1
|
Lu L, Shan C, Tong D, Yu Y, Zhang W, Zhang X, Shu Y, Li W, Liu G, Shi W. Olfactory toxicity of tetrabromobisphenol A to the goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135661. [PMID: 39213767 DOI: 10.1016/j.jhazmat.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Liu M, Brandsma SH, Schreder E. From e-waste to living space: Flame retardants contaminating household items add to concern about plastic recycling. CHEMOSPHERE 2024; 365:143319. [PMID: 39271080 DOI: 10.1016/j.chemosphere.2024.143319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) are commonly used in electric and electronic products in high concentrations to prevent or retard fire. Health concerns related to flame retardants (FRs) include carcinogenicity, endocrine disruption, neurotoxicity, and reproductive and developmental toxicity. Globally, a lack of transparency related to chemicals in products and limited restrictions on use of FRs in electronics have led to widespread use and dissemination of harmful FRs. Despite the lack of transparency and restrictions, plastics from electronics are often recycled and can be incorporated in household items that do not require flame retardancy, resulting in potentially high and unnecessary exposure. This study sought to determine whether black plastic household products sold on the U.S. market contained emerging and phased-out FRs and whether polymer type was predictive of contamination. A total of 203 products were screened for bromine (Br), and products containing >50 ppm Br were analyzed for BFRs, OPFRs, and plastic polymers (e.g. acrylonitrile butadiene styrene, high impact polystyrene, polypropylene). FRs were found in 85% of analyzed products, with total FR concentrations ranging up to 22,800 mg/kg. FRs detected include the restricted compound deca-BDE, which was used widely in electronics casings, as well as its replacements decabromodiphenyl ethane (DBDPE) and 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TBPP-TAZ) along with associated compound 2,4,6-tribromophenol (2,4,6-TBP), recently detected in breast milk. Plastic typically used in electronics (styrene-based) contained significantly higher levels of ∑FRs than plastics less typically used for electronics (polypropylene and nylon). Estimation of exposure to BDE-209 from contaminated kitchen utensils indicated users would have a median intake of 34,700 ng/day, exceeding estimates for intake from dust and diet. The detection of FRs in collected household products indicates that recycling, without the necessary transparency and restrictions to ensure safety, is resulting in unexpected exposure to toxic flame retardants in household items.
Collapse
Affiliation(s)
- Megan Liu
- Toxic-Free-Future, 4649 Sunnyside Ave N Suite 540, Seattle, WA 98103, United States.
| | - Sicco H Brandsma
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| | - Erika Schreder
- Toxic-Free-Future, 4649 Sunnyside Ave N Suite 540, Seattle, WA 98103, United States
| |
Collapse
|
3
|
Sjöström Y, Tao F, Ricklund N, de Wit CA, Hagström K, Hagberg J. Children's exposure to halogenated flame retardants and organophosphate esters through dermal absorption and hand-to-mouth ingestion in Swedish preschools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173635. [PMID: 38821289 DOI: 10.1016/j.scitotenv.2024.173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Children are exposed to endocrine disrupting chemicals (EDCs) through inhalation and ingestion, as well as through dermal contact in their everyday indoor environments. The dermal loadings of EDCs may contribute significantly to children's total EDC exposure due to dermal absorption as well as hand-to-mouth behaviors. The aim of this study was to measure potential EDCs, specifically halogenated flame retardants (HFRs) and organophosphate esters (OPEs), on children's hands during preschool attendance and to assess possible determinants of exposure in preschool indoor environments in Sweden. For this, 115 handwipe samples were collected in winter and spring from 60 participating children (arithmetic mean age 4.5 years, standard deviation 1.0) and analyzed for 50 compounds. Out of these, 31 compounds were identified in the majority of samples. Levels were generally several orders of magnitude higher for OPEs than HFRs, and 2-ethylhexyl diphenyl phosphate (EHDPP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected in the highest median masses, 61 and 56 ng/wipe, respectively. Of the HFRs, bis(2-ethyl-1-hexyl)-2,3,4,5-tetrabromobenzoate (BEH-TEBP) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) were detected in the highest median masses, 2.8 and 1.8 ng/wipe, respectively. HFR and/or OPE levels were found to be affected by the number of plastic toys, and electrical and electronic devices, season, municipality, as well as building and/or renovation before/after 2004. Yet, the calculated health risks for single compounds were below available reference dose values for exposure through dermal uptake as well as for ingestion using mean hand-to-mouth contact rate. However, assuming a high hand-to-mouth contact rate, at the 95th percentile, the calculated hazard quotient was above 1 for the maximum handwipe mass of TBOEP found in this study, suggesting a risk of negative health effects. Furthermore, considering additive effects from similar compounds, the results of this study indicate potential concern if additional exposure from other routes is as high.
Collapse
Affiliation(s)
- Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
4
|
Matheson R, Sexton CL, Wise CF, O'Brien J, Keyser AJ, Kauffman M, Dunbar MD, Stapleton HM, Ruple A. Silicone tags as an effective method of monitoring environmental contaminant exposures in a geographically diverse sample of dogs from the Dog Aging Project. Front Vet Sci 2024; 11:1394061. [PMID: 39220770 PMCID: PMC11363705 DOI: 10.3389/fvets.2024.1394061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Companion animals offer a unique opportunity to investigate risk factors and exposures in our shared environment. Passive sampling techniques have proven effective in capturing environmental exposures in dogs and humans. Methods In a pilot study, we deployed silicone monitoring devices (tags) on the collars of a sample of 15 dogs from the Dog Aging Project Pack cohort for a period of 120 h (5 days). We extracted and analyzed the tags via gas chromatography-mass spectrometry for 119 chemical compounds in and around participants' homes. Results Analytes belonging to the following chemical classes were detected: brominated flame retardants (BFRs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and personal care products. The types and amounts of analytes detected varied substantially among participants. Discussion Data from this pilot study indicate that silicone dog tags are an effective means to detect and measure chemical exposure in and around pet dogs' households. Having created a sound methodological infrastructure, we will deploy tags to a geographically diverse and larger sample size of Dog Aging Project participants with a goal of further assessing geographic variation in exposures.
Collapse
Affiliation(s)
- Rylee Matheson
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Courtney L Sexton
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Janice O'Brien
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amber J Keyser
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Mandy Kauffman
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Audrey Ruple
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Xu X, Zhang Y, Huang H, Chen J, Shi T. Distribution, transformation, and toxic effects of the flame retardant tetrabromobisphenol S and its derivatives in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174799. [PMID: 39019271 DOI: 10.1016/j.scitotenv.2024.174799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
As widely used alternative brominated flame retardants, tetrabromobisphenol S (TBBPS) and its derivatives have attracted increasing amounts of attention in the field of environmental science. Previous studies have shown that TBBPS and its derivatives easily accumulate in environmental media and may cause risks to environmental safety and human health. Therefore, to explore the environmental behaviours of TBBPS and its derivatives, in this paper, we summarized relevant research on the distribution of these compounds in water, the atmosphere, soil and food/biota, as well as their transformation mechanisms (biological and nonbiological) and toxic effects. The summary results show that TBBPS and its derivatives have been detected in water, the atmosphere, soil, and food/biota globally, making them a ubiquitous pollutant. These compounds may be subject to adsorption, photolysis or biological degradation after being released into the environment, which in turn increases their ecological risk. TBBPS and its derivatives can cause a series of toxic effects, such as neurotoxicity, hepatotoxicity, cytotoxicity, thyrotoxicity, genotoxicity and phytotoxicity, to cells or living organisms in in vitro and in vivo exposure. Toxicological studies suggest that TBBPS as an alternative to TBBPA is not entirely environmentally friendly. Finally, we propose future directions for research on TBBPS and its derivatives, including the application of new technologies in studies on the migration, transformation, toxicology and human exposure risk assessment of TBBPS and its derivatives in the environment. This review provides useful information for obtaining a better understanding of the behaviour and potential toxic effects of TBBPS and its derivatives in the environment.
Collapse
Affiliation(s)
- Xuehui Xu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China; Key Laboratory of Grassland Resources, Ministry of Education P.R. of China, Hohhot 010018, China.
| | - Yuexin Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jiafeng Chen
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Tailong Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| |
Collapse
|
6
|
Demelash Abera B, Alefe Adimas M. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024; 10:e33905. [PMID: 39050454 PMCID: PMC11268356 DOI: 10.1016/j.heliyon.2024.e33905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.
Collapse
|
7
|
Tian Z, Li J, Tang H, Liu W, Hou H, Wang C, Li D, Chen G, Xia T, Wang A. ZLN005 alleviates PBDE-47 induced impairment of mitochondrial translation and neurotoxicity through PGC-1α/ERRα axis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134331. [PMID: 38677116 DOI: 10.1016/j.jhazmat.2024.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenhui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Haoqi Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenxi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gaoshuai Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Chen Y, Che J, Wang J, Tuo Y, Zhao H, Chen Y, Sai L, Zhao H, Zhang R. Functional Melanin Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for High-Sensitivity Detection of TBBPA and TBBPS Contaminations in Animal-Derived Foodstuffs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6744-6753. [PMID: 38498411 DOI: 10.1021/acs.jafc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.
Collapse
Affiliation(s)
- Yuan Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiaying Che
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiagui Wang
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yuanyuan Tuo
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huayu Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yi Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Luheng Sai
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huifang Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030012, China
| |
Collapse
|
10
|
Yin W, Xu R, Zou J, Wang Y, Zhang Y. Single and combined association between brominated flame retardants and cardiovascular disease: a large-scale cross-sectional study. Front Public Health 2024; 12:1357052. [PMID: 38596517 PMCID: PMC11002127 DOI: 10.3389/fpubh.2024.1357052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The single and combined association between brominated flame retardants (BFRs) and cardiovascular diseases (CVD) has remained unelucidated. This research aimed at exploring the associations between mixture of BFRs and CVD. Methods This research encompassed adult participants from the National Health and Nutrition Examination Survey in 2005-2016. The weighted quantile sum (WQS) model and quantile g-computation (QGC) model were applied to examine the combined effects of BFRs mixture on CVD. Results In this research, overall 7,032 individuals were included. In comparison with the lowest quartile, the highest quartile of PBB153 showed a positive association with CVD, with odds ratio (OR) values and 95% confidence intervals (CI) of 19.2 (10.9, 34.0). Furthermore, the acquired data indicated that PBB153 (OR: 1.23; 95% CI: 1.02, 1.49), PBB99 (OR: 1.29; 95% CI: 1.06, 1.58), and PBB154 (OR: 1.29; 95% CI: 1.02, 1.63) were linked to congestive heart failure. PBB153 was also related to coronary heart disease (OR: 1.29; 95% CI: 1.06, 1.56). Additionally, a positive correlation between the BFRs mixture and CVD (positive model: OR: 1.23; 95% CI: 1.03, 1.47) was observed in the weighted quantile sum (WQS) model and the quantile g-computation (QGC) model. Discussion Therefore, exposure to BFRs has been observed to heighten the risk of cardiovascular disease in US adults, particularly in the case of PBB153. Further investigation is warranted through a large-scale cohort study to validate and strengthen these findings.
Collapse
Affiliation(s)
- Wenhao Yin
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Rui Xu
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiyu Zou
- Department of Respiratory Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yaqin Wang
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
11
|
Chen X, Hu G, He B, Cao Z, He J, Luo H, Li Y, Yu Q. Effect of brominated flame retardants exposure on liver function and the risk of non-alcoholic fatty liver disease in the US population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116142. [PMID: 38394757 DOI: 10.1016/j.ecoenv.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The relationship between brominated flame retardants (BFRs) exposure and the human liver was still not well understood. METHODS A total of 3108 participants (age > 12) from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016 were included as the study population, with nine BFRs exhibiting a detection rate of over 70% serving as the exposure factor. The singular effects and combined effects of BFRs exposure on liver injury, non-alcoholic fatty liver disease (NAFLD), and advanced hepatic fibrosis (AHF) were evaluated separately. Finally, COX regression was employed to explore the hazard ratios associated with individual BFRs. RESULTS In our analysis of individual exposures, we found significant positive association of PBB153 with alanine aminotransferase (ALT), PBB153 with aspartate aminotransferase (AST), PBDE47, PBDE85, PBDE99, PBDE100, and PBDE154 with alkaline phosphatase (ALP), PBDE28 and PBB153 with gamma-glutamyl transaminase (GGT), PBB153 with the risk of NAFLD and AHF; and significant negative association of PBB153 with ALP, PBDE28, PBDE47, PBDE99, PBDE100, PBDE85, PBDE209, and PBDE154 with albumin (ALB), PBB153 with AST/ALT. The nonlinear analysis results from Restricted Cubic Spline (RCS) further validated these associations (all P<0.05). In the mixed analysis combining Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analysis, BFRs were positively associated with ALT (β>0, P<0.001), GGT (β>0, P<0.001), and the risk of NAFLD (OR>1, P=0.007). Conversely, BFRs exhibited significant negative correlations with ALP (β<0, P<0.001), ALB (β<0, P<0.001), and AST/ALT (β<0, P<0.001). Furthermore, the COX regression analysis revealed that PBB153 had the highest hazard ratio among the BFRs. CONCLUSIONS BFR exposure may increase the risk of liver injury and NAFLD, with no significant association with AHF risk. The impact of BFR exposure on liver health should not be overlooked, especially in individuals residing in impoverished areas.
Collapse
Affiliation(s)
- Xiong Chen
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - GuoHuang Hu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - Bin He
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - Zhen Cao
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - JianFeng He
- Department of Vascular Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - HaiLong Luo
- Department of Endoscopy, Hunan Province Chest Hospital, No. 519, Xianjia Lake Road, Changsha 410000, PR China
| | - YiJin Li
- Department of Colorectal and Anorectal Surgery, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, No. 58, Lushan Road, Changsha 410000, PR China
| | - QianLe Yu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China.
| |
Collapse
|
12
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Hepatic glucuronidation of tetrabromobisphenol A and tetrachlorobisphenol A: interspecies differences in humans and laboratory animals and responsible UDP-glucuronosyltransferase isoforms in humans. Arch Toxicol 2024; 98:837-848. [PMID: 38182911 DOI: 10.1007/s00204-023-03659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, 790-8578, Japan
| | - Yoko Mori
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| |
Collapse
|
13
|
Rani P, Husain A, Bhasin KK, Kumar G. Zinc(II)-MOF: A Versatile Luminescent Sensor for Selective Molecular Recognition of Flame Retardants and Antibiotics. Inorg Chem 2024; 63:3486-3498. [PMID: 38329939 DOI: 10.1021/acs.inorgchem.3c04214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An exceptional Zinc(II)-organic framework with the formula [{Zn(L4-py)(bdc)}·DMF]n (Zn-MOF) has been constructed solvothermally using a novel linker L4-py {2,7-bis(3-(pyridin-4-ylethynyl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone}, coligand H2bdc (1,4-benzenedicarboxylic acid), and ZnBF4·xH2O. The ligand L4-py has been fabricated after functionalization of NDA (1,4,5,8-naphthalenetetracarboxylic dianhydride) core with 3-(pyridin-4-ylethynyl)phenyl group. The single-crystal X-ray analysis reveals that Zn-MOF exhibits a comprehensive three-dimensional (3D) framework architecture and features (4)-connected uninodal dia; 4/6/c1; sqc6 topology with point symbol {66} and two-dimensional (2D) + 2D, parallel polycatenation. Notably, Zn-MOF displayed excellent fluorescence phenomenon and stability in water as well as in methanol solvents and was harnessed as a versatile sensor, demonstrating selective and sensitive molecular recognition of flame retardants and antibiotics. Notably, Zn-MOF displayed 57 and 49.5% quenching efficiency for the flame-retardant pentabromophenol (PBP) and 3,3',5,5'-tetrabromobisphenol A (TBPA), respectively. Whereas an outstanding 90% quenching efficiency was observed for antibiotics, tetracycline (TC) and secnidazole (SD). The mechanistic investigations of this luminescence quenching suggest that this might be primarily occurring via the Fourier resonance energy transfer (FRET) and photoinduced electron transfer (PET) mechanisms, which might be assisted by the competitive absorption and host-guest interactions. The π-electron-rich framework structure of sensor Zn-MOF activates this mechanism.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar, Punjab 144012, India
| | - K K Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Girijesh Kumar
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| |
Collapse
|
14
|
Li Y, Liu C, Yang H, He W, Li B, Zhu X, Liu S, Jia S, Li R, Tang KHD. Leaching of chemicals from microplastics: A review of chemical types, leaching mechanisms and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167666. [PMID: 37820817 DOI: 10.1016/j.scitotenv.2023.167666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
It is widely known that microplastics are present everywhere and they pose certain risks to the ecosystem and humans which are partly attributed to the leaching of additives and chemicals from them. However, the leaching mechanisms remain insufficiently understood. This review paper aims to comprehensively and critically illustrate the leaching mechanisms in biotic and abiotic environments. It analyzes and synthesizes the factors influencing the leaching processes. It achieves the aims by reviewing >165 relevant scholarly papers published mainly in the past 10 years. According to this review, flame retardants, plasticizers and antioxidants are the three main groups of additives in microplastics with the potentials to disrupt endocrine functions, reproduction, brain development and kidney functions. Upon ingestion, the MPs are exposed to digestive fluids containing enzymes and acids which facilitate their degradation and leaching of chemicals. Fats and oils in the digestive tracts also aid the leaching and transport of these chemicals particularly the fat-soluble ones. Leaching is highly variable depending on chemical properties and bisphenols leach to a larger extent than other endocrine disrupting chemicals. However, the rates of leaching remain poorly understood, owing probably to multiple factors at play. Diffusion and partitioning are two main mechanisms of leaching in biotic and abiotic environments. Photodegradation is more predominant in the latter, generating reactive oxygen species which cause microplastic aging and leaching with minimal destruction of the chemicals leached. Effects of microplastic sizes on leaching are governed by Sherwood number, thickness of aqueous boundary layer and desorption half-life. This review contributes to better understanding of leaching of chemicals from microplastics which affect their ecotoxicities and human toxicity.
Collapse
Affiliation(s)
- Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Chen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Haotian Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Wenhui He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Beibei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Xinyi Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shuyan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shihao Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Li J, Dai L, Feng Y, Cao Z, Ding Y, Xu H, Xu A, Du H. Multigenerational effects and mutagenicity of three flame retardants on germ cells in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115815. [PMID: 38091675 DOI: 10.1016/j.ecoenv.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.
Collapse
Affiliation(s)
- Jiali Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China
| | - Linglong Dai
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Yu Feng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Zhenxiao Cao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuting Ding
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| |
Collapse
|
16
|
Chbihi K, Menouni A, Hardy E, Creta M, Grova N, Van Nieuwenhuyse A, Godderis L, El Jaafari S, Duca RC. Exposure of children to brominated flame retardants and heavy metals in Morocco: Urine and blood levels in association with global cytosine and adenine methylation. ENVIRONMENT INTERNATIONAL 2024; 183:108409. [PMID: 38185044 DOI: 10.1016/j.envint.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Persistent pollutants, namely brominated flame retardants (BFRs) and heavy metals, are compounds that are added to a wide range of products and materials for preventing ignition, increasing the functionality of materials or improving their performance, e.g. electric conductivity. The exposure of children might consequently be inferred, through indoor dust and hand-to-mouth or toy-chewing behaviors. The current study is aimed at assessing the exposure of Moroccan children to BFRs and heavy metal elements, and evaluating their associations with global DNA methylation. First, parents responded to a questionnaire pertaining to children's lifestyle, then blood and urine samples were collected from (n = 93) children aged between 5 and 11 years for biomonitoring and DNA methylation analysis. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL) while metal elements were detected in more than 90% of samples. BFRs showed no variations with global DNA methylation, unlike metal elements, which revealed significant associations with global DNA methylation markers, namely 5-mC, 5-hmC and N⁶-mA levels. Moroccan children may be exposed to flame retardants and heavy metals through several routes. Further research is required to assess the exposure and the health impacts of environmental pollutants and ultimately protect the Moroccan population by the prevention of adverse health effects.
Collapse
Affiliation(s)
- Kaoutar Chbihi
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| | - Aziza Menouni
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium
| | - Emilie Hardy
- Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Matteo Creta
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - An Van Nieuwenhuyse
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Lode Godderis
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium
| | - Samir El Jaafari
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco
| | - Radu-Corneliu Duca
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| |
Collapse
|
17
|
Zhang P, Meng F, Xia Y, Leng Y, Cui J. Deriving seawater quality criteria of tris(2-chloroethyl) phosphate for ecological risk assessment in China seas through species sensitivity distributions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119482. [PMID: 37939474 DOI: 10.1016/j.jenvman.2023.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), one of the widely used organophosphorus flame retardants (OPFRs), has been frequently detected in the marine environment in the seas off China. The existing freshwater biotoxicity data are not suited to derivation of the seawater quality criteria of TCEP and evaluating the associated ecological risks. This study aimed at deriving water quality criteria (WQC) of TCEP for marine organisms based on species sensitivity distribution (SSD) approach using the acute toxicity data generated from multispecies bioassays and chronic toxicity data by converting acute data with the acute-to-chronic ratios (ACRs); the derived WQC were then used to evaluate the ecological risk for TCEP in China Seas. According to median effective concentration (EC50) and median lethal concentration (LC50), TCEP had a moderate or low toxicity to eight marine species selected, among which mysid Neomysis awatschensis (96h-LC50 of 39.65 mg/L) and green alga Platymonas subcordiformis (96-h EC50 of 395.42 mg/L) were the most sensitive and the most tolerant, respectively. The acute and chronic hazardous concentrations of TCEP for 5% of marine species (HC5) were estimated to be 29.55 and 2.68 mg/L, respectively. The short-term and long-term WQC were derived to be 9.85 and 0.89 mg/L, respectively. The risk quotient (RQ) values indicated that TECP at current levels poses a negligible risk to marine ecosystems in China. These results will provide valuable reference for the government to establish a seawater quality standard for TCEP.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Leng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
18
|
van der Schyff V, Kalina J, Abballe A, Iamiceli AL, Govarts E, Melymuk L. Has Regulatory Action Reduced Human Exposure to Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19106-19124. [PMID: 37992205 PMCID: PMC10702444 DOI: 10.1021/acs.est.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Flame retardant (FR) exposure has been linked to several environmental and human health effects. Because of this, the production and use of several FRs are regulated globally. We reviewed the available records of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) in human breast milk from literature to evaluate the efficacy of regulation to reduce the exposure of FRs to humans. Two-hundred and seven studies were used for analyses to determine the spatial and temporal trends of FR exposure. North America consistently had the highest concentrations of PBDEs, while Asia and Oceania dominated HBCDD exposure. BDE-49 and -99 indicated decreasing temporal trends in most regions. BDE-153, with a longer half-life than the aforementioned isomers, typically exhibited a plateau in breast milk levels. No conclusive trend could be established for HBCDD, and insufficient information was available to determine a temporal trend for BDE-209. Breakpoint analyses indicated a significant decrease in BDE-47 and -99 in Europe around the time that regulation has been implemented, suggesting a positive effect of regulation on FR exposure. However, very few studies have been conducted globally (specifically in North America) after 2013, during the time when the most recent regulations have been implemented. This meta-analysis provides insight into global trends in human exposure to PBDEs and HBCDD, but the remaining uncertainty highlights the need for ongoing evaluation and monitoring, even after a compound group is regulated.
Collapse
Affiliation(s)
| | - Jiří Kalina
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| | - Annalisa Abballe
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Laura Iamiceli
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Govarts
- VITO
Health, Flemish Institute for Technological
Research (VITO), 2400 Mol, Belgium
| | - Lisa Melymuk
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| |
Collapse
|
19
|
Peng C, Zhang X, Chen Y, Wang L. Toxicity assessment of organophosphate flame retardant triphenyl phosphate (TPHP) on intestines in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115685. [PMID: 37976930 DOI: 10.1016/j.ecoenv.2023.115685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Triphenyl phosphate (TPHP), one widely used organophosphate flame retardant, has attracted accumulating attention due to its high detection rate in human biological samples. Up to date, the effects of TPHP exposure on intestinal health remain unexplored. In this study, BALB/c mice were used as a model and exposed to TPHP at dose of 2, 10, or 50 mg/kg body weight for 28 days. We observed Crohn's disease-like features in ileum and ulcerative colitis disease-like features in colon, such as shorter colon length, ileum/colon structure impairment, intestinal epithelial cell apoptosis, enrichment of proinflammatory cytokines and immune cells, and disruption of tight junction. Furthermore, we found that TPHP induced production of reactive oxygen species and apoptosis in intestinal epithelial Caco-2 cells, accompanied by disruption of tight junction between cells. To understand the molecular mechanism underlying TPHP-induced changes in intestines, we build the adverse outcome pathway (AOP) framework based on Comparative Toxicogenomics and GeneCards database. The AOP framework revealed that PI3K/AKT and FoxO signaling pathway might be associated with cellular apoptosis, an increase in ROS production, and increased inflammation response in mouse ileum and colon tissues challenged with TPHP. These results identified that TPHP induced IBD-like features and provided new perspectives for toxicity evaluation of TPHP.
Collapse
Affiliation(s)
- Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Xiaoqi Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
20
|
Yan Q, Xiao Z, Zhang X, Wang G, Zhong C, Qiu D, Huang S, Zheng L, Gao Z. Association of organophosphate flame retardants with all-cause and cause-specific mortality among adults aged 40 years and older. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115690. [PMID: 37976933 DOI: 10.1016/j.ecoenv.2023.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The longitudinal associations of urinary concentrations of diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) with all-cause, cardiovascular, and cancer mortality in a population of adults aged 40 years and older are still unclear. A total of 3238 participants were included in this cohort study. Urinary BCEP levels were positively associated with all-cause mortality and cardiovascular mortality. Specifically, a logarithmic increase in BCEP concentration was related to a 26 % higher risk of all-cause mortality and a 32 % higher risk of cardiovascular mortality. No significant associations were observed for DPHP and BDCPP in relation to mortality. Doseresponse analysis confirmed the linear associations of BCEP with all-cause and cardiovascular mortality and the nonlinear inverted U-shaped association between DPHP exposure and all-cause mortality. Notably, the economic burden associated with BCEP exposure was estimated, and it was shown that concentrations in the third tertile of BCEP exposure incurred approximately 507 billion dollars of financial burden for all-cause mortality and approximately 717 billion dollars for cardiovascular mortality. These results highlight the importance of addressing exposure to BCEP and its potential health impacts on the population. More research is warranted to explore the underlying mechanisms and develop strategies for reducing exposure to this harmful chemical.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihao Xiao
- School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Wang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dezhi Qiu
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Lei Zheng
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Mishra S, Ghosh S, van Hullebusch ED, Singh S, Das AP. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Appl Biochem Biotechnol 2023; 195:7859-7888. [PMID: 36988841 DOI: 10.1007/s12010-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.
Collapse
Affiliation(s)
- Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | | | - Eric D van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Shikha Singh
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India.
| |
Collapse
|
22
|
Tao F, Sjöström Y, de Wit CA, Hagström K, Hagberg J. Organohalogenated flame retardants and organophosphate esters from home and preschool dust in Sweden: Pollution characteristics, indoor sources and intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165198. [PMID: 37391153 DOI: 10.1016/j.scitotenv.2023.165198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
This study analysed settled dust samples in Sweden to assess children's combined exposure to 39 organohalogenated flame retardants (HFRs) and 11 organophosphate esters (OPEs) from homes and preschools. >94 % of the targeted compounds were present in dust, indicating widespread use of HFRs and OPEs in Swedish homes and preschools. Dust ingestion was the primary exposure pathway for most analytes, except BDE-209 and DBDPE, where dermal contact was predominant. Children's estimated intakes of ∑emerging HFRs and ∑legacy HFRs from homes were 1-4 times higher than from preschools, highlighting higher exposure risk for HFRs in homes compared to preschools. In a worst-case scenario, intakes of tris(2-butoxyethyl) phosphate (TBOEP) were 6 and 94 times lower than the reference dose for children in Sweden, indicating a potential concern if exposure from other routes like inhalation and diet is as high. The study also found significant positive correlations between dust concentrations of some PBDEs and emerging HFRs and the total number of foam mattresses and beds/m2, the number of foam-containing sofas/m2, and the number of TVs/m2 in the microenvironment, indicating these products as the main source of those compounds. Additionally, younger preschool building ages were found to be linked to higher ΣOPE concentrations in preschool dust, suggesting higher ΣOPE exposure. The comparison with earlier Swedish studies indicates decreasing dust concentrations for some banned and restricted legacy HFRs and OPEs but increasing trends for several emerging HFRs and several unrestricted OPEs. Therefore, the study concludes that emerging HFRs and OPEs are replacing legacy HFRs in products and building materials in homes and preschools, possibly leading to increased exposure of children.
Collapse
Affiliation(s)
- Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
23
|
Sun Y, Jiang G, Wu Q, Ye L, Li B. The role of tumor-associated macrophages in the progression, prognosis and treatment of endometrial cancer. Front Oncol 2023; 13:1213347. [PMID: 37810971 PMCID: PMC10556650 DOI: 10.3389/fonc.2023.1213347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main immune cells in the tumor microenvironment (TME) of endometrial cancer (EC). TAMs recruitment and polarization in EC is regulated by the TME of EC, culminating in a predominantly M2-like macrophage infiltration. TAMs promote lymphatic angiogenesis through cytokine secretion, aid immune escape of EC cells by synergizing with other immune cells, and contribute to the development of EC through secretion of exosomes so as to promoting EC development. EC is a hormone- and metabolism-dependent cancer, and TAMs promote EC through interactions on estrogen receptor (ER) and metabolic factors such as the metabolism of glucose, lipids, and amino acids. In addition, we have explored the predictive significance of some TAM-related indicators for EC prognosis, and TAMs show remarkable promise as a target for EC immunotherapy.
Collapse
Affiliation(s)
- Yihan Sun
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Genyi Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianhua Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Lei Ye
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Drábová L, Pulkrabová J, Hrbek V, Kocourek V, Hajšlová J. POPs and PAHs in fish oil-based food supplements at the Czech market. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:197-208. [PMID: 37055876 DOI: 10.1080/19393210.2023.2200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The objectives of this study were to assess concentrations of three groups of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in 44 fish oil-based food supplements, to estimate their daily intake by consumers and, to evaluate the compliance of the oil samples with the oil origin declarations (cod liver oil or fish oil). The concentrations of ∑PCBs (7 congeners), OCPs (19 compounds, represented mainly by ∑DDTs), ∑PBDEs (10 congeners), and ∑PAHs (16 compounds) found in samples ranged between 0.15-55.7 µg kg-1, 0.93-72.8 µg kg-1, 0.28-27.5 µg kg-1, and 0.32-51.9 µg kg-1, respectively. Besides, the authenticity of the oils was assessed based on the fingerprints obtained by DART-HRMS, an ambient mass spectrometry technique. Four samples declared as fish oil were probably prepared from cod liver oil, which is much cheaper. Furthermore, these samples contained elevated concentrations of halogenated POPs when compared to supplements produced from fish oil.
Collapse
Affiliation(s)
- Lucie Drábová
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Pulkrabová
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Vojtěch Hrbek
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Vladimír Kocourek
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Hajšlová
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
25
|
Zhang Y, Zhao B, Chen Q, Zhu F, Wang J, Fu X, Zhou T. Fate of organophosphate flame retardants (OPFRs) in the "Cambi® TH + AAD" of sludge in a WWTP in Beijing, China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:363-373. [PMID: 37523947 DOI: 10.1016/j.wasman.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Organophosphate flame retardants (OPFRs) are emerging environmental pollutants that cause endocrine disruption, neurotoxicity, and reproductive toxicity. Sewage sludge is an important source of tri-OPFRs that are released into the environment. The occurrence, distribution, and ecological risk of OPFRs in the full-scale "Cambi® thermal hydrolysis (TH) + advanced anaerobic digestion (AAD) + plate-frame pressure filtration" sludge treatment process is closely related to the application of sewage sludge. We tested sludge samples from a wastewater treatment plant in Beijing, China. Nine tri-OPFRs were detected in the sludge samples collected at different treatment units during four seasons. The ΣOPFRs decreased from 1,742.65-2,579.68 ng/g to 971.48-1,702.22 ng/g. The mass flow of tri-OPFRs in treated sludge decreased by 61.4%, 48.9%, 42.4%, and 63.9% in spring, summer, autumn and winter, respectively, effectively reducing the corresponding ecological risk. The ecological risk of tri-OPFRs in sludge in forestland utilization mainly lies in chlorinated tri-OPFRs, especially TCPP and TCEP. No >42.20 t/hm2 of sludge could be used continuously for one year to prevent tri-OPFRs from exceeding the low ecological risk level, indicating that the current commonly applied proportion of sludge (1.6-30 t/hm2) will likely not raise the ecological risk of tri-OPFRs.
Collapse
Affiliation(s)
- Yuhui Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing 10872, China
| | - Bing Zhao
- School of Environment & Natural Resources, Renmin University of China, Beijing 10872, China
| | - Qian Chen
- School of Environment & Natural Resources, Renmin University of China, Beijing 10872, China
| | - Fenfen Zhu
- School of Environment & Natural Resources, Renmin University of China, Beijing 10872, China.
| | - Jiawei Wang
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xingmin Fu
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Tiantian Zhou
- School of Environment & Natural Resources, Renmin University of China, Beijing 10872, China
| |
Collapse
|
26
|
Pietron WJ, Malagocki P, Warenik-Bany M. Feed as a source of polybrominated diphenyl ethers (PBDEs). ENVIRONMENTAL RESEARCH 2023; 231:116257. [PMID: 37245570 DOI: 10.1016/j.envres.2023.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
One of the most important routes for human exposure to polybrominated diphenyl ethers (PBDEs) is the ingestion of contaminated food. Food of animal origin safety is strongly related to feed quality. The aim of the study was the assessment of feeds and feed materials quality associated with ten PBDE congeners (BDE-28, 47, 49, 99, 100, 138, 153, 154, 183 and 209) contamination. The quality of 207 feed samples divided into eight categories (277/2012/EU) was checked using the gas chromatography-high resolution mass spectrometry (GC-HRMS). At least one congener was identified in 73% of the samples. All investigated fish oil, animal fat, and feed for fish were contaminated, and 80% of plant-origin feed samples were free of PBDEs. The highest median content of ∑10PBDE was found in fish oils (2260 ng kg-1) followed by fishmeal (530 ng kg-1). The lowest median was found in mineral feed additives, plant materials excluding vegetable oil and compound feed. BDE-209 was the most frequently detected congener (56%). All congeners except BDE-138 and BDE-183 were detected in 100% of the fish oil samples. Except for BDE-209, the congener detection frequencies did not exceed 20% in compound feed, feed of plant origin, and vegetable oils. Excluding BDE-209, similar congener profiles were found for fish oils, fishmeal and feed for fish, with BDE-47 in the highest concentration, followed by BDE-49 and BDE-100. Another pattern appeared in animal fat, with a higher median concentration of BDE-99 than BDE-47. Time-trend analysis of PBDE concentrations in fishmeal (n = 75) showed a 63% decrease in ∑10PBDE (p = 0.077) and a 50% decrease in the ∑9PBDE (p = 0.008) between 2017 and 2021. It proves the international legislation implemented to reduce PBDE environmental levels has been effective.
Collapse
Affiliation(s)
- Wojciech Jerzy Pietron
- Radiobiology Department, National Veterinary Research Institute, Pulawy, 24-100, Poland.
| | - Pawel Malagocki
- Radiobiology Department, National Veterinary Research Institute, Pulawy, 24-100, Poland
| | | |
Collapse
|
27
|
Wu HD, Yang LW, Deng DY, Jiang RN, Song ZK, Zhou LT. The effects of brominated flame retardants (BFRs) on pro-atherosclerosis mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115325. [PMID: 37544066 DOI: 10.1016/j.ecoenv.2023.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Brominated flame-retardants (BFRs) are environmental endocrine disruptors, comprising several pollutants, which potentially affect the endocrine system and cause dysfunction and disease. Widespread BFR exposure may cause multisystem toxicity, including cardiovascular toxicity in some individuals. Studies have shown that BFRs not only increase heart rate, induce arrhythmia and cardiac hypertrophy, but also cause glycolipid metabolism disorders, vascular endothelial dysfunction, and inflammatory responses, all of which potentially induce pre-pathological changes in atherosclerosis. Experimental data indicated that BFRs disrupt gene expression or signaling pathways, which cause vascular endothelial dysfunction, lipid metabolism-related disease, inflammation, and possibly atherosclerosis. Considerable evidence now suggests that BFR exposure may be a pro-atherosclerotic risk factor. In this study, we reviewed putative BFR effects underpinning pro-atherosclerosis mechanisms, and focused on vascular endothelial cell dysfunction, abnormal lipid metabolism, pro-inflammatory cytokine production and foam cell formation. Consequently, we proposed a scientific basis for preventing atherosclerosis by BFRs and provided concepts for further research.
Collapse
Affiliation(s)
- Hai-Di Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Wei Yang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Da-Yong Deng
- Department of Radiology, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Rong-Na Jiang
- Department of Intensive Care Unit, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Zi-Kai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Li-Ting Zhou
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
28
|
Simukoko CK, Mwakalapa EB, Muzandu K, Mutoloki S, Evensen Ø, Ræder EM, Müller MB, Polder A, Lyche JL. Persistent organic pollutants (POPs) and per- and polyfluoroalkyl substances (PFASs) in liver from wild and farmed tilapia (Oreochromis niloticus) from Lake Kariba, Zambia: Levels and geographic trends and considerations in relation to environmental quality standards (EQSs). ENVIRONMENTAL RESEARCH 2023:116226. [PMID: 37247651 DOI: 10.1016/j.envres.2023.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
The current study was carried out to investigate a wide variety of persistent organic pollutants (POPs) in wild and farmed tilapia (Oreochromis niloticus) in Lake Kariba, Zambia, and assess levels of POPs in relation to Environmental Quality Standards (EQSs). Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs), and perfluoroalkyl substances (PFASs) were determined in liver samples of tilapia. PFASs compounds PFOS, PFDA and PFNA were only detected in wild fish, with the highest median PFOS levels in site 1 (0.66 ng/g ww). Concentrations of POPs were in general highest in wild tilapia. The highest median ∑DDTs (93 and 81 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively 165 km and 100 km west of the fish farms. Lower DDE/DDT ratios in sites 1 and 3 may indicate relatively recent exposure to DDT. The highest median of ∑17PCBs (3.2 ng/g lw) and ∑10PBDEs (8.1 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively. The dominating PCB congeners were PCB-118, -138, -153 and -180 and for PBDEs, BDE-47, -154, and -209. In 78% of wild fish and 8% of farmed fish ∑6PBDE concentrations were above EQSbiota limits set by the EU. This warrants further studies.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway; Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Eliezer Brown Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P. O. Box 131, Mbeya, Tanzania
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Erik Magnus Ræder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Mette Bjørge Müller
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| |
Collapse
|
29
|
An T, Lu L, Li G. Daily exposure to low concentrations Tetrabromobisphenol A interferes with the thyroid hormone pathway in HepG2 cells. FUNDAMENTAL RESEARCH 2023; 3:384-391. [PMID: 38933766 PMCID: PMC11197689 DOI: 10.1016/j.fmre.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant that adversely affects the environment and human health. The present study exposed HepG2 cells to low concentrations of TBBPA daily to investigate the changes in gene regulation, mainly related to pathways associated with the endocrine system. The quantitative polymerase chain reaction (qPCR) confirmed that prolonged exposure gradually activated the thyroid hormone and parathyroid hormone signaling pathways. The expression levels of genes related to the thyroid hormone signaling pathway were upregulated (1.15-8.54 times) after five generations of exposure to 1 and 81 nM TBBPA. Furthermore, co-exposure to 81 nM TBBPA and 0.5 nM thyroid hormone receptor antagonist for five generations significantly reduced the expression of thyroid hormone and parathyroid hormone receptors. Meanwhile, 81 nM TBBPA inhibited the activation of the Ras pathway and downregulated Ras gene expression level (3.7 times), indicating the association between the toxic effect and thyroid hormone receptors. Additionally, our experiments revealed that the thyroid hormone pathway regulated the induction of the Ras signaling pathway by TBBPA. The study thus proves that daily exposure to TBBPA interferes with the thyroid hormone signaling pathway and subsequently the endocrine system.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lirong Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Engelsman M, Banks APW, He C, Nilsson S, Blake D, Jayarthne A, Ishaq Z, Toms LML, Wang X. An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085472. [PMID: 37107753 PMCID: PMC10138572 DOI: 10.3390/ijerph20085472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Firefighters are occupationally exposed to chemicals that may affect fertility. To investigate this effect, firefighters were recruited to contribute blood, urine, breast milk or semen samples to (1) evaluate chemical concentrations and semen parameters against fertility standards and the general population; (2) assess correlations between chemical concentrations and demographics, fire exposure and reproductive history; and (3) consider how occupational exposures may affect reproduction. A total of 774 firefighters completed the online survey, and 97 firefighters produced 125 urine samples, 113 plasma samples, 46 breast milk samples and 23 semen samples. Blood, urine and breast milk samples were analysed for chemical concentrations (semivolatile organic compounds, volatile organic compounds, metals). Semen samples were analysed for quality (volume, count, motility, morphology). Firefighter semen parameters were below WHO reference values across multiple parameters. Self-reported rates of miscarriage were higher than the general population (22% vs. 12-15%) and in line with prior firefighter studies. Estimated daily intake for infants was above reference values for multiple chemicals in breast milk. More frequent fire incident exposure (more than once per fortnight), longer duration of employment (≥15 years) or not always using a breathing apparatus demonstrated significantly higher concentrations across a range of investigated chemicals. Findings of this study warrant further research surrounding the risk occupational exposure has on reproduction.
Collapse
Affiliation(s)
- Michelle Engelsman
- Fire and Rescue NSW, Greenacre, NSW 2190, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Andrew P. W. Banks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chang He
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Ayomi Jayarthne
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zubaria Ishaq
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Leisa-Maree L. Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
31
|
Kolibaba TJ, Iverson ET, Legendre H, Higgins CI, Buck ZN, Weeks TS, Grunlan JC, Killgore JP. Synergistic Fire Resistance of Nanobrick Wall Coated 3D Printed Photopolymer Lattices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16046-16054. [PMID: 36926807 PMCID: PMC10071572 DOI: 10.1021/acsami.3c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.
Collapse
Affiliation(s)
| | | | - Hudson Legendre
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Callie I. Higgins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Zachary N. Buck
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Timothy S. Weeks
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Jaime C. Grunlan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States; Department of Materials Science and Engineering and Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
32
|
Recycling of Plastics from E-Waste via Photodegradation in a Low-Pressure Reactor: The Case of Decabromodiphenyl Ether Dispersed in Poly(acrylonitrile-butadiene-styrene) and Poly(carbonate). Molecules 2023; 28:molecules28062491. [PMID: 36985461 PMCID: PMC10053933 DOI: 10.3390/molecules28062491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Recycling of plastic waste from electrical and electronic equipment (EEE), containing brominated flame retardants (BFR) remains difficult due to the increasingly stringent regulations on their handling and recovery. This report deals with photodegradation in a low-pressure reactor applying UV-visible light on Decabromodiphenyl ether (DBDE or BDE-209) randomly dispersed in commercially available Poly(acrylonitrile-butadiene-styrene) (ABS) and Poly(carbonate) (PC). The aim of this study is to investigate the possibility of decomposing a BFR in plastic waste from EEE while maintaining the specifications of the polymeric materials in order to allow for their recycling. The photodegradation of the extracted BFR was monitored using infrared spectroscopy and gas chromatography coupled with mass spectroscopy. DBDE underwent rapid photodegradation during the first minutes of exposure to UV-visible light and reached degradation yields superior to 90% after 15 min of irradiation. The evaluation of polymer properties (ABS and PC) after irradiation revealed superficial crosslinking effects, which were slightly accelerated in the presence of DBDE. However, the use of a low-pressure reactor avoids large photooxidation and allowed to maintain the thermal and structural properties of the virgin polymers.
Collapse
|
33
|
Fernandes VC, Domingues VF, Nunes MS, Matos R, Kuźniarska-Biernacka I, Fernandes DM, Guerrero-Ruiz A, Ramos IR, Freire C, Delerue-Matos C. Graphene-Type Materials for the Dispersive Solid-Phase Extraction Step in the QuEChERS Method for the Extraction of Brominated Flame Retardants from Capsicum Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3898-3905. [PMID: 36792986 PMCID: PMC9983006 DOI: 10.1021/acs.jafc.2c07873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A new application of graphene-type materials as an alternative cleanup sorbent in a quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure combined with GC-ECD/GC-MS/GC-MS/MS detection was successfully used for the simultaneous analysis of 12 brominated flame retardants in Capsicum cultivar samples. The chemical, structural, and morphological properties of the graphene-type materials were evaluated. The materials exhibited good adsorption capability of matrix interferents without compromising the extraction efficiency of target analytes when compared with other cleanups using commercial sorbents. Under optimal conditions, excellent recoveries were obtained, ranging from 90 to 108% with relative standard deviations of <14%. The developed method showed good linearity with a correlation coefficient above 0.9927, and the limits of quantification were in the range of 0.35-0.82 μg/kg. The developed QuEChERS procedure using reduced graphite oxide (rGO) combined with GC/MS was successfully applied in 20 samples, and the pentabromotoluene residues were quantified in two samples.
Collapse
Affiliation(s)
- Virgínia Cruz Fernandes
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr° António Bernardino de Almeida,
431, 4249-015 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr° António Bernardino de Almeida,
431, 4249-015 Porto, Portugal
| | - Marta S. Nunes
- REQUIMTE/LAQV,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Renata Matos
- REQUIMTE/LAQV,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Iwona Kuźniarska-Biernacka
- REQUIMTE/LAQV,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Diana M. Fernandes
- REQUIMTE/LAQV,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Antonio Guerrero-Ruiz
- Dpto.
Química Inorgánica y Técnica, Facultad de Ciencias UNED, Senda del Rey 9, 28040 Madrid, Spain
| | | | - Cristina Freire
- REQUIMTE/LAQV,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr° António Bernardino de Almeida,
431, 4249-015 Porto, Portugal
| |
Collapse
|
34
|
Yu X, Liu B, Yu Y, Li H, Li Q, Cui Y, Ma Y. Polybrominated diphenyl ethers (PBDEs) in household dust: A systematic review on spatio-temporal distribution, sources, and health risk assessment. CHEMOSPHERE 2023; 314:137641. [PMID: 36584828 DOI: 10.1016/j.chemosphere.2022.137641] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Much attention has been paid on polybrominated diphenyl ethers (PBDEs) in household dust due to their ubiquitous occurrences in the environment. Based on the data from 59 articles sampled from 2005 to 2020, we investigated the spatio-temporal distribution, sources, and health risk of 8 PBDE homologues in household dusts worldwide. BDE-209 is the predominant PBDE in household dusts, followed by BDE-99 and BDE-47. The total concentrations of PBDEs (∑8PBDEs) are found to be high in household dusts sampled from 2005 to 2008 and show a significant decline trend from 2009 to 2016 (p < 0.05) and a little upward tendency from 2017 to 2020. The concentrations of PBDEs in household dusts vary greatly in different countries of the world. The use of penta-BDE is the main source of three to five bromo-biphenyl ether monomers contributing 17.4% of ∑8PBDEs, while BDE-209 and BDE-183 are derived from the use of household appliances contributing 82.6% of ∑8PBDEs. Ingestion is the main exposure route for adults and toddlers, followed by dermal contact. The values of hazard index (HI) exposed to PBDEs in household dusts are all less than 1 for both adults and toddlers, indicating a low non-cancer risk. The incremental lifetime cancer risks (ILCRs) of BDE-209 are less than 10-6 for both adults and toddlers, suggesting a negligible risk. However, the total carcinogenic risk of toddlers is higher than that of adults, indicating that much attention should be paid to toddlers exposed to BDE-209 in household dust.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - He Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Qiuyan Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
35
|
Tavoloni T, Stramenga A, Stecconi T, Gavaudan S, Moscati L, Sagratini G, Siracusa M, Ciriaci M, Dubbini A, Piersanti A. Brominated flame retardants (PBDEs and HBCDs) and perfluoroalkyl substances (PFASs) in wild boars (Sus scrofa) from Central Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159745. [PMID: 36349633 DOI: 10.1016/j.scitotenv.2022.159745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Twenty-six samples of wild boar liver and muscle from the Central Apennine Mountain (Italy) were analysed for 19 perfluoro-alkyl substances (PFASs), 10 polybrominated diphenylethers (PBDEs) and 3 hexabromocyclododecanes (HBCDs). All samples were analysed by gas chromatography-tandem mass spectrometry for PBDEs and liquid chromatography-tandem mass spectrometry for PFASs and HBCDs, using an in-house developed analytical procedure. The brominated flame retardants (BFR) levels in livers were negligible: Σ10PBDEs reached a maximum value of 0.079 μg/kg, whereas HBCDs were not quantified in almost all of the samples analysed. BFR concentrations in muscles were higher, but not significantly therefore, for Σ10PBDEs lower bound, a mean value of 0.045 μg/kg (0.005-0.155 μg/kg range) was measured, while α-HBCD was quantified with a maximum of 0.084 μg/kg in 9 of the samples. Only two muscles contained all 3 HBCD isomers at concentrations of approximately 0.200 μg/kg. Σ19PFAS in the 26 wild boar livers was in the range 31.9-228 μg/kg, with a mean value of 87.7 μg/kg, reaching levels significantly higher than in muscles, which exhibited a mean concentration of 3.08 μg/kg (0.59-9.12 μg/kg range). Perfluorooctanesulfonic acid (PFOS) was the most prevalent compound in all liver samples, accounting for more than half of the total PFASs contamination, confirming that the liver is the primary target organ for PFOS exposure Perfluorotridecanoic acid (PFTrDA), which accounts for 25-30-% of the total contamination, was the most abundant compound in the muscle, followed by PFOS. The estimated daily intake (EDIs) of BFRs remained below the estimated chronic human daily dietary intake (Dr,h) defined from European Food Safety Authority (EFSA). Furthermore, the exposure to PFASs in muscle was 7.7 times lower than the EFSA's tolerable daily intake (TDI). In contrast, exposure due to liver consumption was significant: the EDI exceeded the EFSA's 2020 TDI by approximately 7 times.
Collapse
Affiliation(s)
- Tamara Tavoloni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Arianna Stramenga
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Tommaso Stecconi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy; University of Camerino, School of Pharmacy, 62032 Camerino, Italy.
| | - Stefano Gavaudan
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy.
| | - Gianni Sagratini
- University of Camerino, School of Pharmacy, 62032 Camerino, Italy.
| | - Melania Siracusa
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Martina Ciriaci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Alessandra Dubbini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| |
Collapse
|
36
|
Tian Z, Li J, Song L, Xie L, Li D, Xia T, Wang A. PBDE-47 induces impairment of mitochondrial biogenesis and subsequent neurotoxicity through miR-128-3p/PGC-1α axis. Toxicol Sci 2023; 191:123-134. [PMID: 36269211 DOI: 10.1093/toxsci/kfac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential adverse effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) on neurons are extensively studied, and mitochondria are identified as critical targets. This study aimed to investigate whether PBDE-47 impairs mitochondrial biogenesis via the miR-128-3p/PGC-1α axis to trigger mitochondrial dysfunction-related neuronal damage. In vitro neuroendocrine pheochromocytoma (PC12) cells and in vivo Sprague Dawley rat model were adopted. In this study, biochemical methods were used to examine mitochondrial ATP content, cell viability, and expressions of key mitochondrial biogenesis regulators, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). Mimics and inhibitors of miR-128-3p were employed to explore its role in PBDE-47-induced neurotoxicity. Both in vivo and in vitro evidences suggested that PBDE-47 suppressed PGC-1α/NRF1/TFAM signaling pathways and mitochondrial DNA (mtDNA) encoding proteins synthesis. PBDE-47 also suppressed the relative mtDNA content, mRNA levels of mtDNA-encoded subunits, and mitochondrial ATP levels in vitro. Specifically, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) alleviated PBDE-47-induced neuronal death through the improvement of mitochondrial function by activating PGC-1α/NRF1/TFAM signaling pathways. Mechanistically, PBDE-47 dramatically upregulated miR-128-3p expression. Furthermore, miR-128-3p inhibition enhanced PGC-1α/NRF1/TFAM signaling and abolished PBDE-47-induced impairment of mitochondrial biogenesis. In summary, this study provides in vitro evidence to reveal the role of mitochondrial biogenesis in PBDE-47-induced mitochondrial dysfunction and related neurotoxicity and suggests that miR-128-3p/PGC-1α axis may be a therapeutic target for PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| |
Collapse
|
37
|
Ali N, Rashid MI, Alhakamy NA, Alamri SH, Eqani SAMAS. Profiling of phthalates, brominated, and organophosphate flame retardants in COVID-19 lockdown house dust; implication on the human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158779. [PMID: 36116658 PMCID: PMC9474971 DOI: 10.1016/j.scitotenv.2022.158779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, brominated flame retardants (BFRs), phthalates, and organophosphate flame retardants (PFRs) were analyzed in indoor household dust collected during the COVID-19 related strict lockdown (April-July 2020) period. Floor dust samples were collected from 40 households in Jeddah, Saudi Arabia. The levels of most of the analyzed chemicals were visibly high and for certain chemicals multifold high in analyzed samples compared to earlier studies on indoor dust from Jeddah. Bis (2-ethylhexyl) phthalate (DEHP) was the primary chemical in these dust samples, with a median concentration of 769,500 ng/g of dust. Tris (2-butoxy ethyl) phosphate (TBEP) and Decabromodiphenyl ether (BDE 209) contributed the highest among PFRs and BFRs with median levels of 5990 and 940 ng/g of dust, respectively. The estimated daily exposure in the worst case scenario (23,700 ng/kg bw/day) for Saudi children was above the reference dose (20,000 ng/kg bw/day) for DEHP, and the hazardous index (HI) was also >1. The long-term carcinogenic risk was above the 1 × 10-5, indicating a risk to the health of Saudi young children from getting exposed to DEHP from indoor dust. This study draws attention to the increased indoor pollution during the lockdown period when all of the daily activities by adults and children were performed indoors, which negatively impacted human health, as suggested by the calculated risk. However, the current study has limitations and warrants more monitoring studies from different parts of the world to understand the phenomenon. At the same time, this study also highlights another side of COVID-19 related to our lives.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Pharmaceutics Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sultan Hassan Alamri
- Department of Family Medicine, Medical College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Ali Musstjab Akber Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| |
Collapse
|
38
|
Li S, Yang R, Yin N, Zhao M, Zhang S, Faiola F. Developmental toxicity assessments for TBBPA and its commonly used analogs with a human embryonic stem cell liver differentiation model. CHEMOSPHERE 2023; 310:136924. [PMID: 36272632 DOI: 10.1016/j.chemosphere.2022.136924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is widely used in industrial production as a halogenated flame retardant (HFR). Its substitutes and derivatives are also commonly employed as HFRs. Consequently, they can be frequently detected in environmental and human samples. The potential developmental toxicity of TBBPA and its analogs, particularly to the human liver, is still controversial or not thoroughly assessed. Therefore, in this study, we focused on the early stages of human liver development to explore the toxic effects of those HFRs, by using a human embryonic stem cell liver differentiation model. We concluded that nanomolar treatments (1, 10, and 100 nM) of those pollutants may not exert significant interference to liver development and functions. However, at 5 μM doses, TBBPA and its analogs severely affected liver functions, such as glycogen storage, and caused lipid accumulation. Furthermore, TBBPA-bis(allyl ether) showed the most drastic effects among the six compounds tested. Taken together, our findings support the view that TBBPA can be used safely, provided its amounts are strictly controlled. Nonetheless, TBBPA alternatives or derivatives may exhibit stronger adverse effects than TBBPA itself, and may not be safer choices for manufacturing applications when utilized in a large and unrestricted way.
Collapse
Affiliation(s)
- Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Tetrabromobisphenol A and Diclazuril Evoke Tissue-Specific Changes of Thyroid Hormone Signaling in Male Thyroid Hormone Action Indicator Mice. Int J Mol Sci 2022; 23:ijms232314782. [PMID: 36499108 PMCID: PMC9738630 DOI: 10.3390/ijms232314782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.
Collapse
|
40
|
Rani M, Sillanpää M, Shanker U. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115998. [PMID: 36001915 DOI: 10.1016/j.jenvman.2022.115998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, 2028, South Africa
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
41
|
Chen Y, Yang J, Yao B, Zhi D, Luo L, Zhou Y. Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119918. [PMID: 35952990 DOI: 10.1016/j.envpol.2022.119918] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have been identified as emerging contaminants, which poses a great threat to human health and ecosystem. Pesticides, polycyclic aromatic hydrocarbons, dioxins, brominated flame retardants, steroid hormones and alkylphenols are representative of this type of contaminant, which are closely related to daily life. Unfortunately, many wastewater treatment plants (WWTPs) do not treat EDCs as targets in the normal treatment process, resulting in EDCs entering the environment. Few studies have systematically reviewed the related content of EDCs in terms of occurrence, harm and remediation. For this reason, in this article, the sources and exposure routes of common EDCs are systematically described. The existence of EDCs in the environment is mainly related to human activities (Wastewater discharges and industrial activities). The common hazards of these EDCs are clarified based on available toxicological data. At the same time, the mechanism and effect of some mainstream EDCs remediation technologies (such as adsorption, advanced oxidation, membrane bioreactor, constructed wetland, etc.) are separately mentioned. Moreover, our perspectives are provided for further research of EDCs.
Collapse
Affiliation(s)
- Yuxin Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
42
|
Kozlova EV, Denys ME, Benedum J, Valdez MC, Enriquez D, Bishay AE, Chinthirla BD, Truong E, Krum JM, DiPatrizio NV, Deol P, Martins-Green M, Curras-Collazo MC. Developmental exposure to indoor flame retardants and hypothalamic molecular signatures: Sex-dependent reprogramming of lipid homeostasis. Front Endocrinol (Lausanne) 2022; 13:997304. [PMID: 36277707 PMCID: PMC9580103 DOI: 10.3389/fendo.2022.997304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardant organohalogen pollutants that act as endocrine/neuroendocrine disrupting chemicals (EDCs). In humans, exposure to brominated flame retardants (BFR) or other environmentally persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and novel organophosphate flame retardants has been associated with increasing trends of diabetes and metabolic disease. However, the effects of PBDEs on metabolic processes and their associated sex-dependent features are poorly understood. The metabolic-disrupting effects of perinatal exposure to industrial penta-PBDE mixture, DE-71, on male and female progeny of C57BL/6N mouse dams were examined in adulthood. Dams were exposed to environmentally relevant doses of PBDEs daily for 10 weeks (p.o.): 0.1 (L-DE-71) and 0.4 mg/kg/d (H-DE-71) and offspring parameters were compared to corn oil vehicle controls (VEH/CON). The following lipid metabolism indices were measured: plasma cholesterol, triglycerides, adiponectin, leptin, and liver lipids. L-DE-71 female offspring were particularly affected, showing hypercholesterolemia, elevated liver lipids and fasting plasma leptin as compared to same-sex VEH/CON, while L- and H-DE-71 male F1 only showed reduced plasma adiponectin. Using the quantitative Folch method, we found that mean liver lipid content was significantly elevated in L-DE-71 female offspring compared to controls. Oil Red O staining revealed fatty liver in female offspring and dams. General measures of adiposity, body weight, white and brown adipose tissue (BAT), and lean and fat mass were weighed or measured using EchoMRI. DE-71 did not produce abnormal adiposity, but decreased BAT depots in L-DE-71 females and males relative to same-sex VEH/CON. To begin to address potential central mechanisms of deregulated lipid metabolism, we used RT-qPCR to quantitate expression of hypothalamic genes in energy-regulating circuits that control lipid homeostasis. Both doses of DE-71 sex-dependently downregulated hypothalamic expression of Lepr, Stat3, Mc4r, Agrp, Gshr in female offspring while H-DE-71 downregulated Npy in exposed females relative to VEH/CON. In contrast, exposed male offspring displayed upregulated Stat3 and Mc4r. Intestinal barrier integrity was measured using FITC-dextran since it can lead to systemic inflammation that leads to liver damage and metabolic disease, but was not affected by DE-71 exposure. These findings indicate that maternal transfer of PBDEs disproportionately endangers female offspring to lipid metabolic reprogramming that may exaggerate risk for adult metabolic disease.
Collapse
Affiliation(s)
- Elena V. Kozlova
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Maximillian E. Denys
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Jonathan Benedum
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew C. Valdez
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Dave Enriquez
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Anthony E. Bishay
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Bhuvaneswari D. Chinthirla
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Edward Truong
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Julia M. Krum
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicholas V. DiPatrizio
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Poonamjot Deol
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Manuela Martins-Green
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Margarita C. Curras-Collazo
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
43
|
Liu Z, Wang M, Fan Y, Wang J, Jiang S, Abudureman H. Bidirectional regulation of BDE-47 on 3T3-L1 cell differentiation based on a restricted cubic spline model. Toxicol Ind Health 2022; 38:481-492. [PMID: 35921494 DOI: 10.1177/07482337221100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BDE-47 (2,2,4,4-tetrabromodiphenyl ether) is a polybrominated diphenyl ether (PBDE) congener, which has the characteristics of high biological detection rate, the highest content and strong biological toxicity, and is widely distributed in organisms. Many studies have found that BDE-47 may also be an environmental risk factor for metabolic diseases such as obesity, insulin resistance, type 2 diabetes, and hypertension. However, the way that PBDEs influence adipocyte differentiation remains unclear. The methylisobutylxanthine, dexamethasone, and insulin method was used to study the effect of BDE-47 on the differentiation of 3T3-L1 cells. The 3T3-L1 cells were exposed by different concentrations of BDE-47, and the effect of cell viability was detected at different stages. In addition, the lipid droplet aggregation of adipocytes was observed and the triglyceride (TG) levels in the cytoplasm were detected after differentiation. The relative mRNA expression levels of leptin, adiponectin, and PPARγ in cells were determined by RT-PCR, and differentially expressed genes were preliminarily screened by digital gene expression profile. Our study found that BDE-47 promoted the differentiation of 3T3-L1 cells. Restriction cubic spline analysis showed that BDE-47 bidirectionally. regulated the mRNA synthesis of TG, PPARγ, and leptin genes and the aggregation of lipid droplets. BDE-47 may induce adipocyte differentiation by activating PPARγ, resulting in the differential expression of genes related to the AMPK signaling pathway, insulin resistance, and other metabolic pathways. The highest and lowest-dose BDE-47 exposure groups had the greatest impact on adipocyte differentiation.
Collapse
Affiliation(s)
- Zaoling Liu
- School of Public Health, Xinjiang Medical University, Urumq, China
| | - Menglin Wang
- School of Public Health, Xinjiang Medical University, Urumq, China
| | - Yong Fan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiasui Wang
- School of Public Health, Xinjiang Medical University, Urumq, China
| | - Shurui Jiang
- School of Public Health, Xinjiang Medical University, Urumq, China
| | | |
Collapse
|
44
|
Dvoršćak M, Jagić K, Besednik L, Šimić I, Klinčić D. First application of microwave-assisted extraction in the analysis of polybrominated diphenyl ethers in human milk. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Li H, Liu Y, Lan Y, Zhao Y, Lu A, Li C, Lei R, Xue J, Liu W. A nationwide survey of 20 legacy brominated flame retardants in indoor dust from China: continuing occurrence, national distribution, and implication for human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58828-58842. [PMID: 35368237 DOI: 10.1007/s11356-022-19850-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Despite the restrictions on polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs), these chemicals are still ubiquitous environmental pollutants. In this study, we measured the concentrations and profiles of 17 PBDE congeners and 3 HBCDD isomers in indoor dust samples collected from 23 provinces and cities across China. The summed concentrations of PBDEs (Σ17PBDEs) ranged from 4.19 to 817 ng/g, with an average of 171 ± 184 ng/g. BDE-209 was the most abundant congener. The concentrations of HBCDDs ranged from 6.65 to 1335 ng/g, with an average of 236 ± 324 ng/g. Unlike commercial HBCDD formulations, α-HBCDD was the predominant isomer in the indoor dust samples analyzed. Geographical distributions showed that the concentrations of PBDEs and HBCDDs varied significantly among different regions. Higher PBDE and HBCDD levels were observed in samples from eastern coastal and economically developed regions. Further, we estimated the daily intakes of PBDEs and HBCDDs through the routes of dust ingestion and dust dermal absorption for different age groups. Dust dermal absorption is an unneglectable exposure pathway to PBDEs and HBCDs for the Chinese population. Among the age groups, infants had the highest exposure via dust dermal absorption, and toddlers had the highest exposure via dust ingestion. Compared with the threshold values, the exposure doses of PBDEs and HBCDDs are unlikely to pose significant health concerns for both infants and adults in China. This is the first national survey of PBDEs and HBCDDs in indoor dust samples across China after the restriction.
Collapse
Affiliation(s)
- Haifeng Li
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongyin Lan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanan Zhao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Anxiang Lu
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Cheng Li
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingchuan Xue
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
46
|
Reynolds KJ, Zagho MM, Robertson M, Qiang Z, Nazarenko S. Environmental, Health, and Legislation Considerations for Rational Design of Nonreactive Flame-Retardant Additives for Polymeric Materials: Future Perspectives. Macromol Rapid Commun 2022; 43:e2200472. [PMID: 35835732 DOI: 10.1002/marc.202200472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
Increasing polymer usage has demanded functional additives that decrease fire hazards for end users. While traditional flame-retardant (FR) additives, such as halogenated, phosphorus, and metal hydroxides, greatly reduce flammability and associated fire hazards, research has continually exposed a litany of health and environmental safety concerns. This perspective aims to identify the key components of a successful FR additive and address material, environmental, and health concerns of existing additives. Legislation surrounding FRs and persistent organic pollutants is also discussed to highlight political perception that has resulted in the increased chemical regulations and subsequent banning of FR additives. Finally, future directions of this field regarding nonreactive additives, focusing on the use of bioinspired materials and transition metal chemistries to produce alternatives for polymers with efficacies surpassing traditional additives are presented.
Collapse
Affiliation(s)
- Karina J Reynolds
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Moustafa M Zagho
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sergei Nazarenko
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
47
|
Audy R, Enfrin M, Boom YJ, Giustozzi F. Selection of recycled waste plastic for incorporation in sustainable asphalt pavements: A novel multi-criteria screening tool based on 31 sources of plastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154604. [PMID: 35307423 DOI: 10.1016/j.scitotenv.2022.154604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the suitability of 31 recycled waste plastic samples obtained from 15 major recycling companies across Australia and New Zealand to be used as bitumen/asphalt modifiers. The plastics have been selected to be representative of recycled waste plastic around Australia and New Zealand. The recycled waste plastics belonged to either the post-industrial or post-consumer collection scheme. A new classification scheme was developed to rank each recycled waste plastic based on their chemical and physical properties against those of bitumen/asphalt. Specifically, density, polarity, melting point, solubility and melt flow index of the samples as well as the presence of contaminants, fillers and additives were analyzed for each recycled waste plastic material and their virgin counterpart. These 8 properties were used to rank various sources of recycled low-density poly(ethylene), linear low-density poly(ethylene), high density poly(ethylene) and poly(propylene) in addition to commingled plastics based on their suitability for bitumen modification (wet method). The modification of asphalt via replacement of virgin quarry aggregate with plastic aggregate (dry method) by recycled acrylonitrile butadiene styrene and poly(ethylene terephthalate) was also assessed by considering four criteria of purity, polarity, recycling contamination and hazardous additives. This new multi-criterion ranking approach revealed that low-density and linear low-density poly(ethylene) and acrylonitrile butadiene styrene and poly(ethylene terephthalate) should be preferentially used as bitumen/asphalt modifiers. This tool has been developed for recycling companies and bitumen/asphalt contractors to determine the suitability of recycled waste plastics within asphalt roads by a series of experimental techniques.
Collapse
Affiliation(s)
- Rebecca Audy
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Marie Enfrin
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Yeong Jia Boom
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Filippo Giustozzi
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia.
| |
Collapse
|
48
|
Singh V, Cortes-Ramirez J, Toms LM, Sooriyagoda T, Karatela S. Effects of Polybrominated Diphenyl Ethers on Hormonal and Reproductive Health in E-Waste-Exposed Population: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137820. [PMID: 35805479 PMCID: PMC9265575 DOI: 10.3390/ijerph19137820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023]
Abstract
Electronic waste management is a global rising concern that is primarily being handled by informal recycling practices. These release a mix of potentially hazardous chemicals, which is an important public health concern. These chemicals include polybrominated diphenyl ethers (PBDEs), used as flame retardants in electronic parts, which are persistent in nature and show bioaccumulative characteristics. Although PBDEs are suspected endocrine disruptors, particularly targeting thyroid and reproductive hormone functions, the relationship of PBDEs with these health effects are not well established. We used the Navigation Guide methodology to conduct a systematic review of studies in populations exposed to e-waste to better understand the relationships of these persistent flame retardants with hormonal and reproductive health. We assessed nineteen studies that fit our pre-determined inclusion criteria for risk of bias, indirectness, inconsistency, imprecision, and other criteria that helped rate the overall evidence for its quality and strength of evidence. The studies suggest PBDEs may have an adverse effect on thyroid hormones, reproductive hormones, semen quality, and neonatal health. However, more research is required to establish a relationship of these effects in the e-waste-exposed population. We identified the limitations of the data available and made recommendations for future scientific work.
Collapse
Affiliation(s)
- Vishal Singh
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
- Correspondence:
| | - Javier Cortes-Ramirez
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Children’s Health and Environment Program, The University of Queensland, Brisbane, QLD 4101, Australia
- Faculty of Medical and Health Sciences, Universidad de Santander, Cúcuta 540003, Colombia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Thilakshika Sooriyagoda
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Shamshad Karatela
- School of Pharmacy, University of Queensland, Brisbane, QLD 4072, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Mackay, QLD 4740, Australia
| |
Collapse
|
49
|
Recent advances in flame retardant epoxy systems containing non-reactive DOPO based phosphorus additives. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Liu H, Jin J, Xue H, Guo C, Ren F, He X, Chen J, Hu C. A cleanup method of serum extracts with molecular sieves as SPE sorbents for the analysis of polybrominated diphenyl ethers. J Sep Sci 2022; 45:2334-2343. [PMID: 35472733 DOI: 10.1002/jssc.202100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Based on the size- and shape-selective sorption, 13X molecular sieves were developed as solid-phase extraction adsorbents to cleanup serum extract for the determination of polybrominated diphenyl ethers. The important parameters affecting the cleanup efficiency were investigated, including the amount of sorbents, the type and volume of solvents. Under the optimized conditions, the capacity for removing impurities was evaluated via gel permeation chromatography and GC-MS. The results demonstrated that up to 99% of lipids in corn oil (13 mg) can be removed after cleanup, and endogenous compounds in serum can also be effectively eliminated. The cleanup efficiency is not only superior to Hydrophile-Lipophile Balance column, but also close to acid silica gel and multi-function impurity sorbents. Generally, the developed cleanup method exhibited higher recovery for polybrominated diphenyl ethers with more than four bromines, especially for nona- and deca-brominated diphenyl ethers (99.1-117.8%). The cleanup method can be coupled with GC-MS/MS for polybrominated diphenyl ethers analysis in human serum. The method detection limits were 0.01-0.27 ng/mL and average recovery was 50.9-113.3%, except 2,3',4',6-tetrabrominated, 2,3',4,4',6-pentabrominated and 2,3,3',4,4',5',6-heptabrominated diphenyl ethers. 2,2',4,5'-tetrabrominated diphenyl ethers had the highest detection frequency (95%) in human serum, whereas decabrominated diphenyl ethers had the maximum mean concentration (0.50 ng/mL). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongyuan Liu
- Shenyang Pharmaceutical University.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Jing Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | | | - Cuicui Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Feng Ren
- The Second hospital of Dalian Medical University
| | - Xiaolin He
- The Second hospital of Dalian Medical University
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Chun Hu
- Shenyang Pharmaceutical University
| |
Collapse
|