste dismantling activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118630. [PMID: 34871645 DOI: 10.1016/j.envpol.2021.118630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the characteristics of air multi-pollutants emitted during typical electronic waste (e-waste) dismantling processes and assessed their risks to the environment and human health. Concentrations of total volatile organic compounds (TVOCs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in a typical e-waste dismantling workshop were 137 μg/m3, 135 ng/m3 and 42 ng/m3, respectively, which were lower than those without emission control measures. The partial removal of pollutants due to the emission control measures also decreased the ozone formation potential and non-cancer risk of volatile organic compounds (VOCs). In the workshop, the lifetime cancer risk (LCR) of VOCs (8.1 × 10-5) was close to the recommended values. Conversely, the LCR of PAHs (3.6 × 10-5) and the total exposure index of PBDEs (19 ng/d) were remarkably lower than the recommended values of 10-3 and that without emission control measures, respectively. Meanwhile, the concentrations of TVOCs, polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), PBDEs, and PAHs in the outlet were approximately 10-30 times higher than those in the workshop. In addition, the LCR of TVOCs within a 5-km radius area remained higher than the accepted value (10-6), and the inhalation exposure risk of PCDD/Fs within a 20-km radius area was five times higher than the recommended value. Therefore, the emissions from e-waste recycling processes should be considered as an important source of air pollution, and more efficient control measures should be taken in the future.
Collapse
Affiliation(s)
- Hailin Wang
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology Application, Beijing Municipal Research Institute of Environment Protection, Beijing, 100037, China
| | - Run Hao
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology Application, Beijing Municipal Research Institute of Environment Protection, Beijing, 100037, China
| | - Lei Nie
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology Application, Beijing Municipal Research Institute of Environment Protection, Beijing, 100037, China
| | - Xin Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
40
|
Prestage J, Day C, Husheer SL, Winter WT, Ho WO, Saffell JR, Hutter T. Selective Detection of Volatile Organics in a Mixture Using a Photoionization Detector and Thermal Desorption from a Nanoporous Preconcentrator. ACS Sens 2022; 7:304-311. [PMID: 34958564 DOI: 10.1021/acssensors.1c02344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The selective detection of individual hazardous volatile organic compounds (VOCs) within a mixture is of great importance in industrial contexts due to environmental and health concerns. Achieving this with inexpensive, portable detectors continues to be a significant challenge. Here, a novel thermal separator system coupled with a photoionization detector has been developed, and its ability to selectively detect the VOCs isopropanol and 1-octene from a mixture of the two has been studied. The system includes a nanoporous silica preconcentrator in conjunction with a commercially available photoionization detector (PID). The PID is a broadband total VOC sensor with little selectivity; however, when used in conjunction with our thermal desorption approach, selective VOC detection within a mixture can be achieved. VOCs are adsorbed in the nanoporous silica over a 5 min period at 5 °C before being desorbed by heating at a fixed rate to 70 °C and detected by the PID. Different VOCs desorb at different times/temperatures, and mathematical analysis of the set of PID responses over time enabled the contributions from isopropanol and 1-octene to be separated. The concentrations of each compound individually could be measured in a mixture with limits of detection less than 10 ppbv and linearity errors less than 1%. Demonstration of a separation of a mixture of chemically similar compounds, benzene and o-xylene, is also provided.
Collapse
Affiliation(s)
| | - Coco Day
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | | | | | - Wah O. Ho
- Alphasense Ltd., Sensor Technology House, 300 Avenue West, Skyline 120,
Great Notley, Essex CM77 7AA, U.K
| | - John R. Saffell
- SensorHut Ltd., Vision Park, Cambridge CB24 9ZR, U.K
- Alphasense Ltd., Sensor Technology House, 300 Avenue West, Skyline 120,
Great Notley, Essex CM77 7AA, U.K
| | - Tanya Hutter
- SensorHut Ltd., Vision Park, Cambridge CB24 9ZR, U.K
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Ma J, Chen Z, Wang J, Wang Y, Li L. Diffusion simulation, health risks, ozone and secondary organic aerosol formation potential of gaseous pollutants from rural comprehensive waste treatment plant. CHEMOSPHERE 2022; 286:131857. [PMID: 34392199 DOI: 10.1016/j.chemosphere.2021.131857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive waste treatment plants (CWTPs) are significant sources of gaseous pollutants such as odors, volatile organic compounds (VOCs) and nitrogen oxides (NOx), polluting the environment and endangering human health. This study conducted on-site investigations on gaseous pollutants emissions from different areas of a CWTP. A total of 10 pollutants were identified of which ammonia (11.32 mg/m³ in average) was the main odorous substance, and benzene (19.51 mg/m³ in average) and toluene (42.07 mg/m³ in average) were the main VOCs. The feeding workshop (FW) was considered the main source of gaseous pollutants. The Gaussian plume model demonstrated that the pollution became more serious after spreading in the southeast downwind direction. Occupational exposure risks of on-site workers were mainly attributed to hydrogen sulfide, ammonia, benzene, and toluene, as their hazard index (HI) and lifetime cancer risk (CR) exceeded the recommended occupational safety limits. The gaseous pollutants diffused from CWTP may still pose a potential health risk to residents within a range of up to 7.5 km. The emulation and quantification of ozone formation potential by methods of Propyl-Equiv and MIR demonstrated that the contribution rate of toluene presented in each stage of CWTP exceed 80 %. Toluene was also the largest contributor to secondary organic aerosol with the contribution rate reached 56.34-85.14 %, followed by benzene (14.72-38.52 %). This research provides a basis for the reduction and control of gaseous pollutants in the treatment and disposal of rural domestic waste.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zexiang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
42
|
Full-Scale Odor Abatement Technologies in Wastewater Treatment Plants (WWTPs): A Review. WATER 2021. [DOI: 10.3390/w13243503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of air pollutants from the operation of wastewater treatment plants (WWTPs) is often a cause of odor annoyance for the people living in the surrounding area. Odors have been indeed recently classified as atmospheric pollutants and are the main cause of complaints to local authorities. In this context, the implementation of effective treatment solutions is of key importance for urban water cycle management. This work presents a critical review of the state of the art of odor treatment technologies (OTTs) applied in full-scale WWTPs to address this issue. An overview of these technologies is given by discussing their strengths and weaknesses. A sensitivity analysis is presented, by considering land requirements, operational parameters and efficiencies, based on data of full-scale applications. The investment and operating costs have been reviewed with reference to the different OTTs. Biofilters and biotrickling filters represent the two most applied technologies for odor abatement at full-scale plants, due to lower costs and high removal efficiencies. An analysis of the odors emitted by the different wastewater treatment units is reported, with the aim of identifying the principal odor sources. Innovative and sustainable technologies are also presented and discussed, evaluating their potential for full-scale applicability.
Collapse
|
43
|
Xie G, Chen H, Zhang F, Shang X, Zhan B, Zeng L, Mu Y, Mellouki A, Tang X, Chen J. Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147956. [PMID: 34052493 DOI: 10.1016/j.scitotenv.2021.147956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Severe volatile organic compound (VOC) pollution has become an urgent problem during the heating season in the North China Plain (NCP), as exposure to hazardous VOCs can lead to chronic or acute diseases. A campaign with online VOC measurements was conducted at a rural site in Wangdu, NCP during the 2018 heating season to characterize the compositions and associated sources of VOCs and to assess their potential health risks. The total concentration of VOCs with 94 identified species was 77.21 ± 54.39 ppb. Seven source factors were identified by non-negative matrix factorization, including coal combustion (36.1%), LPG usage (21.1%), solvent usage (13.9%), biomass burning and secondary formation (14.2%), background (7.0%), industrial emissions (4.5%), and vehicle emissions (3.3%). The point estimate approach and Monte Carlo simulation were used to estimate the carcinogenic and non-carcinogenic risks of harzadous VOCs. The results showed that the cumulative health risk of VOCs was above the safety level. Acrolein, 1.2-dichloroethane, 1,2-dichloropropane, chloroform, 1,3-butadiene, and benzene were identified as the key hazardous VOCs in Wangdu. Benzene had the highest average carcinogenic risk. Solvent usage and secondary formation were the dominant sources of adverse health effects. During the Spring Festival, most sources were sharply reduced; and VOC concentration declined by 49%. However, coal and biomass consumptions remained relatively large, probably due to heating demand. This study provides important references for the control strategies of VOCs during the heating season in heavily polluted rural areas in the NCP.
Collapse
Affiliation(s)
- Guangzhao Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China.
| | - Fei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Acadamy of Environment Sciences, Shanghai 200233, China
| | - Xiaona Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Bixin Zhan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Limin Zeng
- School of Environmental Science & Engineering, Peking University, Beijing 100071, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Abdelwahid Mellouki
- Institut de Combustion, Aerothermique, Reactivite et Environnement, CNRS, 45071 Orleans cedex 02, France
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
44
|
Li YW, Ma WL. Photocatalytic oxidation technology for indoor air pollutants elimination: A review. CHEMOSPHERE 2021; 280:130667. [PMID: 34162075 DOI: 10.1016/j.chemosphere.2021.130667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
As more people are spending the majority of their daily lives indoors, indoor air quality has been acknowledged as an important factor influencing human health, with increasing research attention in recent decades. Indoor air pollutants (IAPs), such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), can cause acute irritation and chronic diseases. Photocatalytic oxidation (PCO) technology is an efficient approach for eliminating IAPs. In this review, the development of PCO technology was explained and discussed to promote future development of PCO technology for IAP elimination. First, the health effects and the measured concentrations of typical VOCs and SVOCs in indoor environments worldwide were briefly introduced. Subsequently, the development and limitations of some typical photocatalytic reactors (including packed-bed reactors, monolithic reactors, optical fiber reactors, and microreactors) were summarized and compared. Then, the influences of operating parameters (including initial concentration of contaminants, relative humidity, space velocity, light source and intensity, catalyst support materials, and immobilization method) and the degradation pathways as well as intermediates of PCO technology were elucidated. Finally, the possible challenges and future development directions regarding PCO technology for IAP elimination were critically proposed and addressed.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
45
|
Rovira J, Nadal M, Schuhmacher M, Domingo JL. Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147550. [PMID: 33991912 DOI: 10.1016/j.scitotenv.2021.147550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Chemical industries and oil refineries are known emission sources of environmental contaminants, such as metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), among others. Based on the toxicological potential of these pollutants, harmful health effects can be expected for the population living near these facilities. One of the largest chemical/petrochemical complexes in Europe is located in Tarragona County (Catalonia, Spain). In the last two decades, a number of investigations aimed at assessing the environmental impact of air pollutants potentially emitted by this industrial complex have been carried out. The present paper is a review of the available scientific information on the levels of air pollutants related with the activities of this chemical/petrochemical complex. Although there are currently some data on the environmental burdens of metals/metalloids, PAHs, VOCs and PCDD/Fs, there is an evident lack of specific biological monitoring studies on human health. Taking into account the amount of chemicals released to air and their toxicity, it is essential to perform an in-depth analysis of the current health status of the population living in Tarragona County.
Collapse
Affiliation(s)
- Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
46
|
Hu G, Liu H, Chen C, Li J, Hou H, Hewage K, Sadiq R. An integrated geospatial correlation analysis and human health risk assessment approach for investigating abandoned industrial sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112891. [PMID: 34289590 DOI: 10.1016/j.jenvman.2021.112891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
An integrated geospatial correlation analysis (GCA)-human health risk assessment (HHRA) approach was developed to investigate abandoned industrial sites featured by heterogeneous contamination data. Critical areas of high health risk concerns can be prioritized for remediation using the integrated approach. An abandoned chemical complex site in Hubei, China was investigated as a case study. GCA and HHRA were performed using soil and groundwater sampling data collected in 2016 and 2019. Benzene, chlorobenzene, dichlorobenzenes, 2-nitrochlorobenzene, and α-hexachlorocyclohexane were determined to be critical contaminants in soil. The 2019 sampling data revealed new contaminated locations that were not found in the 2016 sampling campaign. High concentrations (89.81-386.55 mg/L) of vinyl chloride were also found in groundwater samples. Several critical location clusters of high concentrations of dichlorobenzenes, chlorobenzene, and α-hexachlorocyclohexane were found within the site according to the GCA outcomes. These contaminants could pose significant cancer and non-cancer risks to onsite workers. The critical areas were ranked according to cancer and non-cancer risks estimated by HHRA, respectively, for informed remediation planning. Among the critical contaminants, α-hexachlorocyclohexane, 2-nitrochlorobenzene, and 1,4-dichlorobenzene in soil, as well as vinyl chloride in groundwater, contributed a predominant part to the total health risk. The integrated approach can be used to assess the contamination of other similar abandoned industrial complex sites.
Collapse
Affiliation(s)
- Guangji Hu
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC, V1V 1V7, Canada.
| | - Huan Liu
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC, V1V 1V7, Canada.
| | - Chang Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jianbing Li
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, Zhejiang Province, 325035, China; Environmental Engineering Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei, 430070, China.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC, V1V 1V7, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
47
|
Zhang Q, Guo X, Zheng M, Chen D, Chen X. Altering microbial communities: A possible way of lactic acid bacteria inoculants changing smell of silage. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Wang D, Li X, Zhang X, Zhao W, Zhang W, Wu S, Shao X, Nie L. Spatial distribution of health risks for residents located close to solvent-consuming industrial VOC emission sources. J Environ Sci (China) 2021; 107:38-48. [PMID: 34412786 DOI: 10.1016/j.jes.2021.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/13/2023]
Abstract
Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds (VOCs). In conjunction with epidemiologic studies, water-based paints (WBPs) and solvent-based paints (SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively, to simulate the effects of consuming solvents emitted during industrial production. And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail. The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area. The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively; meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources. Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavy-polluting days, respectively. Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources. The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Li
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Environment Protection, Beijing 100037, China
| | - Xinmin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjuan Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiqi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuaifeng Wu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xia Shao
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Environment Protection, Beijing 100037, China.
| | - Lei Nie
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Environment Protection, Beijing 100037, China.
| |
Collapse
|
49
|
Gao M, Teng W, Du Z, Nie L, An X, Liu W, Sun X, Shen Z, Shi A. Source profiles and emission factors of VOCs from solvent-based architectural coatings and their contributions to ozone and secondary organic aerosol formation in China. CHEMOSPHERE 2021; 275:129815. [PMID: 33639547 DOI: 10.1016/j.chemosphere.2021.129815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) from solvent-based architectural coatings (SBACs) play an important role in photochemical air pollution with increasing consumption of architectural coatings in China. In this study, we collected 148 typical SBACs of 3 types in China. The TVOC emission factors and source profiles were established, the contributions of SBACs to ozone and secondary organic aerosol (SOA) formation were investigated. The VOC emissions and O3 and SOA amounts formed in chemical reactions from SBACs in 2017 were estimated. Key organic groups and VOC species with high reactivity were identified. According to the results, the TVOC emission factors were 507.17 g L-1 for solvent-based anticorrosive coatings, 381.34 g L-1 for solvent-based floor coatings and 459.68 g L-1 for solvent-based fire-retardant coatings. The VOC emissions were 186,902.11 t, 88,225.41 t and 71,352.32 t; the O3 amounts formed were 742,001.39 t, 397,896.60 t and 244,738.46 t; the SOA amounts formed were 3934.29 t, 2488.04 t and 1104.61 t, respectively, from 3 types of SBACs in 2017. The O3 production factors were 1781.82 g O3 (kg paint)-1, 1457.50 g O3 (kg paint)-1 and 1176.63 g O3 (kg paint)-1, the SOA production factors were 9.45 g SOA (kg paint)-1, 9.11 g SOA (kg paint)-1 and 5.31 g SOA (kg paint)-1, for 3 types of SBACs. Priority should be given to organic group of aromatics and top 17 VOC species with high reactivity for O3 and SOA eliminating strategies, especially three xylenes (o-xylene, m-xylene and p-xylene), ethylbenzene, trimethyl benzenes (1,3,5-trimethyl benzene, 1,2,3-Trimethyl benzene) and toluene.
Collapse
Affiliation(s)
- Meiping Gao
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Wei Teng
- Appraisal Center for Environment & Engineering Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Zhenxia Du
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lei Nie
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Xiaoshuan An
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Wenwen Liu
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Xuechun Sun
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhengchao Shen
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Aijun Shi
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| |
Collapse
|
50
|
Chen D, Liu R, Lin Q, Ma S, Li G, Yu Y, Zhang C, An T. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. CHEMOSPHERE 2021; 275:130022. [PMID: 33647682 DOI: 10.1016/j.chemosphere.2021.130022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The dismantling of electrical and electronic waste (e-waste) can release various Volatile organic compounds (VOCs), impacting the surrounding ambient environment. We investigated the spatio-temporal characteristics and health risks of the ambient VOCs emitted in a typical e-waste dismantling region by conducting multi-site sampling campaigns in four seasons. The pollution of benzene, toluene, ethylbenzene, and xylenes (BTEX) in the e-waste dismantling park has relation to e-waste dismantling by seasonal trend analysis. The highest concentrations of most VOCs occurred in winter and autumn, while the lowest levels were observed in summer and spring. The spatial distribution map revealed the e-waste dismantling park to be a hotspot of BTEX, 1,2-dichloropropane (1,2-DCP), and 1,2-dichloroethane (1,2-DCA), while two major residential areas were also the hotspots of BTEX. The e-waste emission source contributed 20.14% to the total VOCs in the e-waste dismantling park, while it was absent in the major residential and rural areas. The cancer risk assessment showed that six VOCs exceeded 1.0 × 10-6 in the e-waste dismantling park, while only three or four compounds exceeded this risk in other areas. The noncancer risks of all compounds were below the safety threshold. This study supplements the existing knowledge on VOC pollution from e-waste dismantling and expands the research scope of chemical pollution caused by e-waste.
Collapse
Affiliation(s)
- Daijin Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chaosheng Zhang
- GIS Centre, Ryan Institute and School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|