1
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Yu X, Lyu S, Zhao W, Guo C, Xu J, Sui Q. A picture of pharmaceutical pollution in landfill leachates: Occurrence, regional differences and influencing factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 184:20-27. [PMID: 38788499 DOI: 10.1016/j.wasman.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Municipal solid waste (MSW) landfill sites have been identified as a significant source of pharmaceuticals in the environment because unused or expired pharmaceuticals are discarded into MSW, which eventually percolate into leachates. However, the contamination of pharmaceuticals in landfill leachate in China is not comprehensively understood. Previous research into factors influencing pharmaceutical concentrations focused on a limited number and type of target pollutants or restricted study area. In the present study, 66 pharmaceuticals were analyzed (including 45 antibiotic and 21 non-antibiotic pharmaceuticals, also categorized as 59 prescription and 7 non-prescription pharmaceuticals) in leachate samples from landfill sites with various characteristics in different regions of China. The results indicated that non-antibiotic pollutants were present at significantly higher concentrations than antibiotic pollutants, with median concentrations of 1.74 μg/L and 527 ng/L, respectively. Non-antibiotic pollutants also presented a higher environmental risk than antibiotic pollutants, by 2 to 4 orders of magnitude, highlighting that non-antibiotic pharmaceuticals should not be overlooked during the assessment of landfill leachate. Pharmaceutical concentrations in landfill leachate samples exhibited regional differences; the population size served by the landfills was the dominant factor contributing to the observed differences. In addition, landfill characteristics such as the solid waste composition and MSW loading can also affect pharmaceutical concentrations in landfill leachate. Despite the implementation of the classification and disposal policy of MSW in Shanghai, China since July 2019, specifying that unused or expired pharmaceuticals should be discarded as hazardous waste, high levels of pharmaceutical contaminations were detected in leachate from the main components of classified MSW (i.e., residual and food waste). These findings emphasize the importance of pharmaceutical management in solid waste systems.
Collapse
Affiliation(s)
- Xia Yu
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentaonceo Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changsheng Guo
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Herrera-Franco G, Merchán-Sanmartín B, Caicedo-Potosí J, Bitar JB, Berrezueta E, Carrión-Mero P. A systematic review of coastal zone integrated waste management for sustainability strategies. ENVIRONMENTAL RESEARCH 2024; 245:117968. [PMID: 38151154 DOI: 10.1016/j.envres.2023.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Coastal areas stand out because of their rich biodiversity and high tourist potential due to their privileged geographical position. However, one of the main problems in these areas is the generation of waste and its management, which must consider technical and sustainable criteria. This work aims to conduct a systematic review of the scientific literature on integrated solid waste management (ISWM) by considering scientific publications on the scientific basis for the proposal of sustainability strategies in the context of use and efficiency. The overall method comprises i) Search strategy, merging and processing of the databases (Scopus and Web of Science); ii) Evolution of coastal zone waste management; iii) Systematic reviews on coastal landfills and ISWM in the context of the circular economy; and iv) Quantitative synthesis in integrated waste management. The results show 282 studies focused on coastal landfills and 59 papers on ISWM with the application of circular economy criteria. Systematic reviews allowed for the definition of criteria for the selection of favorable sites, such as i) sites far from the coastline, ii) impermeable soils at their base to avoid contamination of aquifers, iii) use of remote sensing and geographic information system tools for continuous monitoring, iv) mitigation of possible contamination of ecosystems, v) planning the possibility of restoration (reforestation) and protection of the environment. In coastal zones, it is necessary to apply the ISWM approach to avoid landfill flooding and protect the marine environment, reducing rubbish and waste on beaches and oceans. Therefore, applying the circular economy in ISWM is critical to sustainability in coastal environments, with the planet's natural processes and variations due to climate change.
Collapse
Affiliation(s)
- Gricelda Herrera-Franco
- Facultad de Ciencias de la Ingeniería, Universidad Estatal Península de Santa Elena, La Libertad, 240204, Ecuador.
| | - Bethy Merchán-Sanmartín
- Geo-Recursos y Aplicaciones GIGA, Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador; Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jhon Caicedo-Potosí
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Josué Briones Bitar
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Edgar Berrezueta
- Spanish Geological Survey (CN IGME, CSIC), Matemático Pedrayes 25., 33005, Oviedo, Spain
| | - Paúl Carrión-Mero
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), Escuela Superior Politécnica del Litoral (ESPOL), P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
4
|
Brooks BW, van den Berg S, Dreier DA, LaLone CA, Owen SF, Raimondo S, Zhang X. Towards Precision Ecotoxicology: Leveraging Evolutionary Conservation of Pharmaceutical and Personal Care Product Targets to Understand Adverse Outcomes Across Species and Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:526-536. [PMID: 37787405 PMCID: PMC11017229 DOI: 10.1002/etc.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Translation of environmental science to the practice aims to protect biodiversity and ecosystem services, and our future ability to do so relies on the development of a precision ecotoxicology approach wherein we leverage the genetics and informatics of species to better understand and manage the risks of global pollution. A little over a decade ago, a workshop focusing on the risks of pharmaceuticals and personal care products (PPCPs) in the environment identified a priority research question, "What can be learned about the evolutionary conservation of PPCP targets across species and life stages in the context of potential adverse outcomes and effects?" We review the activities in this area over the past decade, consider prospects of more recent developments, and identify future research needs to develop next-generation approaches for PPCPs and other global chemicals and waste challenges. Environ Toxicol Chem 2024;43:526-536. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | - David A Dreier
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Carlie A LaLone
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota
| | - Stewart F Owen
- Global Sustainability, Astra Zeneca, Macclesfield, Cheshire, UK
| | - Sandy Raimondo
- Gulf Ecosystem Measurement and Modeling Division, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Xiaowei Zhang
- School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
6
|
Gong Z, Yang S, Zhang R, Wang Y, Wu X, Song L. Physiochemical and biological characteristics of fouling on landfill leachate treatment systems surface. J Environ Sci (China) 2024; 135:59-71. [PMID: 37778830 DOI: 10.1016/j.jes.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 10/03/2023]
Abstract
Fouling of landfill leachate, a biofilm formation process on the surface of the collection system, migration pipeline and treatment system causes low efficiency of leachate transportation and treatment and increases cost for maintenance of those facilities. In addition, landfill leachate fouling might accumulate pathogens and antibiotic resistance genes (ARGs), posing threats to the environment. Characterization of the landfill leachate fouling and its associated environmental behavior is essential for the management of fouling. In this study, physicochemical and biological properties of landfill leachate fouling and the possible accumulation capacity of pathogens and ARGs were investigated in nitrification (aerobic condition) and denitrification (anaerobic condition) process during landfill leachate biological treatment, respectively. Results show that microbial (bacterial, archaeal, eukaryotic, and viral) community structure and function (carbon fixation, methanogenesis, nitrification and denitrification) differed in fouling under aerobic and anaerobic conditions, driven by the supplemental leachate water quality. Aerobic fouling had a higher abundance of nitrification and denitrification functional genes, while anaerobic fouling harbored a higher abundance of carbon fixation and methanogenesis genes. Both forms of leachate fouling had a higher abundance of pathogens and ARGs than the associated leachate, suggesting the accumulation capacity of fouling on biotic pollutants. Specifically, aerobic fouling harbored three orders of magnitude higher multidrug resistance genes mexD than its associated leachate. This finding provides fundamental knowledge on the biological properties of leachate fouling and suggests that leachate fouling might harbor significant pathogens and ARGs.
Collapse
Affiliation(s)
- Zhourui Gong
- School of resources and environmental engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiaoqing Wu
- Xing Lu Huan Jing Co. LTD., Luzhou 646000, China
| | - Liyan Song
- School of resources and environmental engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
7
|
Rui X, Gong H, Yuan H, Zhu N. Distribution, removal and ecological risk assessment of antibiotics in leachate from municipal solid waste incineration plants in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165894. [PMID: 37524176 DOI: 10.1016/j.scitotenv.2023.165894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Leachate from Municipal Solid Waste (MSW) incineration plants contains multiple antibiotics. However, current knowledge of antibiotics in such leachate is very limited compared to landfill leachate. In this study, the distribution, removal and ecological risks of 8 sulfonamides (SAs), 4 quinolones (FQs), and 4 macrolides (MLs) antibiotics in leachate from three MSW incineration plants in Shanghai were investigated. The results showed that 12 types of target antibiotics were detected at high concentrations (7737.3-13,758.7 ng/L) in the fresh leachate, exceeding the concentrations reported for landfill leachate. FQs were the dominant antibiotics detected in all three fresh leachates, accounting for >60 % of the total detected concentrations. The typical "anaerobic-anoxic/aerobic-anoxic/aerobic-ultrafiltration" treatment process removed the target antibiotics effectively (89.0 %-93.4 %), of which the anaerobic unit and the primary anoxic/aerobic unit were the most important antibiotic removal units. Biodegradation was considered to be the dominant removal mechanism, removing 78.11 %-92.37 % of antibiotics, whereas sludge adsorption only removed 1.02 %-10.89 %. Antibiotic removal was significantly correlated with leachate COD, pH, TN, and NH3-N, indicating that they may be influential factors for antibiotic removal. Ecological risk assessment revealed that ofloxacin (OFX) and enrofloxacin (EFX) in the treated leachate still posed high risks to algae and crustaceans. This research provides insights into the fate of antibiotics in leachate.
Collapse
Affiliation(s)
- Xuan Rui
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Monahan C, Morris D, Nag R, Cummins E. Risk ranking of macrolide antibiotics - Release levels, resistance formation potential and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160022. [PMID: 36368382 DOI: 10.1016/j.scitotenv.2022.160022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance (AR) development in natural water bodies is a significant source of concern. Macrolide antibiotics in particular have been identified as pollutants of concern for AR development throughout the literature, as well as by state and international authorities. This study utilises a probabilistic model to examine the risk of AR development arising from human-use macrolide residues, utilising administration rates from Ireland as a case study. Stages modelled included level of administration, excretion, degradation in wastewater, removal in wastewater treatment, assuming conventional activated sludge (CAS) treatment, and dilution. Release estimates per day, as well as risk quotient values for antibiotic resistance development and ecological impact, are generated for erythromycin, clarithromycin, and azithromycin. In the modelled scenario in which conventional activated sludge treatment is utilised in wastewater treatment, this model ranks risk of resistance development for each antibiotic in the order clarithromycin > azithromycin > erythromycin, with mean risk quotient values of 0.50, 0.34 and 0.12, respectively. A membrane bioreactor scenario was also modelled, which reduced risk quotient values for all three macrolides by at least 50 %. Risk of ecological impact for each antibiotic was also examined, by comparing environmental concentrations predicted to safety limits based on toxicity data for cyanobacteria and other organisms from the literature, with azithromycin being identified as the macrolide of highest risk. This study compares and quantifies the risk of resistance development and ecological impact for a high-risk antibiotic group in the Irish context, and demonstrates the potential for risk reduction achieved by adoption of alternative (e.g. membrane bioreactor) technology.
Collapse
Affiliation(s)
- Ciaran Monahan
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland.
| | - Dearbhaile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Rajat Nag
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Kanafin YN, Abdirova P, Arkhangelsky E, Dionysiou DD, Poulopoulos SG. UVA and goethite activated persulfate oxidation of landfill leachate. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
10
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|
11
|
Rezaei Adaryani A, Keen O. Occurrence of pharmaceuticals and plasticizers in leachate from municipal landfills of different age. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:1-7. [PMID: 35085866 DOI: 10.1016/j.wasman.2022.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Contaminants of emerging concern (CECs), such as pharmaceuticals and plasticizers, are present in leachate due to disposal of pharmaceuticals and plastic waste. Leachate is usually released to publicly owned treatment works, but CECs could pass through and be discharged into water resources. Landfills generate leachate for many years after closure, but it is currently unknown whether CECs continue to leach over time or dissipate soon after the waste is deposited. Leachate samples from four domestic landfills with various closure status in North Carolina, United States, have been collected from summer 2019 to summer 2020 (n = 36). Samples were analyzed for 13 pharmaceuticals (7 detected), and 3 plasticizers (2 detected). Carbamazepine and ibuprofen were detected in 100% of samples at respective median concentrations of 45 and 14,867 ng/L in open cells and 100 and 3,049 ng/L in cells closed for > 13 years. 17α-ethinylestradiol, acetaminophen, bisphenol A, doxycycline, and metformin were also frequently detected at concentrations spanning over 5 orders of magnitude between the compounds. Carbamazepine was present at significantly higher concentrations in older leachate (p < 0.1), while acetaminophen, doxycycline and bisphenol S were found at significantly lower concentrations. Lower concentration of bisphenol S is likely related to its usage pattern and not to its attenuation in the landfill. This study showed that leachate could be a source of CECs many years after closure. Thus, the transport of these compounds with landfill leachate is expected to persist for as long as leachate is generated in the landfill.
Collapse
Affiliation(s)
- Amirhossein Rezaei Adaryani
- Department of Civil and Environmental Engineering, University of North Carolina - Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Olya Keen
- Department of Civil and Environmental Engineering, University of North Carolina - Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA.
| |
Collapse
|
12
|
Aluko OO, Imbianozor GT, Jideama CO, Ogundele OV, Fapetu TE, Afolabi OT, Odewade OL. The perception and disposal practices of unused and expired medicines by households in an urban municipality, southwest Nigeria: A comparative cross-sectional study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:121-132. [PMID: 35078076 DOI: 10.1016/j.wasman.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Unused, damaged, and expired medicines (UEMs) pose disposal challenges globally, despite their importance. The environmental disposal of UEMs portends public health consequences, hence, this study in high-density (HDS) and low-density (LDS) urban households in Southwest Nigeria. The comparative, cross-sectional study utilised multi-stage samplingto enrol 404 females, experienced in use and medicines safekeeping. The response rate was 93%. Data were analysed by IBM-SPSS, version 20. Continuous and categorical variableswere presentedin tables as mean(±SD), proportions (%), respectively while χ2 and logistic regression statistics determined differences between LDS and HDS (Pα > 0.05). 53.4% and 71.2% of respondents respectively had good knowledge and positive attitudes to safe disposal of UEMs. At least 31.5% of households don't stock medicines while antimalarial (57.3%), analgesics (52.7%) and antibiotics (49.7%) predominate in households and significantly different between LDS and HDS. 72.9% and 67.8%; 47.9% and 55.6% respondents in LDS and HDS, respectively, disposed of solid and liquid UEMs in storage bins, though 34.9% (LDS) and 16.7% (HDS) disposed of liquid UEMs in toilet/sink. There were significant differences in medicines abundance and disposal practices between LDS and HDS for solid and liquid medicines. 37.1% of respondents perceived consequences for the poor UEMs disposal, including accidental ingestion (76.6% vs 26.7%), land pollution (69.6% vs 36.7%), water pollution (72.4% vs 32.8%) and toxicity (58.3% vs 32.8%), respectively in LDS and HDS. Respondents' good knowledge and positive attitudes contrasted with poor UEMs disposal practices, which compromise public health. Legislation, compliance monitoring and enforcement are germane for incentive-driven UEMs recovery.
Collapse
Affiliation(s)
- O O Aluko
- Department of Community Health, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - G T Imbianozor
- Department of Community Health, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - C O Jideama
- Department of Community Health, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - O V Ogundele
- Department of Community Health, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - T E Fapetu
- Department of Community Health, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - O T Afolabi
- Department of Community Health, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - O L Odewade
- Department of Environmental Management, Faculty of Earth and Environmental Sciences, Bayero University, Kano, Nigeria
| |
Collapse
|
13
|
Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150647. [PMID: 34597560 DOI: 10.1016/j.scitotenv.2021.150647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 101407, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yuwei An
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yu Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Liyan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; School of resources and environmental engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
14
|
Guan A, Qi W, Peng Q, Zhou J, Bai Y, Qu J. Environmental heterogeneity determines the response patterns of microbially mediated N-reduction processes to sulfamethoxazole in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126730. [PMID: 34388921 DOI: 10.1016/j.jhazmat.2021.126730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of antibiotics in aquatic ecosystems leads to potential ecological risks to organisms, in turn affecting microbially mediated processes. Here, we investigated the response of dominant N-reduction processes to the frequently detected antibiotic sulfamethoxazole (SMX) along the Chaobai River with regional environmental heterogeneity, including denitrification, anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), and nitrous oxide (N2O) release. We found two divergent SMX response patterns for denitrification in contrasting scenarios of geochemical properties. In the context of low nitrate and carbon, SMX weakened denitrification with a slightly stimulation first. Whereas SMX directly inhibited denitrification when nitrate and carbon were sufficient. High SMX concentration suppressed anammox (26-72%) and DNRA activities (48-84%) via restraining the activities of anammox and DNRA bacteria. Notably, SMX increased the contribution of denitrification to N-reduction at the expense of DNRA to N-reduction, leading to a shift in nitrogen conversion towards denitrification. Additionally, SMX stimulated N2O emission (up to 91%) due to superior restraint on process of N2O reduction to N2 and an incline for N-reduction towards denitrification, thereby exacerbating greenhouse effect. Our results advance the understanding of how nitrogen cycling is affected by SMX in aquatic ecosystems with environmental heterogeneity.
Collapse
Affiliation(s)
- Aomei Guan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Harrower J, McNaughtan M, Hunter C, Hough R, Zhang Z, Helwig K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment-A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3275-3298. [PMID: 34379810 DOI: 10.1002/etc.5191] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics in the aquatic environment is a major problem because of the emergence of antibiotic resistance. The long-term ecological impact on the aquatic environment is unknown. Many sources allow entry of antibiotics into the environment, including wastewater-treatment plants (WWTPs), agricultural runoff, hospital effluent, and landfill leachate. Concentrations of antibiotics in the aquatic environment vary significantly; studies have shown fluoroquinolones, tetracycline, macrolides, sulfonamides, and penicillins to reach 2900, 1500, 9700, 21 400, and 1600 ng L-1 in wastewater effluent samples, respectively. However, concentrations are highly variable between different countries and depend on several factors including seasonal variation, prescription, and WWTP operating procedures. Likewise, the reported concentrations that cause environmental effects vary greatly between antibiotics, even within the same class; however, this predicted concentration for the antibiotics considered was frequently <1000 ngL-1 , indicating that when discharged into the environment along with treated effluent, these antibiotics have a potentially detrimental effect on the environment. Antibiotics are generally quite hydrophilic in nature; however, they can ionize in the aquatic environment to form charged structures, such as cations, zwitterions, and anions. Certain classes, particularly fluoroquinolones and tetracyclines, can adsorb onto solid matrices, including soils, sediment, and sludge, making it difficult to fully understand their chemical fate in the aquatic environment. The adsorption coefficient (Kd ) varies between different classes of antibiotics, with tetracyclines and fluoroquinolones showing the highest Kd values. The Kd values for fluoroquinolones, tetracyclines, macrolides, and sulfonamides have been reported as 54 600, 7600, 130, and 1.37 L kg-1 , respectively. Factors such as pH of the environment, solid matrix (sediment/soil sludge), and ionic strength can influence the Kd ; therefore, several values exist in literature for the same compound. Environ Toxicol Chem 2021;40:3275-3298. © 2021 SETAC.
Collapse
Affiliation(s)
- Jamie Harrower
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Moyra McNaughtan
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| | - Colin Hunter
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Zulin Zhang
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Karin Helwig
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| |
Collapse
|
16
|
Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 2021; 27:101-111. [PMID: 34454098 DOI: 10.1016/j.jgar.2021.08.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR.
Collapse
|
17
|
Abiriga D, Jenkins A, Vestgarden LS, Klempe H. A nature-based solution to a landfill-leachate contamination of a confined aquifer. Sci Rep 2021; 11:14896. [PMID: 34290267 PMCID: PMC8295393 DOI: 10.1038/s41598-021-94041-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Remediation of groundwater from landfill contamination presents a serious challenge due to the complex mixture of contaminants discharged from landfills. Here, we show the significance of a nature-based solution to a landfill-contaminated aquifer in southeast Norway. Groundwater physicochemical parameters monitored for twenty-eight years were used as a proxy to infer natural remediation. Results show that concentrations of the major chemical variables decreased with time and distance until they tailed off. An exception to this was sulphate, which showed an increase, but apparently, exhibits a stationary phase. The water types were found to be most similar between samples from active landfill and post-closure stages, while samples from the stabilised stage showed a different water type. All the chemical parameters of samples from the stabilised stage were found to be within the Norwegian drinking water standards, except iron and manganese, which were only marginally above the limits, an indication of a possible recovery of this aquifer. The findings highlight the significance of natural attenuation processes in remediating contaminated aquifers and have significant consequences for future contamination management, where natural remediation can be viewed as an alternative worth exploring. This is promising in the wake of calls for sustainable remediation management strategies.
Collapse
Affiliation(s)
- Daniel Abiriga
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø, Norway.
| | - Andrew Jenkins
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø, Norway
| | - Live S Vestgarden
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø, Norway
| | - Harald Klempe
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Gullbringvegen 36, 3800, Bø, Norway
| |
Collapse
|
18
|
Pineda-Pampliega J, Ramiro Y, Herrera-Dueñas A, Martinez-Haro M, Hernández JM, Aguirre JI, Höfle U. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145197. [PMID: 33631567 DOI: 10.1016/j.scitotenv.2021.145197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The use of landfills as foraging areas by white storks (Ciconia ciconia) is a recent well-known behaviour. While several studies have highlighted positive effects at a populational level others suggest that the presence of pollutants, pathogens and the lower presence of antioxidants in the food could pose a health risk for individuals. The objective of this study was to evaluate potential effects of the use of landfills as a food resource on the physiology and health of white stork nestlings, by a multidisciplinary approach based on the analysis of nutritional status, body condition, blood parameters, oxidative stress balance and the presence of pathogens. Results showed better body condition in individuals associated with landfills compared to the ones feeding on natural resources, as well as better nutritional status, as indicated by higher levels of albumin, cholesterol, and triglycerides in plasma. As many pollutants have a pro-oxidant effect, we evaluated oxidative stress balance, with no differences in the indicators of damage except for methaemoglobin (metHb), significantly higher in nestlings associated with landfill-origin food. Regarding antioxidants, GSH was higher in nestlings associated with landfills, which may suggest a hormetic response induced potentially by the presence of pollutants in waste. Nestlings fed food from landfills also had a higher presence of Escherichia coli with a multiresistant phenotype to antibiotics. In conclusion, our results show that nestlings fed with a higher proportion of food from landfills present a better nutritional status and body condition than those fed with a higher proportion of natural diet, being the only indicators of negative effects of the use of this food resource the higher percentage of metHb in the peripheral blood and the presence of antibiotic-resistant E. coli.
Collapse
Affiliation(s)
- Javier Pineda-Pampliega
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain..
| | - Yolanda Ramiro
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Amparo Herrera-Dueñas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Monica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF). Centro de Investigación Agroambiental El Chaparrillo, Ciudad Real, Spain
| | | | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ursula Höfle
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| |
Collapse
|
19
|
Adekanmbi AO, Oluwaseyi TA, Oyelade AA. Dumpsite leachate as a hotspot of multidrug resistant Enterobacteriaceae harbouring extended spectrum and AmpC β-lactamase genes; a case study of Awotan municipal solid waste dumpsite in Southwest Nigeria. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Monahan C, Nag R, Morris D, Cummins E. Antibiotic residues in the aquatic environment - current perspective and risk considerations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:733-751. [PMID: 33979269 DOI: 10.1080/10934529.2021.1923311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance is a major concern for human and animal health, projected to deteriorate with time and given current trends of antimicrobial usage. Antimicrobial use, particularly in healthcare and agriculture, can result in the release of antimicrobials into surface waters, promoting the development of antibiotic resistance in the environment, and potentially leading to human health risks. This study reviews relevant literature, and investigates current European and Irish antimicrobial usage trends in humans and animals, as well as potential pathways that antibiotics can take into surface waters following use. Reported levels in the aquatic environment are summarized, with particular focus on Ireland. There are relatively few studies examining Irish water bodies or sewage effluent for antibiotic residues, however, five antibiotics, namely azithromycin, ciprofloxacin, clarithromycin, metronidazole, and trimethoprim, have been measured in Irish waters, in concentrations predicted to select for resistance. Numerous isolates of multi-drug resistant bacteria have also been found in water bodies throughout Ireland and Europe. The value of risk assessment methodologies in understanding risks posed by antibiotic residues is reviewed including the advantages and disadvantages of specific approaches. Hazard quotient and bespoke Monte Carlo approaches are predominant risk assessment tools used to examine antimicrobial release and their complex pathways. This study highlights the need for monitoring of antimicrobial releases and the potential for resistance development, persistence and transmission while highlighting the role of risk assessment methodologies in assessing potential human and environmental health impacts.
Collapse
Affiliation(s)
- Ciaran Monahan
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Rajat Nag
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Dearbháile Morris
- Galway School of Medicine, National University of Ireland, Galway, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Yu X, Sui Q, Lyu S, Zhao W, Wu D, Yu G, Barcelo D. Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4822-4830. [PMID: 33792295 DOI: 10.1021/acs.est.0c07588] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unused or expired pharmaceutical and personal care products (PPCPs) are usually discharged into municipal solid wastes, then travel to landfills, and eventually percolate into leachates. However, knowledge of their occurrence and temporal dynamics in leachates is limited, making landfill leachate an underappreciated emission source of PPCPs. Furthermore, the differences in PPCP variations in landfill leachates emphasize the necessity for identifying the influencing factors and elucidating the mechanisms for PPCP fluctuations. In this study, successive monthly monitoring of PPCPs in leachates throughout an entire year was performed to determine their seasonal variations and identify their influencing factors. Furthermore, five pairs of additional sampling campaigns were conducted before and after rainfall events during wet seasons to elucidate the influencing mechanisms. The results showed that there was a distinct seasonal variation in PPCPs in landfill leachates-elevated levels during the wet period (from April to September, with a mean concentration of 17.0 μg/L for total monitored PPCPs)-when compared to other months (mean concentration of 3.8 μg/L). Rainfall played a considerable role in mediating PPCP concentrations in leachates. The PPCP responses to five rainfall episodes further verified the influence of rainfall and demonstrated that the tendency to PPCP concentration increase was related to rainfall precipitation. Torrential rain events (i.e., 24 h cumulative precipitation of 50-99.9 mm) led to the most significant increases in PPCP concentrations in landfill leachates. In addition, the hydrophilicity of PPCPs contributed to the different fluctuations during the 1 year investigation and different responses to rainfall. To the best of our knowledge, this study provides the first direct evidence supporting the influence of rainfall on PPCPs in landfill leachates, which can help better understand the occurrence and behavior of emerging contaminants in this underappreciated emission source.
Collapse
Affiliation(s)
- Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongquan Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damia Barcelo
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, Girona 17003, Spain
| |
Collapse
|
22
|
Anh HQ, Le TPQ, Da Le N, Lu XX, Duong TT, Garnier J, Rochelle-Newall E, Zhang S, Oh NH, Oeurng C, Ekkawatpanit C, Nguyen TD, Nguyen QT, Nguyen TD, Nguyen TN, Tran TL, Kunisue T, Tanoue R, Takahashi S, Minh TB, Le HT, Pham TNM, Nguyen TAH. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142865. [PMID: 33097262 DOI: 10.1016/j.scitotenv.2020.142865] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/26/2020] [Accepted: 10/03/2020] [Indexed: 05/11/2023]
Abstract
This review provides focused insights into the contamination status, sources, and ecological risks associated with multiple classes of antibiotics in surface water from the East and Southeast Asia based on publications over the period 2007 to 2020. Antibiotics are ubiquitous in surface water of these countries with concentrations ranging from <1 ng/L to hundreds μg/L and median values from 10 to 100 ng/L. Wider ranges and higher maximum concentrations of certain antibiotics were found in surface water of the East Asian countries like China and South Korea than in the Southeast Asian nations. Environmental behavior and fate of antibiotics in surface water is discussed. The reviewed occurrence of antibiotics in their sources suggests that effluent from wastewater treatment plants, wastewater from aquaculture and livestock production activities, and untreated urban sewage are principal sources of antibiotics in surface water. Ecological risks associated with antibiotic residues were estimated for aquatic organisms and the prevalence of antibiotic resistance genes and antibiotic-resistant bacteria were reviewed. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of antibiotics and antibiotic resistance in water bodies of East and Southeast Asian countries.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Viet Nam; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Thi Phuong Quynh Le
- Laboratory of Environmental Chemistry, Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam.
| | - Nhu Da Le
- Laboratory of Environmental Chemistry, Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Xi Xi Lu
- Department of Geography, National University of Singapore, Arts Link 1, Singapore 117570, Singapore
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Josette Garnier
- Sorbonne University, UMR Metis 7619, 4th floor, Tour 56, 4 Place Jussieu, Paris 75005, France
| | - Emma Rochelle-Newall
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Université Paris-Est Créteil, IRD, CNRS, INRA, Paris, France
| | - Shurong Zhang
- College of Water Sciences, Beijing Normal University, 19 Xinjiekouwai St., Beijing 100875, China
| | - Neung-Hwan Oh
- Graduate School of Environmental Studies, Seoul National University, Seoul 08826, Republic of Korea
| | - Chantha Oeurng
- Institute of Technology of Cambodia, Russian Conference Blvd., Phnom Penh, Cambodia
| | - Chaiwat Ekkawatpanit
- Civil Engineering Department, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Thon Buri, Bangkok 10140, Thailand
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Tran Dung Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Trong Nghia Nguyen
- Faculty of Chemical Technology and Environment, Hung Yen University of Technology and Education, Khoai Chau, Hung Yen 17000, Viet Nam
| | - Thi Lieu Tran
- Viet Nam National Institute of Occupational Safety and Health (VNNIOSH), 99 Tran Quoc Toan, Hoan Kiem, Hanoi 10000, Viet Nam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tu Binh Minh
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Viet Nam
| | - Huu Tuyen Le
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Viet Nam
| | - Thi Ngoc Mai Pham
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Viet Nam
| | - Thi Anh Huong Nguyen
- University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Viet Nam
| |
Collapse
|
23
|
Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci (China) 2021; 99:21-27. [PMID: 33183698 DOI: 10.1016/j.jes.2020.05.030] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Antibiotics are poorly metabolized, and can enter the environment via human waste streams, agricultural run-off and pharmaceutical effluent. We consequently expect to see a concentration gradient of antibiotic compounds radiating from areas of human population. Such antibiotics should be thought of as pollutants, as they can accumulate, and have biological effects. These antibiotic pollutants can increase rates of mutation and lateral transfer events, and continue to exert selection pressure even at sub-inhibitory concentrations. Here, we conducted a literature survey on environmental concentrations of antibiotics. We collated 887 data points from 40 peer-reviewed papers. We then determined whether these concentrations were biologically relevant by comparing them to their minimum selective concentrations, usually defined as between 1/4 and 1/230 of the minimum inhibitory concentration. Environmental concentrations of antibiotics surveyed often fall into this range. In general, the antibiotic concentrations recorded in aquatic and sediment samples were similar. These findings indicate that environmental concentrations of antibiotics are likely to be influencing microbial ecology, and to be driving the selection of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Louise K M Chow
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | - Timothy M Ghaly
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| |
Collapse
|
24
|
Ozumchelouei EJ, Hamidian AH, Zhang Y, Yang M. A critical review on the effects of antibiotics on anammox process in wastewater. REV CHEM ENG 2020. [DOI: 10.1515/revce-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Anaerobic ammonium oxidation (anammox) has recently become of significant interest due to its capability for cost-effective nitrogen elimination from wastewater. However, anaerobic ammonia-oxidizing bacteria (AnAOB) are sensitive to environmental changes and toxic substances. In particular, the presence of antibiotics in wastewater, which is considered unfavorable to the anammox process, has become a growing concern. Therefore, it is necessary to evaluate the effects of these inhibitors to acquire information on the applicability of the anammox process. Hence, this review summarizes our knowledge of the effects of commonly detected antibiotics in water matrices, including fluoroquinolone, macrolide, β-lactam, chloramphenicol, tetracycline, sulfonamide, glycopeptide, and aminoglycoside, on the anammox process. According to the literature, the presence of antibiotics in wastewater could partially or completely inhibit anammox reactions, in which antibiotics targeting protein synthesis or DNA replication (excluding aminoglycoside) were the most effective against the AnAOB strains.
Collapse
Affiliation(s)
- Elnaz Jafari Ozumchelouei
- School of Chemical Engineering , University College of Engineering, University of Tehran , Tehran , Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources , University of Tehran , Karaj , Iran
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Min Yang
- Department of Environmental Science and Engineering, Faculty of Natural Resources , University of Tehran , Karaj , Iran
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
25
|
Bu Q, Cao H, He X, Zhang H, Yu G. Is Disposal of Unused Pharmaceuticals as Municipal Solid Waste by Landfilling a Good Option? A Case Study in China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:784-789. [PMID: 32979083 DOI: 10.1007/s00128-020-03006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Properly disposing of unused pharmaceuticals is essential to minimize emissions of active pharmaceutical ingredients (APIs). The aim of this study was to determine whether disposing of unused pharmaceuticals in household solid waste is a cost-effective way of attenuating pharmaceutical emissions. We calculated attenuation rates (ARs) for unused pharmaceuticals by performing mass balance calculations for disposal to landfill. The results indicated that the average ARs for disposal as household solid waste reached 63% to 100% for our investigated pharmaceuticals at the worst scenario, indicating that disposal as household solid waste strongly attenuated emissions of APIs. Disposing of unused pharmaceuticals as household solid waste could be a cost-effective disposal method from the view of reducing APIs emission, but should be used with caution.
Collapse
Affiliation(s)
- Qingwei Bu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China.
| | - Hongmei Cao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Xiaofan He
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Handan Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, People's Republic of China
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
26
|
Cheng SY, Show PL, Juan JC, Ling TC, Lau BF, Lai SH, Ng EP. Sustainable landfill leachate treatment: Optimize use of guar gum as natural coagulant and floc characterization. ENVIRONMENTAL RESEARCH 2020; 188:109737. [PMID: 32554270 DOI: 10.1016/j.envres.2020.109737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Sustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment. Central composite design in response surface methodology was used to optimize the performance of Chemical Oxygen Demand (COD) removal. Quadratic model developed indicated the optimum COD removal 22.57% at guar gum dosage of 44.39 mg/L, pH 8.56 (natural pH of leachate) and mixing speed 79.27 rpm. Scanning electron microscopy showed that floc was compact and energy-dispersive-x-ray analysis showed that guar gum was capable to adsorb multiple ions from the leachate. Structural characterization using Fourier Transform Infrared analysis demonstrated that hydrogen bonding between guar and pollutant particles was involved in coagulation and flocculation process. Therefore, guar gum coagulant present potential to be an alternative in leachate treatment where pH requirement is not required during treatment. Simultaneously, adsorption by guar gum offers added pollutant removal advantage.
Collapse
Affiliation(s)
- Sze Yin Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, Deputy Vice Chancellor (Research & Innovation) Office, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Beng Fye Lau
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sai Hin Lai
- Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Eng Poh Ng
- School of Chemical Sciences, University of Science, Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
27
|
Yu X, Sui Q, Lyu S, Zhao W, Liu J, Cai Z, Yu G, Barcelo D. Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9757-9768. [PMID: 32560585 DOI: 10.1021/acs.est.0c00565] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) have been the focus of increasing concern in recent decades due to their ubiquity in the environment and potential risks. Out-of-date PPCPs are usually discharged into municipal solid wastes (MSWs), enter the leachates in MSW landfills, and have serious adverse effects on the surrounding water environment. However, the occurrence and removal of PPCPs from landfill leachates have rarely been examined to date. This lack of knowledge makes the landfill an underestimated source of PPCPs in the environment. In this review, we collected the relevant publications of PPCPs in landfill leachates, systematically summarized the occurrence of PPCPs in landfill leachates globally, evaluated the removal performances for various PPCPs by different types of on-site full-scale leachate treatment processes, and assessed the impacts of landfill leachates on PPCPs in the adjacent groundwater. In particular, influencing factors for PPCPs in landfill leachates, including the physicochemical properties of PPCPs, climate conditions, and characteristics of landfill sites (i.e., landfill ages) as well as sociological factors (i.e., economic development), were extensively discussed to understand their occurrence patterns. Future perspectives were also proposed in light of the identified knowledge gaps. To the best of our knowledge, this is the first review regarding the occurrence and removal of PPCPs from landfill leachates worldwide.
Collapse
Affiliation(s)
- Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenxiao Cai
- MicroHAOPs Inc., University of Washington, Seattle, Washington 98195, United States
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (CSIC), Barcelona 08034, Spain
| |
Collapse
|
28
|
Leung KM, Yeung KW, You J, Choi K, Zhang X, Smith R, Zhou G, Yung MM, Arias‐Barreiro C, An Y, Burket SR, Dwyer R, Goodkin N, Hii YS, Hoang T, Humphrey C, Iwai CB, Jeong S, Juhel G, Karami A, Kyriazi‐Huber K, Lee K, Lin B, Lu B, Martin P, Nillos MG, Oginawati K, Rathnayake I, Risjani Y, Shoeb M, Tan CH, Tsuchiya MC, Ankley GT, Boxall AB, Rudd MA, Brooks BW. Toward Sustainable Environmental Quality: Priority Research Questions for Asia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1485-1505. [PMID: 32474951 PMCID: PMC7496081 DOI: 10.1002/etc.4788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 05/22/2023]
Abstract
Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kenneth M.Y. Leung
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongKowloonHong KongChina
| | - Katie W.Y. Yeung
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
| | | | - Xiaowei Zhang
- School of the EnvironmentNanjing UniversityNanjingChina
| | | | - Guang‐Jie Zhou
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
| | | | | | | | | | | | | | | | | | - Chris Humphrey
- Supervising Scientist BranchCanberraAustralian Capital TerritoryAustralia
| | | | | | | | | | | | | | - Bin‐Le Lin
- National Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Ben Lu
- International Copper Association–AsiaShanghaiChina
| | | | - Mae Grace Nillos
- College of Fisheries and Ocean SciencesUniversity of the Philippines VisayasIloilo CityPhilippines
| | | | - I.V.N. Rathnayake
- Department of MicrobiologyFaculty of Science, University of KelaniyaKelaniyaSri Lanka
| | | | | | | | | | | | | | | | - Bryan W. Brooks
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
- Baylor UniversityWacoTexasUSA
| |
Collapse
|
29
|
Ogyu A, Chan O, Littmann J, Pang HH, Lining X, Liu P, Matsunaga N, Ohmagari N, Fukuda K, Wernli D. National action to combat AMR: a One-Health approach to assess policy priorities in action plans. BMJ Glob Health 2020; 5:e002427. [PMID: 32665430 PMCID: PMC7359186 DOI: 10.1136/bmjgh-2020-002427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 01/16/2023] Open
Abstract
Little is known about the overall trend and prioritisations of past and current antimicrobial resistance (AMR) policies. Here we introduce a quantitative method to analyse AMR policies. The AMR-Policy Analysis Coding Toolkit (AMR-PACT) uses several categorical variables. Thirteen AMR action plans from five countries (China, Japan, Norway, the UK and the USA) were used to develop the tool and identify possible values for each variable. The scope and capability of AMR-PACT is demonstrated through the 2015 WHO's Global Action Plan and 2017 Hong Kong AMR Action Plan (HKAP). Majority of policies were aimed at either human or animal sector with less attention given to the environment, plant or food sector. Both plans shared the same two strategic focus areas, namely the conservation of antibiotics and the improved surveillance of resistance. There were no policies dedicated to improving access to antibiotics in the HKAP. These empirical results provide useful insights into the priorities and gaps of AMR policies. The method proposed here can help understand countries' priorities regarding AMR, support the creation of AMR policy database and foster innovative policymaking.
Collapse
Affiliation(s)
- Anju Ogyu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olivia Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Herbert H Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xia Lining
- College of Veterinary Medicine, Xinjiang Agricultural University, Ulumuqi, China
| | - Ping Liu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Shinjuku-ku, Japan
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Shinjuku-ku, Japan
| | - Keiji Fukuda
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Didier Wernli
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Meng Y, Sheng B, Meng F. Changes in nitrogen removal and microbiota of anammox biofilm reactors under tetracycline stress at environmentally and industrially relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:379-388. [PMID: 30852214 DOI: 10.1016/j.scitotenv.2019.02.389] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Anammox-related processes are often applied for the wastewater treatment which contains both ammonium and antibiotics. Herein, the long-term effects of tetracycline (TC), at environmentally and industrially relevant concentrations, on the performance, anammox activity and microbial community of anammox reactors were investigated for 518 days. The control reactor (without TC exposure) was stable for nitrogen removal during the long-term operation (a nitrogen removal rate of 0.56 ± 0.05 kg-N·m-3·d-1). In the TC-added reactor, the nitrogen removal efficiency increased slightly at low TC levels (1-100 μg/L), whereas poor anammox performance occurred at high TC concentration (1000 μg/L). Furthermore, the concentrations of extracellular polymeric substances (EPS) were much higher at 10 μg/L than those in the control reactor (P < 0.01), whereas rapidly decreased at 1000 μg-TC/L. Furthermore, the reactor performance was highly consistent with the variations of the heme c contents. Consistently, exposure to TC changed the abundance of anammox bacteria, e.g., an increase in Candidatus Jettenia abundance occurred from 2.20 ± 0.97% (0-10 μg/L) to 12.13 ± 1.66% (100 μg/L). Similarly, the genus Denitratisoma, the most predominant denitrification bacteria, also had a higher abundance at a TC concentration of 100 μg/L (15.60 ± 6.42%) than other TC concentrations (5.40 ± 2.50% and 7.65 ± 0.55% at concentrations of 10 and 1000 μg/L, respectively). The results can explain why the exposure of anammox bacteria to a lower TC concentration (100 μg/L) resulted in a better nitrogen removal rate. In contrast, exposure to a high TC level (1000 μg/L) led to a decline in the abundance of anammox bacteria and denitrifiers (1.53 ± 0.64% and 8.18 ± 0.63%, respectively) but an increased abundance in the nitrifier population (8.07 ± 1.21%; P < 0.01). Therefore, this study can aid in the design and operation of anammox-based processes treating sewage and industrial wastewater.
Collapse
Affiliation(s)
- Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Binbin Sheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
31
|
Kim B, Ji K, Kim C, Kang H, Lee S, Kwon B, Kho Y, Park K, Kim K, Choi K. Pharmaceutical residues in streams near concentrated animal feeding operations of Korea - Occurrences and associated ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:408-413. [PMID: 30472642 DOI: 10.1016/j.scitotenv.2018.11.233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Concentrated animal feeding operations (CAFOs) have been suggested to be the most significant source of pharmaceutical release into the environment. However, limited information is available on the occurrence of veterinary pharmaceutical residues and the associated ecological risks to the aquatic environment near CAFO areas. In this study, ten commonly used veterinary antibiotics, including sulfonamides, tetracyclines, and cephalosporins, along with three analgesics, were measured in water samples collected from the streams that run near two CAFOs in Korea in 2013 (n = 16) and 2014 (n = 10). In addition, the associated ecological risks were estimated by calculating risk quotient. The pharmaceuticals were detected in a higher amount in the samples collected downstream from the CAFO than in those collected upstream. Acetaminophen, sulfamethazine, sulfathiazole, and oxytetracycline were detected at maximum concentrations of 38.8 μg/L, 21.3 μg/L, 17.4 μg/L, and 16.9 μg/L, respectively. Relatively higher concentrations of pharmaceuticals were observed in locations adjacent to the CAFO and the downstream area, suggesting the influence of the CAFO. Except for acetaminophen, lower concentrations of the target pharmaceuticals were detected in the samples collected during the high-flow season. The concentrations of most of the target pharmaceuticals exceeded the risk quotient of one, suggesting potential ecological effects in the areas affected by CAFOs. Our observations show that the water environment near a CAFO could be heavily affected by veterinary pharmaceuticals and analgesic drugs that are also frequently used among humans. Hence, the ecological consequences of pharmaceutical residues in the water bodies near CAFOs warrant further investigation.
Collapse
Affiliation(s)
- Bokyung Kim
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| | - Cheolmin Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Habyeong Kang
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwoo Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Bareum Kwon
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea; School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Kyunghwa Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyungtae Kim
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
32
|
Brooks BW, Conkle JL. Commentary: Perspectives on aquaculture, urbanization and water quality. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:1-4. [PMID: 30496833 DOI: 10.1016/j.cbpc.2018.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022]
Abstract
Aquaculture presents essential opportunities to meet global food security needs, but adverse effects of aquaculture practices on ecological integrity and influences of existing waste management infrastructure on product safety must be understood in rapidly expanding urban and peri-urban regions. Concentration of, access to and use of chemical products is increasing in many urban areas faster than interventions are being implemented. Aquaculture farming is employing "non-traditional" (e.g., treated or untreated sewage) waters in some regions, but the spatial extent of these intentional or de facto water reuse practices with associated water quality and food safety systems are poorly understood around the world. Integrative water reuse, aquaculture product safety, ecological and public health research and advanced surveillance systems are needed. Such efforts appear particularly important because noncommunicable diseases are increasing and pollution is now recognized as one of the major global health threats, particularly in lower and middle income countries. Here we provide some modest perspectives and identify several research needs to support more sustainable aquaculture practices while protecting public health and the environment.
Collapse
Affiliation(s)
- Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, PR China.
| | - Jeremy L Conkle
- Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX, USA
| |
Collapse
|
33
|
Ondarza PM, Haddad SP, Avigliano E, Miglioranza KSB, Brooks BW. Pharmaceuticals, illicit drugs and their metabolites in fish from Argentina: Implications for protected areas influenced by urbanization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1029-1037. [PMID: 30308876 DOI: 10.1016/j.scitotenv.2018.08.383] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Because an understanding of aquatic bioaccumulation of human pharmaceuticals in Latin America is limited, this area was recently identified as a priority environmental quality research need. We examined bioaccumulation of twenty-seven pharmaceuticals, illicit drugs and their metabolites in muscle, liver and gills of multiple fish species (Rhamdia quelen, Hypostomus commersoni, Hoplias lacerdae, Prochilodus lineatus) from an urban river receiving wastewater discharges (Paraná) and a lotic system (Acaraguá) without direct wastewater sources, which runs through a protected area. All samples were analyzed using isotope-dilution liquid chromatography-tandem mass spectrometry. Caffeine, which was detected up to 13 μg/kg, and antibiotics were consistently detected in all fish. Among antibiotics, erythromycin was ubiquitous (0.7-5.6 μg/kg) but its tissue concentrations were lower than levels of sulfamethoxazole, sulfathiazole and trimethoprim (0.9-5.5 μg/kg), which are used in human medicine, aquaculture and livestock. Erythromycin bioaccumulation in fish is reported here from Argentina for the first time, though levels of antibiotics in edible muscles of these species were lower than the maximum residue limits for human consumption. We observed norfluoxetine, the primary active metabolite of the antidepressant fluoxetine, ranging from 1.1-9.1 μg/kg in fish. We further identified benzoylecgonine, a primary metabolite of cocaine, in fish from both study systems, representing the first observation an illicit drug or associated metabolites bioaccumulation in aquatic life from Argentina. Interestingly, high pharmaceutical levels were observed in fish from the Acaraguá river suggesting their transport into the protected area, from the surrounding lands. Though fish from the Paraná river were sampled near WWTP discharges, pharmaceutical concentrations may have been reduced by hydrological and other environmental conditions, and biological differences among species. These findings, which observed bioaccumulation of select pharmaceuticals, their metabolites and illicit drugs in wild fish sampled inside a protected area, highlight the importance of developing an advanced understanding of urban influences on inland protected watersheds.
Collapse
Affiliation(s)
- Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, Mar del Plata B7600, Argentina.
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Esteban Avigliano
- Instituto de Investigaciones en Producción Animal-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de Buenos Aires, Buenos Aires C1427CWO, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, Mar del Plata B7600, Argentina
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
34
|
Schafhauser BH, Kristofco LA, de Oliveira CMR, Brooks BW. Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:440-451. [PMID: 29587215 DOI: 10.1016/j.envpol.2018.03.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 05/21/2023]
Abstract
Environmental observations of antibiotics and other pharmaceuticals have received attention as indicators of an urbanizing global water cycle. When connections between environment and development of antibiotic resistance (ABR) are considered, it is increasingly important to understand the life cycle of antibiotics. Here we examined the global occurrence of erythromycin (ERY) in: 1. wastewater effluent, inland waters, drinking water, groundwater, and estuarine and coastal systems; 2. sewage sludge, biosolids and sediments; and 3. tissues of aquatic organisms. We then performed probabilistic environmental hazard assessments to identify probabilities of exceeding the predicted no-effect concentration (PNEC) of 1.0 μg L-1 for promoting ABR, based on previous modeling of minimum inhibitory concentrations and minimal selective concentrations of ERY, and measured levels from different geographic regions. Marked differences were observed among geographic regions and matrices. For example, more information was available for water matrices (312 publications) than solids (97 publications). ERY has primarily been studied in Asia, North America and Europe with the majority of studies performed in China, USA, Spain and the United Kingdom. In surface waters 72.4% of the Asian studies have been performed in China, while 85.4% of the observations from North America were from the USA; Spain represented 41.9% of the European surface water studies. Remarkably, results from PEHAs indicated that the likelihood of exceeding the ERY PNEC for ABR in effluents was markedly high in Asia (33.3%) followed by Europe (20%) and North America (17.8%). Unfortunately, ERY occurrence data is comparatively limited in coastal and marine systems across large geographic regions including Southwest Asia, Eastern Europe, Africa, and Central and South America. Future studies are needed to understand risks of ERY and other antibiotics to human health and the environment, particularly in developing regions where waste management systems and treatment infrastructure are being implemented slower than access to and consumption of pharmaceuticals is occurring.
Collapse
Affiliation(s)
- Bruno Henrique Schafhauser
- Graduate Program in Environmental Management, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza - Campo Comprido, Curitiba, Paraná, Brazil
| | - Lauren A Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza - Campo Comprido, Curitiba, Paraná, Brazil.
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
35
|
Kelly KR, Brooks BW. Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ecotoxicological Thresholds. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:59-77. [DOI: 10.1016/bs.pmbts.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|