1
|
Almadani AK, Ahmed W, Al Obaidli AAK, Holt SG. Gender, age and nationality differences in chronic kidney disease prevalence in the emirate of Abu Dhabi, UAE. Nephrology (Carlton) 2024; 29:288-296. [PMID: 38450898 DOI: 10.1111/nep.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
AIM We aimed to better understand the prevalence of chronic kidney disease in Abu Dhabi, UAE, where a very diverse ethnic population lives, each with their own risk profile. METHODS Data were analysed on all patients who were tested for serum creatinine in December 2019 for 4 years within our healthcare network. We analysed data for kidney disease by age, gender and nationality to study differences in prevalence and risk. RESULTS The entire cohort (EC) consisted 1 925 672 samples from 703 122 patients. 24% of patients had GFR < 90 mL/min/1.73 m2 (CKD2-5), 4% had more severe kidney dysfunction (CKD3-5) and 2% had UACR >3 mg/mmol and with GFR > 90 (CKD1). The long follow-up (LFU) group comprised 45.6% of patients who had eGFR on at least two occasions more than 90 days apart, and of these 19.5% had sustained eGFR <90, and 5.2% had CKD3-5. Males had lower eGFR than females in the EC (RR 1.68) and the LFU group (RR 1.76). Emirati Females had the lowest prevalence in the EC (2.9%) and expatriate females in the LFU (3.5%) groups. The relative risks of CKD in expatriate males were highest in the EC (2.14) and the LFU (2.39) groups. When we looked at the age distribution by nationality there were highly significant differences in some populations being highly represented at younger ages. CONCLUSION The prevalence of kidney disease in Abu Dhabi has a male predominance, with younger expatriates highly represented. A targeted strategy to identify those at high risk may identify early CKD to prevent progression to end-stage kidney disease.
Collapse
Affiliation(s)
- Ayman Kamal Almadani
- SEHA Kidney Care, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Wasim Ahmed
- SEHA Kidney Care, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ali Abdul Kareem Al Obaidli
- SEHA Kidney Care, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- SEHA Kidney Care, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Mousavi SS, Reyna MA, Clifford GD, Sameni R. A Survey on Blood Pressure Measurement Technologies: Addressing Potential Sources of Bias. SENSORS (BASEL, SWITZERLAND) 2024; 24:1730. [PMID: 38543993 PMCID: PMC10976157 DOI: 10.3390/s24061730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 11/12/2024]
Abstract
Regular blood pressure (BP) monitoring in clinical and ambulatory settings plays a crucial role in the prevention, diagnosis, treatment, and management of cardiovascular diseases. Recently, the widespread adoption of ambulatory BP measurement devices has been predominantly driven by the increased prevalence of hypertension and its associated risks and clinical conditions. Recent guidelines advocate for regular BP monitoring as part of regular clinical visits or even at home. This increased utilization of BP measurement technologies has raised significant concerns regarding the accuracy of reported BP values across settings. In this survey, which focuses mainly on cuff-based BP monitoring technologies, we highlight how BP measurements can demonstrate substantial biases and variances due to factors such as measurement and device errors, demographics, and body habitus. With these inherent biases, the development of a new generation of cuff-based BP devices that use artificial intelligence (AI) has significant potential. We present future avenues where AI-assisted technologies can leverage the extensive clinical literature on BP-related studies together with the large collections of BP records available in electronic health records. These resources can be combined with machine learning approaches, including deep learning and Bayesian inference, to remove BP measurement biases and provide individualized BP-related cardiovascular risk indexes.
Collapse
Affiliation(s)
- Seyedeh Somayyeh Mousavi
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA; (S.S.M.); (M.A.R.); (G.D.C.)
| | - Matthew A. Reyna
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA; (S.S.M.); (M.A.R.); (G.D.C.)
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA; (S.S.M.); (M.A.R.); (G.D.C.)
- Biomedical Engineering Department, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Reza Sameni
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA; (S.S.M.); (M.A.R.); (G.D.C.)
| |
Collapse
|
3
|
Xu Y, Han Y, Chen W, Chatzidiakou L, Yan L, Krause A, Li Y, Zhang H, Wang T, Xue T, Chan Q, Barratt B, Jones RL, Liu J, Wu Y, Zhao M, Zhang J, Kelly FJ, Zhu T. Susceptibility of hypertensive individuals to acute blood pressure increases in response to personal-level environmental temperature decrease. ENVIRONMENT INTERNATIONAL 2024; 185:108567. [PMID: 38460242 DOI: 10.1016/j.envint.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Environmental temperature is negatively associated with blood pressure (BP), and hypertension may exacerbate this association. The aim of this study is to investigate whether hypertensive individuals are more susceptible to acute BP increases following temperature decrease than non-hypertensive individuals. METHODS The study panel consisted of 126 hypertensive and 125 non-hypertensive (n = 251) elderly participants who completed 940 clinical visits during the winter of 2016 and summer of 2017 in Beijing, China. Personal-level environmental temperature (PET) was continuously monitored for each participant with a portable sensor platform. We associated systolic BP (SBP) and diastolic BP (DBP) with the average PET over 24 h before clinical visits using linear mixed-effects models and explored hourly lag patterns for the associations using distributed lag models. RESULTS We found that per 1 °C decrease in PET, hypertensive individuals showed an average (95 % confidence interval) increase of 0.96 (0.72, 1.19) and 0.28 (0.13, 0.42) mmHg for SBP and DBP, respectively; and non-hypertensive participants showed significantly smaller increases of 0.28 (0.03, 0.53) mmHg SBP and 0.14 (-0.01, 0.30) mmHg DBP. A lag pattern analysis showed that for hypertensive individuals, the increases in SBP and DBP were greatest following lag 1 h PET decrease and gradually attenuated up to lag 10 h exposure. No significant BP change was observed in non-hypertensive individuals associated with lag 1-24 h PET exposure. The enhanced increase in PET-associated BP in hypertensive participants (i.e., susceptibility) was more significant in winter than in summer. CONCLUSIONS We found that a decrease in environmental temperature was associated with acute BP increases and these associations diminished over time, disappearing after approximately 10 hours. This implies that any intervention measures to prevent BP increases due to temperature drop should be implemented as soon as possible. Such timely interventions are particularly needed for hypertensive individuals especially during the cold season due to their increased susceptibility.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Li Yan
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Anika Krause
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Yilin Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Queenie Chan
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Jing Liu
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Beijing, China
| | - Meiping Zhao
- College of Chemistry, Peking University, Beijing, China
| | - Junfeng Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
4
|
Duan G, Song C, Liu Y, Fu Z, Zhang C, Han X, Li Y, Zhou Y. Study on the dynamic effects of plateau hypoxic and cold environment on the thermal adaptation of short-term sojourners in Xizang. J Therm Biol 2024; 119:103774. [PMID: 38128423 DOI: 10.1016/j.jtherbio.2023.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The plateau hypoxic environment can affect the thermoregulation process of the human body, and due to the different acclimatization ability to the hypoxic environment, the thermal requirements among the people who enter Xizang at different times may be different. Accordingly, this study aims to clarify how plateau hypoxic environments influence the physiological and subjective responses of people entering Xizang at different times. And field experiments were conducted in Xi'an and Lhasa, respectively, to compare the thermal responses and oxygen responses of the subjects under different temperature conditions on the plain, the first day of entering Xizang and the 15th day of entering Xizang. The results showed that under the hypoxic environment, the thermal sensation of the subjects decreased. With the extension of the time entering Xizang, the influence of the hypoxic environment on thermal comfort was gradually weakened, but under the low temperature environment, the effect of hypoxia on thermal response was not significantly reduced. The results of this study can help to reveal how plateau hypoxic environments affect human thermal comfort and provide a theoretical basis for the design of indoor thermal environment parameters suitable for sojourners entering Xizang at different times.
Collapse
Affiliation(s)
- Guannan Duan
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Cong Song
- State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China; School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| | - Yanfeng Liu
- State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China; School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Zhiguo Fu
- Xizang Autonomous Region Construction Survey and Design Institute, Lhasa, Xizang, 850000, China
| | - Cong Zhang
- Xizang Autonomous Region Construction Survey and Design Institute, Lhasa, Xizang, 850000, China
| | - Xu Han
- Institute of Military Environmental Teaching & Research, Army Engineering University of PLA, Nanjing, Jiangsu, 210007, China
| | - Yong Li
- Institute of Military Environmental Teaching & Research, Army Engineering University of PLA, Nanjing, Jiangsu, 210007, China
| | - Yong Zhou
- School of Management, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| |
Collapse
|
5
|
Cheng BJ, Li H, Meng K, Li TL, Meng XC, Wang J, Wang C, Jiang N, Sun MJ, Yang LS, Zhu XY, Liu R. Short-term effects of heatwaves on clinical and subclinical cardiovascular indicators in Chinese adults: A distributed lag analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108358. [PMID: 38056095 DOI: 10.1016/j.envint.2023.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
AIMS Previous studies have related heat waves to morbidity and mortality of cardiovascular diseases; however, potential mechanisms remained limited. Our aims were to investigate the short-term effects of heat waves on a series of clinical/subclinical indicators associated with cardiovascular health. METHODS Our study used 80,574 health examination records from the Health Management Center of Nanjing Zhongda Hospital during the warm seasons of 2019-2021, including 62,128 participants. A total of 11 recognized indicators of cardiovascular risk or injury were assessed. Air pollution and meteorological data were obtained from the Nanjing Ecological Environment Bureau and the China Meteorological Data Network, respectively. Heat waves were defined as a daily average temperature over the 95th percentile for three or more consecutive days from May to September. We used a combination of linear mixed effects models and distributed lag nonlinear models to assess the lagged effects of heat waves on clinical and subclinical cardiovascular indicators. Stratified analyses based on individuals' characteristics, including gender, age, body mass index (BMI), diabetes, and hypertension, were also performed. RESULTS Heat waves were related to significant changes in most indicators, with the magnitude of effects generally peaking at a lag of 0 to 3 days. Moreover, the cumulative percentage changes over lag 0-7 days were -0.82 % to -2.55 % in blood pressure, 1.32 % in heart rate, 0.20 % to 2.66 % in systemic inflammation markers, 0.36 % in a blood viscosity parameter, 9.36 % in homocysteine, and 1.35 % to 3.25 % in injuring myocardial enzymes. Interestingly, females and males showed distinct susceptibilities in different indicators. Stronger effects were also found in participants aged 50 years or over, individuals with abnormal BMI status, and patients with diabetes. CONCLUSION Short-term exposure to heat waves could significantly alter clinical/subclinical cardiovascular indicator profiles, including blood pressure changes, increased heart rate, acute systemic inflammation, elevated blood viscosity, and myocardial injury.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ke Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Tian-Lin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xing-Chen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Chun Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ming-Jun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lin-Sheng Yang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xin-Yi Zhu
- The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
6
|
Hou K, Xu X. Ambient temperatures associated with reduced cognitive function in older adults in China. Sci Rep 2023; 13:17414. [PMID: 37833389 PMCID: PMC10575877 DOI: 10.1038/s41598-023-44776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023] Open
Abstract
The cognitive function status of older adults determines the social function and living quality of older adults, which is related to the healthy development and stability of the society. However, the impact of high or low ambient temperature on cognitive function in older adults remains unclear. Based on data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), we comprehensively assessed the impact of ambient temperature on the cognitive function of older adults in this study. The findings exhibited that for each 1 °C ascent in monthly temperature of high temperature, the examination score of global cognitive function of older adults decreased by 0.48 (95% CI 0.21-0.74), which was greater than that of 0.14 (95% CI 0.06-0.25) for each 1 °C reduction in low temperature. Overall, the detrimental effect of high temperature on cognitive function in older adults was more significant than that of low temperature, including on the five sub-cognitive functions involved. Our research provides vital technical guidance and reference for the health protection and prevention of cognitive function of older adults in specific external environmental conditions under the current climatic variation and temperature rise.
Collapse
Affiliation(s)
- Kun Hou
- School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Xia Xu
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, 210029, China
| |
Collapse
|
7
|
Shen M, Li Y, Li S, Chen X, Zou B, Lu Y. Association of exposure to artificial light at night during adolescence with blood pressure in early adulthood. Chronobiol Int 2023; 40:1419-1426. [PMID: 37818634 DOI: 10.1080/07420528.2023.2266485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Artificial light at night (ALAN) is related to various diseases, such as cancer, obesity, and coronary heart disease. However, its impact on blood pressure in adolescents is not well understood. To investigate this, we conducted a cross-sectional study with a nationwide sample of college students in China, who were freshmen from four disperse universities during Sep. and Oct. 2018. Mean levels of ALAN at participants' residential addresses during 2013-2018 were estimated using time-varying satellite data. The association of the 6-y average of ALAN with blood pressure was estimated by using generalized linear mixed models. A total of 17 046 participants (18.2 ± 0.7 y of age, 46.79% female) from 2,412 counties and cities were included in the final analysis. After a full adjustment for potential confounders, ALAN was positively associated with systolic blood pressure (β = 0.20, p = 0.032) and pulse pressure (β = 0.28, p = 0.001), but there was no association between ALAN and diastolic blood pressure (β = -0.08, p = 0.213). In the sensitivity analysis, the results consistent with the main analysis were observed. The blood pressure of males and those with a BMI ≤24 kg/m2 were more susceptible to ALAN exposure. Our findings highlight the importance of ALAN management for blood pressure control, particularly among male and normal-weight individuals.
Collapse
Affiliation(s)
- Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yalan Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-physics, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zou
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-physics, Central South University, Changsha, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
8
|
Wang FL, Wang WZ, Zhang FF, Peng SY, Wang HY, Chen R, Wang JW, Li PF, Wang Y, Zhao MH, Yang C, Zhang LX. Heat exposure and hospitalizations for chronic kidney disease in China: a nationwide time series study in 261 major Chinese cities. Mil Med Res 2023; 10:41. [PMID: 37670366 PMCID: PMC10478241 DOI: 10.1186/s40779-023-00478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Climate change profoundly shapes the population health at the global scale. However, there was still insufficient and inconsistent evidence for the association between heat exposure and chronic kidney disease (CKD). METHODS In the present study, we studied the association of heat exposure with hospitalizations for cause-specific CKD using a national inpatient database in China during the study period of hot season from 2015 to 2018. Standard time-series regression models and random-effects meta-analysis were developed to estimate the city-specific and national averaged associations at a 7 lag-day span, respectively. RESULTS A total of 768,129 hospitalizations for CKD was recorded during the study period. The results showed that higher temperature was associated with elevated risk of hospitalizations for CKD, especially in sub-tropical cities. With a 1 °C increase in daily mean temperature, the cumulative relative risks (RR) over lag 0-7 d were 1.008 [95% confidence interval (CI) 1.003-1.012] for nationwide. The attributable fraction of CKD hospitalizations due to high temperatures was 5.50%. Stronger associations were observed among younger patients and those with obstructive nephropathy. Our study also found that exposure to heatwaves was associated with added risk of hospitalizations for CKD compared to non-heatwave days (RR = 1.116, 95% CI 1.069-1.166) above the effect of daily mean temperature. CONCLUSIONS Short-term heat exposure may increase the risk of hospitalization for CKD. Our findings provide insights into the health effects of climate change and suggest the necessity of guided protection strategies against the adverse effects of high temperatures.
Collapse
Affiliation(s)
- Fu-Lin Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
| | - Wan-Zhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Fei-Fei Zhang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
| | - Su-Yuan Peng
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
| | - Huai-Yu Wang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China
| | - Rui Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
| | - Jin-Wei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
| | - Peng-Fei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China
| | - Yang Wang
- National Climate Center, China Meteorological Administration, Beijing, 100081, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100034, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100034, China.
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China.
| | - Lu-Xia Zhang
- National Institute of Health Data Science at Peking University, Beijing, 100191, China.
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China.
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China.
| |
Collapse
|
9
|
Wu J, Li S, Duan J, Li Y, Wang J, Deng P, Meng C, Wang W, Yuan H, Lu Y, Shen M, Zhao Q. Association of joint exposure to various ambient air pollutants during adolescence with blood pressure in young adulthood. J Clin Hypertens (Greenwich) 2023; 25:708-714. [PMID: 37409562 PMCID: PMC10423767 DOI: 10.1111/jch.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023]
Abstract
The association of various air pollutants exposure during adolescence with blood pressure (BP) in young adulthood is uncertain. We intended to evaluate the long-term association of individual and joint air pollutants exposure during adolescence with BP in young adulthood. This cross-sectional study of incoming students was conducted in five geographically disperse universities in China during September and October 2018. Mean concentrations of particulate matter with diameters ≤2.5 μm (PM2.5 ), ≤10 μm (PM10 ), nitrogen dioxides (NO2 ), carbon monoxide (CO), sulfur dioxide (SO2 ), and ozone (O3 ) at participants' residential addresses during 2013-2018 were collected from the Chinese Air Quality Reanalysis dataset. Generalized linear mixed models (GLM) and quantile g-computation (QgC) models were utilized to estimate the association between individual and joint air pollutants exposure and systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP). A total of 16,242 participants were included in the analysis. The GLM analyses showed that PM2.5 , PM10 , NO2 , CO, and SO2 were significantly positively associated with SBP and PP, while O3 was positively associated with DBP. The QgC analyses indicated that long-term exposure to a mixture of the six air pollutants had a significant positive joint association with SBP and PP. In conclusion, air pollutant co-exposure during adolescence may influence BP in young adulthood. The findings of this study emphasized the impacts of multiple air pollutants interactions on potential health and the need of minimizing pollution exposures in the environment.
Collapse
Affiliation(s)
- Jingjing Wu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info‐physicsCentral South UniversityChangshaChina
| | - Jingwen Duan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yalan Li
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Peizhi Deng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Changjiang Meng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yao Lu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
- School of Life Course SciencesKing's College LondonLondonUK
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Qiuping Zhao
- Fuwai Central China Cardiovascular HospitalHeart Center of Henan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
10
|
Sun Y, Zhang M, Chen S, Zhang W, Zhang Y, Su S, Zhang E, Sun L, Yang K, Wang J, Yue W, Wu Q, Liu R, Yin C. Potential impact of ambient temperature on maternal blood pressure and hypertensive disorders of pregnancy: A nationwide multicenter study based on the China birth cohort. ENVIRONMENTAL RESEARCH 2023; 227:115733. [PMID: 36965789 DOI: 10.1016/j.envres.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Limited evidence exists regarding the association between ambient temperature and blood pressure (BP) level of pregnant women. To investigate the associations of ambient temperature with maternal BP and hypertensive disorders of pregnancy (HDP), we studied 105,063 participants in 38 centers of 17 provinces from November 2017 to December 2021. BP was measured with standardized automated digital sphygmomanometers. Ambient temperature was classified into five classes as very hot, moderate hot, mild, moderate cold, and very cold. Generalized linear mixed models were used to investigate the ambient temperature-BP/HDP associations, controlling for multiple covariates. No significant associations of first-trimester ambient temperature with maternal BP and HDP prevalence were observed. Compared with mild temperature, second-trimester very cold and second-trimester moderate cold were statistically associated with the increase of 1.239 mmHg (95% CI: 0.908, 1.569) and 0.428 mmHg (95% CI: 0.099, 0.757) for second-trimester systolic blood pressure (SBP), respectively. Similar trends were also observed in the association between second-trimester cold exposure and second-trimester diastolic blood pressure (DBP), in the association between second-trimester cold exposure and third-trimester SBP/DBP as well as in the association between third-trimester cold exposure and third-trimester SBP/DBP although some estimates were not statistically significant. Furthermore, in the second and third trimester, very cold [second trimester: adjusted odds ratio (aOR) = 1.298; third trimester: aOR = 1.236) and moderate cold (second trimester: aOR = 1.208; third trimester: aOR = 1.146) exposures also increased the odds of HDP, and these associations were stronger among participants aged ≥35 years or from North China. The second and third trimesters are the critical exposure windows for ambient temperature exposure-BP/HDP associations. During this period, exposure to cold ambient temperature was associated with elevated BP as well as increased HDP prevalence among most Chinese pregnant women, those aged ≥35 years or from North China being more vulnerable.
Collapse
Affiliation(s)
- Yongqing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Man Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yue Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Shaofei Su
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Enjie Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Lijuan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Jingjing Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Chenghong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
11
|
How V, Singh S, Dang T, Fang Lee L, Guo HR. The effects of heat exposure on tropical farm workers in Malaysia: six-month physiological health monitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:413-429. [PMID: 35157533 DOI: 10.1080/09603123.2022.2033706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Farmers in tropical countries have been impacted by slow-onset heat stress. By comparing the nature of farming activities performed by conventional farmworkers and agroecological farmers, this study examined the changes in physiological health in responses to heat exposure through a six-month longitudinal study. Throughout the six-month follow-up period, the heat stress index (HSI), physiological strain indices (PSI), and physiological health parameters (BMI, blood glucose level, blood cholesterol level, uric acid level) were measured and repeated every two-month. Physiological parameters were recorded twice daily, before and during their first lunch break. This study found that slow-onset heat stress affects farmers differently. The health of agroecological farmers is more resistant to slow-onset extreme temperatures. Pre-existing metabolic health effects from pesticide exposure make conventional farmers more susceptible to extreme temperatures, delaying their bodies' adaptation to rising temperatures.
Collapse
Affiliation(s)
- Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Shyamli Singh
- Centre for Environment and Climate Change, Institute of Public Administration, New Delhi, India
| | - Thinh Dang
- Climate Change Research Centre, Institute of Meteorology, Hydrology and Climate Change, Hà Nội, Vietnam
| | - Lim Fang Lee
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
12
|
Afaghi S, Ramezankhani A, Azizi F, Hadaegh F. Gender-specific effect of outdoor temperature and seasonal variation on blood pressure components: a cross-sectional study on Iranian adults from 2015 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48220-48231. [PMID: 36752918 DOI: 10.1007/s11356-023-25732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Blood pressure (BP) is influenced by both individual and environmental factors such as ambient temperature. However, the gender-stratified and component-specific impact of temperature on BP is not well understood. Herein, we examined the temperature and seasonal effects on four main BP components, namely systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), in both genders. A total of 8990 (3954 men) Tehranian adults during 2015-2018 were included. Linear regression models for analyzing data in three models including unadjusted, age-adjusted, and further adjusted for known sociodemographic and cardiovascular confounders were conducted. Among women, each 10 °C increment was associated with a significant decrease of - 0.48 mmHg (95% confidence interval (CI): - 0.86, - 0.19) and - 0.65 mmHg (- 0.76, - 0.41) in SBP and MAP, respectively. In men, the corresponding value for SBP was - 0.46 (- 0.82, - 0.16) mmHg (P = 0.058). Gender-specific analysis in each season showed that among women, PP increased in autumn and winter with each 10 °C decrease (P < 0.05). The mean increase in SBP (3.4 and 2.06 mmHg in women and men, respectively), DBP (1.66 and 1.19 mmHg), and MAP (2.71 and 1.12 mmHg) was observed during winter compared to summer (all P < 0.05). PP showed seasonality only in women (1.46 mmHg, P-value = 0.003). In both genders, SBP in age > 60 years was more susceptible to variation compared to younger ages. Furthermore, obese women had more SBP changes compared to their non-obese counterparts (all P for interaction < 0.05). In conclusion, there was a sex difference in BP response to the outdoor temperature, with higher vulnerability among women. The reverse relation between temperature and BP occurred particularly among elderly and obese individuals. Careful monitoring of BP in cold seasons, specifically in the mentioned subgroups, could potentially attenuate cardiovascular risks.
Collapse
Affiliation(s)
- Siamak Afaghi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azra Ramezankhani
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Fan P, Xue X, Hu J, Qiao Q, Yin T, Yang X, Chen X, Hou Y, Chen R. Ambient temperature and ambulatory blood pressure: An hourly-level, longitudinal panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160854. [PMID: 36521627 DOI: 10.1016/j.scitotenv.2022.160854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Variations of blood pressure (BP) related to air temperature have been reported previously; however, no evidence is available regarding the association of hourly ambient temperature with ambulatory blood pressure. METHODS We conducted a longitudinal panel study among 1895 patients from an outpatient department who received repeated ambulatory blood pressure monitoring in Urumqi, China between July 2020 and December 2021. We obtained hourly ambient temperature from the nearest monitoring station to the residential address, and measured 4 ambulatory blood pressure indicators. Linear mixed-effect model combined with distributed lag models were applied to investigate the cumulative associations of hourly temperature with BP. RESULTS A total of 97,466 valid blood pressure measurements were evaluated. We observed almost linear and monotonically decreasing relationships between temperature and blood pressure. The effects occurred in the same hour, attenuated thereafter and became insignificant approximately 36 h. A 10 °C decrease in temperature was significantly associated with increments of 0.84 mmHg in systolic blood pressure, 0.56 mmHg in diastolic blood pressure, 1.38 mmHg in mean arterial pressure, and 0.66 mmHg in pulse pressure over lag 0 to 36 h. Stronger associations were found among patients of female sex, age between 18 and 65 years, overweight or obesity, minority, less education or in the cold season, as well as those without hypertension or with coronary heart disease, or did not take anti-hypertension medication. CONCLUSION Our study provides robust evidence that hourly ambient temperature is inversely associated with ambulatory blood pressure. It also highlights a linear relationship between decreased ambient temperature and elevated BP, which may have implications for the prevention and management of hypertension in susceptible populations.
Collapse
Affiliation(s)
- Ping Fan
- Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China; Department of Function, Bazhou people's Hospital, Korla, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Qingxia Qiao
- Department of Function, Bazhou people's Hospital, Korla, China
| | - Tingting Yin
- Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xiaoling Yang
- Department of Science and Education, Bazhou people's Hospital, Korla, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yuemei Hou
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Li H, Ma H, Li J, Li X, Huang K, Cao J, Li J, Yan W, Chen X, Zhou X, Cui C, Yu X, Liu F, Huang J. Hourly personal temperature exposure and heart rate variability: A multi-center panel study in populations at intermediate to high-risk of cardiovascular disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160983. [PMID: 36535481 DOI: 10.1016/j.scitotenv.2022.160983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Several studies reported temperature exposure was associated with altered cardiac automatic function, while this effect of temperature on hourly heart rate variability (HRV) among populations with cardiovascular risks was seldom addressed. METHODS We conducted this panel study in four Chinese cities with three repeated visits among 296 participants at intermediate to high-risk of cardiovascular disease (CVD). Real-time temperature level and 24-h ambulatory electrocardiogram were monitored during each seasonal visit. Linear mixed-effects models were used to investigate associations between individual temperature and HRV parameters, and the seasonal effects and circadian effect were also evaluated. RESULTS We found the overall downward trend of hourly HRV associated with acute exposure to higher temperature. For each 1 °C increment in temperature of 1-3 h prior to HRV measurements (lag 1-3 h), hourly standard deviation of normal-to-normal intervals (SDNN) decreased by 0.38% (95% confidence interval [CI]: 0.22, 0.54), 0.28% (95% CI: 0.12, 0.44), and 0.20% (95% CI: 0.04, 0.36), respectively. Similar inverse associations between temperature and HRV were observed in stratified analyses by temperature level. Inverse associations for cold and warm seasons were also observed, despite some effects gradually decreased and reversed in the warm season as lag times extended. Moreover, HRV showed a more significant reduction with increased temperature during daytime than nighttime. Percent change of hourly SDNN was -0.41% (95% CI: -0.62, -0.21) with 1 °C increment of lag 1 h during daytime, while few obvious changes were revealed during nighttime. CONCLUSIONS Generally, increasing temperature was significantly associated with reduced HRV. Inverse relationships for cold and warm seasons were also observed. Associations during daytime were much more prominent than nighttime. Our findings clarified the relationship of temperature with HRV and provided evidence for prevention approaches to alleviate cardiac automatic dysfunction among populations at intermediate to high-risk of CVD.
Collapse
Affiliation(s)
- Hongfan Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Han Ma
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jinyue Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiahua Li
- Function Test Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Weili Yan
- Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaotian Chen
- Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chun Cui
- Primary Health Professional Committee, Shaanxi Province Health Care Association, Xi'an 710061, China
| | - Xianglai Yu
- Beilin District Dongguannanjie Community Health Service Center, Xi'an 710048, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| |
Collapse
|
15
|
Chen Q, Wang Y, Tang HR, Wang Y, Gu AH, Zhai XJ, Zheng MM. Cumulative effects of temperature on blood pressure during pregnancy: A cohort study of differing effects in three trimesters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160143. [PMID: 36375544 DOI: 10.1016/j.scitotenv.2022.160143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Little is known about the non-linear cumulative effects of temperature on blood pressure (BP) during pregnancy. We investigated the differing effects of daily ambient temperature on BP for up to 30 days in three trimesters. METHODS The first, second, and third trimester analyses included 2547, 2299, and 2011 pregnant women, respectively, from a prospective cohort in Nanjing from January 2017 to January 2020. BP was measured at each follow-up visit. The individual daily temperature exposures were calculated for 30 days prior to the follow-up date. The Distributed Lag Non-linear Model was used to investigate the relationship between temperature and BP in each trimester. RESULTS Temperatures under 15 °C elevate systolic, diastolic BP, and mean arterial pressure (SBP, DBP, and MAP) in the first trimester, while temperatures above 15 °C reduce SBP in the second and third trimesters. By using Distributed Lag Linear Models, we estimated that with a 1 °C decrease in daily temperature, the SBP and DBP increased by 0.32 (95 % CI: 0.12, 0.52) and 0.23 (95 % CI: 0.07, 0.39) mmHg, respectively, in the first trimester with a 20-day cumulative lag, while with a 1 °C increase in daily temperature, the SBP decreased by 0.23 (0.35, 0.10) mmHg in the third trimester with a 30-day cumulative lag. The significant effects of temperature mainly manifested between 2 and 4 weeks of exposure. CONCLUSIONS Temperature has different effects on BP over three trimesters. Protective measures to reduce cold-related BP rise will help reduce the risk of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Qi Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Ya Wang
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Hui-Rong Tang
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yuan Wang
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Xiang-Jun Zhai
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ming-Ming Zheng
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Zhang Q, Kan H. Author response: Effect of temperature changes between neighboring days on acute aortic dissection in non-heating periods. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 30:100659. [PMID: 36506755 PMCID: PMC9727631 DOI: 10.1016/j.lanwpc.2022.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Affiliation(s)
| | - Haidong Kan
- Corresponding author. Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China.
| |
Collapse
|
17
|
Lin Z, Yang L, Chen P, Wei T, Zhang J, Wang Y, Gao L, Zhang C, Zhao L, Wang Q, Wang H, Xu D. Short-term effects of personal exposure to temperature variability on cardiorespiratory health based on subclinical non-invasive biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157000. [PMID: 35777570 DOI: 10.1016/j.scitotenv.2022.157000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Growing literatures have explored the cardiorespiratory health effects of the daily temperature, but such effects of temperature variability remain unclear. We investigated the acute associations of personal levels of temperature variability with cardiorespiratory biomarkers. This is a panel study with four repeated measurements among forty eligible college students in Hefei, Anhui Province, China. We collected personal-level temperature data using temperature/humidity data loggers. Temperature variability parameters included diurnal temperature range (DTR), the standard-deviation of temperature (SDT) and temperature variability (TV). Cardiorespiratory health indicators included three BP parameters [systolic BP (SBP), diastolic BP (DBP) and mean article pressure (MAP)], fractional exhaled nitric oxide (FeNO), and four saliva biomarkers [C-reactive protein (CRP), cortisol, alpha-amylase and lysozyme]. Linear mixed-effect models were then used to assess the associations of temperature variability with these cardiorespiratory biomarkers. We found that short-term exposure to the three temperature variability parameters was associated with these cardiorespiratory biomarkers. The magnitude, direction and significance of these associations varied by temperature variability parameters, by biomarkers and by lags of exposure. Specifically, temperature variability parameters were inversely associated with BP and saliva lysozyme; positively associated with airway inflammation biomarkers (FeNO and saliva CRP) and stress response biomarkers (saliva cortisol and alpha-amylase). The results were robust to further control for air pollutants, and these associations were more prominent in females and in subjects with abnormal body mass index. Our findings suggested that acute exposure to temperature variability could significantly alter cardiorespiratory biomarker profiles among healthy young adults in China.
Collapse
Affiliation(s)
- Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Impact of the COVID-19 pandemic on changes in temperature-sensitive cardiovascular and respiratory disease mortality in Japan. PLoS One 2022; 17:e0275935. [PMID: 36215297 PMCID: PMC9550070 DOI: 10.1371/journal.pone.0275935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
Some cardiovascular and respiratory diseases are triggered by changes in ambient temperature or extremes of temperature. This study aimed to clarify the changes in mortality associated with temperature-sensitive diseases in Japan during the COVID-19 pandemic. We used data from three major cities (Sapporo City, Tokyo 23 wards, and Osaka City) from 2010 to 2019 to determine disease mortality rates and monthly mean temperatures from April to December. If the pandemic had not occurred in 2020, the results showed that temperature-sensitive disease death counts would have increased from 324 to 980, based on a 95% confidence interval estimated from the past 10 years in Sapporo (19-56% increase in actual deaths from 2020), from 651 to 2,653 in Tokyo (10-39% increase), and from 235 to 1,343 in Osaka (8-48% increase). Analyses of meshed population data during the COVID-19 pandemic indicated that inhibiting people's behaviour and outdoor mobility, especially in older men, caused a decrease in mortality.
Collapse
|
19
|
Chen G, Shi Y, Wang R, Ren C, Ng E, Fang X, Ren Z. Integrating weather observations and local-climate-zone-based landscape patterns for regional hourly air temperature mapping using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156737. [PMID: 35716755 DOI: 10.1016/j.scitotenv.2022.156737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Air temperature is a crucial variable of urban meteorology and is essential to many urban environments, urban climate and climate-change-related studies. However, due to the limited observational records of air temperature and the complex urban morphology and environment, it might not be easy to map the hourly air temperature with a fine resolution at the surface level within and around cities via conventional methods. Thus, this study employed machine learning (ML) algorithms and meteorological and landscape data to develop hourly air temperature mapping techniques and methods at the 1-km resolution over a multi-year warm seasons period. Guangdong Province, China was selected for the case study. Random forest algorithm was employed for the hourly air temperature mapping. The validation results showed that the hourly air temperature maps exhibit good accuracy from 2008 to 2019, with mean R2, root mean square error (RMSE) and mean absolute error (MAE) values of 0.8001, 1.4821 °C and 1.0872 °C, respectively. The importance assessment of the driving factors showed that meteorological factors, especially relative humidity, contributed the most to the air temperature mapping. Simultaneously, landscape factors also played a non-negligible role. Further analysis revealed that the maps steadily maintained high accuracy at nighttime (20:00-7:00), which is essential for investigating nighttime urban climate conditions, especially the urban heat island effect. Moreover, a correlation existed between the nighttime air temperature changes and urban morphology represented by the local climate zones. Air temperatures tended to fall more slowly in the core of metropolitan areas than in the urban fringe. Using ML, this study reliably improves the spatial refinement of hourly air temperature mapping and reveals the spatially explicit air temperature patterns in and around cities at different times in a day during the warm seasons. Moreover, it provides a novel valuable and reliable dataset for air-temperature-related implementation and studies.
Collapse
Affiliation(s)
- Guangzhao Chen
- Institute of Future Cities (IOFC), The Chinese University of Hong Kong, Hong Kong, China; Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong, China
| | - Yuan Shi
- Department of Geography & Planning, University of Liverpool, Liverpool, UK
| | | | - Chao Ren
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong, China.
| | - Edward Ng
- School of Architecture, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyi Fang
- Chinese Academy of Meteorological Sciences, China
| | - Zhihua Ren
- National Meteorological Information Center, China
| |
Collapse
|
20
|
Wang Y, Huang Y, Shen F, Zhang T, Hu J, Chen H, Huang L. Exploring a more reasonable temperature exposure calculation method based on individual exposure survey and city-scale heat exposure impact assessment. ENVIRONMENTAL RESEARCH 2022; 212:113317. [PMID: 35513062 DOI: 10.1016/j.envres.2022.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The inability to quantify the difference between ambient temperature (AT) and personal exposure temperature (PET) is a common limitation in environmental health research. The actual exposure variability is underestimated when we used measurements from fixed monitoring stations to estimate PET. The study aims to explore a more reasonable temperature exposure calculation method to relate PET to AT and links heat exposure to adverse health events. We measured hourly PET of 129 participants from July 8th to July 13th, 2021 in Xinyi City, China. The linear mixed-effects model was used to build the relationship between hourly PET and AT in rural and town. Several calculation methods that can capture the intensity, frequency and duration of daily exposure were used to calculate the daily PET and AT and establish the relationship between the two factors. A generalized linear model was used to establish the relationship between city-scale AT indicators and health endpoints from January 1st, 2013 to December 31st, 2015 in Shanghai, China. The result showed that the hourly PET was significantly related to AT, wind speed, air pressure, precipitation, outside time, and air-conditioning use. Among several daily temperature indicators, we found that ATDHAT (Degree Hours Above Threshold (27.4 °C)) was tight with the PETDHAT in different regions (R2 > 0.99). DHAT strengthened the relationship between daily AT and health endpoint in the urban-scale heat-related health impact study, especially in respiratory diseases. The method proposed in this study can improve the accuracy of future epidemiological studies on the effects of heat exposure.
Collapse
Affiliation(s)
- Yiyi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yujia Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuzhen Shen
- Department of Meteorology, University of Reading, Reading, RG6 6BX, UK
| | - Ting Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hao Chen
- Jiangsu Meteorological Observatory, Nanjing, 210008, China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Wang F, Wang W, Peng S, Wang HY, Chen R, Wang J, Yang C, Li P, Wang Y, Zhang L. Effects of ambient temperature on hospital admissions for obstructive nephropathy in Wuhan, China: A time-series analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113876. [PMID: 35841652 DOI: 10.1016/j.ecoenv.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global warming, it has been confirmed that heat exposure has a huge impact on human health. The current study aimed to evaluate the effects of daily mean ambient temperature on hospital admissions for obstructive nephropathy (ON) at the population level. A total of 19,494 hospitalization cases for ON in Wuhan, China from January 1, 2015 to December 31, 2018 were extracted from a nationwide inpatient database in tertiary hospitals according to the International Classification of Diseases (ICD)- 10 codes. Daily ambient meteorological and pollution data during the same period were also collected. A quasi-Poisson Generalized Linear Model (GLM) combined with a distributed lag non-linear model (DLNM) was applied to analyze the lag-exposure-response relationship between daily mean temperature and daily hospital admissions for ON. Results showed that there were significantly positive associations between the daily mean temperature and ON hospital admissions. Relative to the minimum-risk temperature (-3.4 ℃), the risk of hospital admissions for ON at moderate hot temperature (25 ℃, 75th percentile) occurred from lag day 4 and stayed to lag day 12 (cumulative relative risk [RR] was 1.846, 95 % confidence interval [CI]: 1.135-3.005, over lag 0-12 days). Moreover, the risk of extreme hot temperature (32 ℃, 99th percentile) appeared immediately and lasted for 8 days (RR = 2.019, 95 % CI: 1.308-3.118, over lag 0-8 days). Subgroup analyses indicated that the middle-aged and elderly (≥45 years) patients might be more susceptible to the negative effects of high temperature, especially at moderate hot conditions. Our findings suggest that temperature may have a significant impact on the acute progression and onset of ON. Higher temperature is associated with increased risks of hospital admissions for ON, which indicates that early interventions should be taken in geographical settings with relatively high temperatures, particularly for the middle-aged and elderly.
Collapse
Affiliation(s)
- Fulin Wang
- Peking University First Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Suyuan Peng
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Huai-Yu Wang
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Rui Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China.
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Yang Wang
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Luxia Zhang
- National Institute of Health Data Science at Peking University, Beijing, China; Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China.
| |
Collapse
|
22
|
Liu J, Li Y, Li J, Zheng D, Liu C. Sources of automatic office blood pressure measurement error: a systematic review. Physiol Meas 2022; 43. [PMID: 35952651 DOI: 10.1088/1361-6579/ac890e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Accurate and reliable blood pressure (BP) measurement is important for the prevention and treatment of hypertension. The oscillometric-based automatic office blood pressure measurement (AOBPM) is widely used in hospitals and clinics, but measurement errors are common in BP measurements. There is a lack of systematic review of the sources of measurement errors. APPROACH A systematic review of all existing research on sources of AOBPM errors. A search strategy was designed in six online databases, and all the literature published before October 2021 was selected. Those studies that used the AOBPM device to measure BP from the upper arm of subjects were included. MAIN RESULTS A total of 1365 studies were screened, and 224 studies were included in this final review. They investigated 22 common error sources with clinical AOBPM. Regarding the causes of BP errors, this review divided them into the following categories: the activities before measurement, patient's factors, measurement environment, measurement procedure, and device settings. 13 sources caused increased systolic and diastolic BP (SBP and DBP), 2 sources caused the decrease in SBP and DBP, only 1 source had no significant effect on BPs, and the other errors had a non-uniform effect (either increase or decrease in BPs). The error ranges for SBP and DBP were -14 to 33 mmHg and -6 to 19 mmHg, respectively. SIGNIFICANCE The measurement accuracy of AOBPM is susceptible to the influence of measurement factors. Interpreting BP readings need to be treated with caution in clinical measurements. This review made comprehensive evidence for the need for standardized BP measurements and provided guidance for clinical practitioners when measuring BP with AOBPM devices.
Collapse
Affiliation(s)
- Jian Liu
- School of Instrument Science and Engineering, Southeast University, Sipailou 2, Nanjing, Jiangsu, 210096, CHINA
| | - Yumin Li
- School of Instrument Science and Engineering, Southeast University, Sipailou 2, Nanjing, Jiangsu, 210096, CHINA
| | - Jianqing Li
- School of Instrument Science and Engineering, Southeast University, Sipailou road2, Nanjing, Jiangsu, 210096, CHINA
| | - Dingchang Zheng
- Research Centre of Intelligent Healthcare, Coventry University, West Midlands, Coventry, CV1 5FB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chengyu Liu
- School of Instrument Science and Engineering, Southeast University, Sipailou 2, Nanjing, Jiangsu, 210096, CHINA
| |
Collapse
|
23
|
Tai Y, Obayashi K, Yamagami Y, Saeki K. Inverse Association of Skin Temperature With Ambulatory Blood Pressure and the Mediation of Skin Temperature in Blood Pressure Responses to Ambient Temperature. Hypertension 2022; 79:1845-1855. [PMID: 35574922 DOI: 10.1161/hypertensionaha.122.19190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The inverse association between ambient temperature and blood pressure (BP) has been investigated in the context of excess cardiovascular mortality in winter. However, the role of skin temperature (ST), which reflects our external and internal thermal environments, in BP regulation remains unclear. Therefore, we examined the association between ST and ambulatory BP and the mediation of ST in BP responses to ambient temperature in real-life settings. METHODS We conducted a longitudinal analysis using repeated measurements of ambulatory BP and ST for 48 hours (30 711 daytime readings and 17 382 nighttime readings) among 584 older adults between October and March (2012-2014). Linear mixed-effect models were used to examine the association of distal (mean of wrist and ankle) and proximal (abdomen) ST with systolic BP. The mediation of ST in BP responses to ambient temperature was examined using path analysis. RESULTS Distal and proximal STs were significantly associated with systolic BP during the daytime (regression coefficients: -4.27 mm Hg [95% CI, -4.58 to -3.96] and -2.74 mm Hg [95% CI, -3.14 to -2.56] per SD of ST, respectively), independent of potential confounders. The significant associations also existed during nighttime. The mediation effect of distal ST was 7.1 times higher than that of proximal ST during daytime, while those of distal and proximal STs during nighttime were almost identical. CONCLUSIONS ST, especially in distal regions, was inversely associated with ambulatory BP. Our results have the potential for application to interventional studies targeting ST regulation to reduce excess cardiovascular deaths in winter.
Collapse
Affiliation(s)
- Yoshiaki Tai
- Department of Epidemiology, Nara Medical University School of Medicine, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Japan
| | - Yuki Yamagami
- Department of Epidemiology, Nara Medical University School of Medicine, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Japan
| |
Collapse
|
24
|
Wang Y, Zhang Z, Luo Z, He T, Liu H, Duan L, Lu K, Liu C, Li X, Wu F, Zhang Y, Liu W, He K. 环境空气质量基准和标准制定方法及其对我国的启示. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Rowland ST, Chillrud LG, Boehme AK, Wilson A, Rush J, Just AC, Kioumourtzoglou MA. Can weather help explain 'why now?': The potential role of hourly temperature as a stroke trigger. ENVIRONMENTAL RESEARCH 2022; 207:112229. [PMID: 34699760 PMCID: PMC8810591 DOI: 10.1016/j.envres.2021.112229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND While evidence suggests that daily ambient temperature exposure influences stroke risk, little is known about the potential triggering role of ultra short-term temperature. METHODS We examined the association between hourly temperature and ischemic and hemorrhagic stroke, separately, and identified any relevant lags of exposure among adult New York State residents from 2000 to 2015. Cases were identified via ICD-9 codes from the New York Department of Health Statewide Planning and Reearch Cooperative System. We estimated ambient temperature up to 36 h prior to estimated stroke onset based on patient residential ZIP Code. We applied a time-stratified case-crossover study design; control periods were matched to case periods by year, month, day of week, and hour of day. Additionally, we assessed effect modification by leading stroke risk factors hypertension and atrial fibrillation. RESULTS We observed 578,181 ischemic and 164,755 hemorrhagic strokes. Among ischemic and hemorrhagic strokes respectively, the mean (standard deviation; SD) patient age was 71.8 (14.6) and 66.8 (17.4) years, with 55% and 49% female. Temperature ranged from -29.5 °C to 39.2 °C, with mean (SD) 10.9 °C (10.3 °C). We found linear relationships for both stroke types. Higher temperature was associated with ischemic stroke over the 7 h following exposure; a 10 °C increase over 7 h was associated with 5.1% (95% Confidence Interval [CI]: 3.8, 6.4%) increase in hourly stroke rate. In contrast, temperature was negatively associated with hemorrhagic stroke over 5 h, with a 5-h cumulative association of -6.2% (95% CI: 8.6, -3.7%). We observed suggestive evidence of a larger association with hemorrhagic stroke among patients with hypertension and a smaller association with ischemic stroke among those with atrial fibrillation. CONCLUSION Hourly temperature was positively associated with ischemic stroke and negatively associated with hemorrhagic stroke. Our results suggest that ultra short-term weather influences stroke risk and hypertension may confer vulnerability.
Collapse
Affiliation(s)
- Sebastian T Rowland
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States.
| | - Lawrence G Chillrud
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Amelia K Boehme
- Departments of Neurology, Columbia University Medical School and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Ander Wilson
- Department of Statistics, Colorado State University, United States
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| |
Collapse
|
26
|
Zhu Y, Yang T, Huang S, Li H, Lei J, Xue X, Gao Y, Jiang Y, Liu C, Kan H, Chen R. Cold temperature and sudden temperature drop as novel risk factors of asthma exacerbation: a longitudinal study in 18 Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151959. [PMID: 34843761 DOI: 10.1016/j.scitotenv.2021.151959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies have explored the role of ambient temperature in asthma exacerbation. OBJECTIVE We aimed to explore the association of temperature with diurnal peak expiratory flow (PEF) variation and asthma exacerbation. METHOD We developed a longitudinal study among asthmatic adults in 18 Chinese cities. Subjects recorded PEF in dynamic pulmonary function monitoring from 2017 to 2020. Linear mixed-effect model and generalized additive model with distributed non-linear models were used to assess the effect of temperature and temperature change between neighboring days (TCN) on diurnal PEF variation and the risk of asthma exacerbation. RESULT We evaluated a total of 79,217 daily PEF monitoring records from 4467 adult asthmatic patients. There were significant increase of diurnal PEF variation and higher risk of asthma exacerbation with cold and sudden temperature drop. Compared with the referent temperature (99th percentile, 32 °C), exposure to moderate cold (25th percentile, 3 °C) and extreme cold (2.5th percentile, -7 °C) was associated with elevations of 1.28% and 1.16% in diurnal PEF variation over lag 0-2 days, respectively. The odds ratios of asthma exacerbation (determined by diurnal PEF variation >20%) at the two temperature cutoffs were 1.68 and 1.73. A sudden temperature drop (2.5th percentile of TCN, -5 °C) was associated with 1.13% elevation in diurnal PEF variation, and with increased risk of asthma exacerbation (odd ratio = 1.50) over lag 0-4 days. CONCLUSION This large multicenter study provided the first-hand empirical evidence that cold temperature and a temperature drop may increase the risk of asthma exacerbation.
Collapse
Affiliation(s)
- Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine and National Center for Respiratory Medicine & National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Suijie Huang
- Guangzhou Homesun Medical Technology Co.,Ltd, Guangdong Province, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Jian Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| |
Collapse
|
27
|
Lin YK, Zafirah Y, Ke MT, Andhikaputra G, Wang YC. The effects of extreme temperatures on emergency room visits-a population-based analysis by age, sex, and comorbidity. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2087-2098. [PMID: 34173056 DOI: 10.1007/s00484-021-02166-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/02/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effect of extreme temperatures on events requiring emergency room visits (ERVs) for hypertensive disease, ischemic heart disease (IHD), cerebrovascular disease, and chronic kidney disease (CKD) for population stratified by sex and age living in Taiwan's metropolitan city from 2000 to 2014. The distributed lag non-linear model was adopted to examine the association between ambient temperature and area-age-sex-disease-specific ERVs for a population aged 40 years and above. The reference temperature was defined by a percentile value to describe the temperature in each city. Area-age-sex-disease-specific relative risk (RR) and 95% confidence intervals (CI) were estimated in association with extreme high (99th percentile) and low (5th percentile) temperatures. Temperature-related ERV risks varied by area, age, sex, and disease. Patients with CKD tend to have comorbidities with hypertensive disease. All study populations with hypertensive disease have significant risk associations with extreme low temperatures with the highest RR of 2.64 (95% CI: 2.08, 3.36) appearing in New Taipei City. The risk of IHD was significantly associated with extreme high temperature for male subpopulation aged 40-64 years. A less significant association was observed between the risks of cerebrovascular disease with extreme temperature. The risk of CKD was most significantly associated with extreme high temperature especially for a subpopulation aged 40-64 years. All study subpopulations with hypertensive disease have significant risk associations with extreme low temperature. Male subpopulations were more vulnerable to extreme temperatures, especially for those aged 40-64 years.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Health and Welfare, University of Taipei, 101 Zhongcheng Road Sec. 2, Taipei, 111, Taiwan
| | - Yasmin Zafirah
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Meng-Ting Ke
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Gerry Andhikaputra
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan.
- Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
28
|
Zaręba K, Lasek-Bal A, Student S. The Influence of Selected Meteorological Factors on the Prevalence and Course of Stroke. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111216. [PMID: 34833434 PMCID: PMC8619234 DOI: 10.3390/medicina57111216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Background: The objective of this study was to evaluate the impact of weather factors on stroke parameters. Methods: This retrospective study analyzed the records of stroke patients concerning the influence of meteorological conditions and moon phases on stroke parameters. Results: The study group consisted of 402 patients aged between 20 and 102; women constituted 49.8% of the subjects. Ischaemic stroke was diagnosed in 90.5% of patients and hemorrhagic stroke was diagnosed in 9.5% of patients. The highest number of hospitalizations due to stroke was observed in January (48 events); the lowest number was observed in July (23 events). There was no statistically significant correlation between the meteorological parameters on the day of onset and the preceding day of stroke and the neurological status (NIHSS) of patients. Mean air temperature on the day of stroke and the day preceding stroke was significantly lower in the group of patients discharged with a very good functional status (≤2 points in modified Rankin scale (mRS)) compared to the patients with a bad functional status (>2 points in mRS); respectively: 7.98 ± 8.01 vs. 9.63 ± 7.78; p = 0.041 and 8.13 ± 7.72 vs. 9.70 ± 7.50; p = 0.048). Humidity above 75% on the day of stroke was found to be a factor for excellent functional state (RR 1.61; p = 0.016). The total anterior circulation infarcts (in comparison with stroke in the other localization) were more frequent (70%) during a third quarter moon (p = 0.011). The following parameters had a significant influence on the number of stroke cases in relation to autumn having the lowest number of onsets: mean temperature (OR 1.019 95% CI 1.014–1.024, p < 0.000), humidity (OR 1.028, CI 1.023–1.034, p < 0.0001), wind speed (OR 0.923, 95% CI 0.909–0.937, p < 0.0001), insolation (OR 0.885, 95% CI 0.869–0.902, p < 0.0001), precipitation (OR 0.914, 95% CI 0.884–0.946, p < 0.0001). Conclusion: Air humidity and air temperature on the day of stroke onset as well as air temperature on the day preceding stroke are important for the functional status of patients in the acute disease period. A combination of the following meteorological parameters: lowered mean temperature and low sunshine, high humidity and high wind speed all increase the risk of stroke during the winter period. High humidity combined with high precipitation, low wind speed and low sunshine in the autumn period are associated with the lowest stroke incidence risk. A possible relationship between phases of the moon and the incidence requires further investigation.
Collapse
Affiliation(s)
| | - Anetta Lasek-Bal
- Medical University of Silesia, 40-055 Katowice, Poland
- Department of Neurology, School of Health Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
29
|
Zheng S, Zhu W, Shi Q, Wang M, Nie Y, Zhang D, Cheng Z, Yin C, Miao Q, Luo Y, Bai Y. Effects of cold and hot temperature on metabolic indicators in adults from a prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145046. [PMID: 33581536 DOI: 10.1016/j.scitotenv.2021.145046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previous studies have found that exposed to low and high outdoor temperature was associated with cardiovascular diseases morbidity and mortality. The risk factors for cardiovascular disease include high blood lipid, high uric acid (UA) and high fasting plasma glucose (FPG). However, few studies have explored the effects of low and high temperature on these metabolic indicators. OBJECTIVE To explore the effect of low and high temperature on metabolic indicators in adults from northwest of China. METHODS Based on a prospective cohort study, a total of 30,759 individuals who participated in both baseline and first follow-up from 2011 to 2015 were selected in this study. The meteorological observation data and environmental monitoring data were collected in the same period. Associations between cold and hot temperature and blood lipid (total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein-cholesterol (HDL-C)), UA and FPG were conducted with mixed effect models after adjusting for confounding factors. RESULTS A nonlinear relationship between outdoor temperature and metabolic indicators was found. For the cold effects, each 5 °C decrease of mean temperature was associated with an increase of 5.07% (95% CI: 3.52%, 6.63%) in TG and 2.85% (95% CI: 2.18%, 3.53%) in UA, While a decrease of 3.38% (95% CI: 2.67%, 4.09%) in HDL-C and 1.26% (95% CI: 0.48%, 2.04%) in LDL-C. For the heat effects, each 5 °C increase in mean temperature was associated with 1.82% (95% CI: 0.89%, 2.76%), 0.56% (95% CI: 0.11%, 1.00%), 5.82% (95% CI: 4.58%, 7.06%), 9.02% (95% CI: 7.17%, 10.87%), 0.20% (95% CI: 0.01%, 0.40%), and 1.22% (95% CI: 0.19%, 2.24%) decrease in TC, TG, HDL-C, LDL-C, UA and FPG. Age, smoking, drinking, high-oil diet and hyperlipidemia might modify the association between mean temperature and metabolic indicators. CONCLUSION There was a significant effect of cold and hot temperature on metabolic indicators in a high altitude area of northwestern China. These results provide a basis for understanding the underlying mechanism of the influence of temperature on metabolic diseases.
Collapse
Affiliation(s)
- Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China.
| | - Wenzhi Zhu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Qin Shi
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yonghong Nie
- Jinchang Center for Disease Prevention and Control, Jinchang 737100, China
| | - Desheng Zhang
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737103, China
| | - Zhiyuan Cheng
- School of Public Health, Brown University, Providence, RI 02903, USA
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737103, China
| | - Qian Miao
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yan Luo
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China.
| |
Collapse
|
30
|
Hartwig SV, Hacon SDS, Oliveira BFAD, Jacobson LDSV, Sousa RFV, Ignotti E. The effect of ambient temperature on blood pressure of patients undergoing hemodialysis in the Pantanal-Brazil. Heliyon 2021; 7:e07348. [PMID: 34235283 PMCID: PMC8246300 DOI: 10.1016/j.heliyon.2021.e07348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/15/2022] Open
Abstract
The objective was to analyze the association of changes in pre-dialysis systolic and diastolic blood pressure with air temperature in a municipality in the Brazilian Pantanal, a tropical climate area. Longitudinal panel study, with analysis of mixed effects models of 133 hemodialysis patients in the city of Cáceres-Mato Grosso in 2014. Air temperature showed an inverse association with pre-dialysis systolic and diastolic blood pressure. With each increase of 1 °C in the mean air temperature, the pre-dialysis systolic blood pressure decreases -0.730mmHg (p ≤ 0.000) and the pre-dialysis diastolic blood pressure decreases -0.280mmHg (p ≤ 0.000). The estimated effect was greater for systolic blood pressure, but both pre-dialysis blood pressure measures are reduced with an increase in lag (up to two days), even when adjusted for relative air humidity. Air temperature is determinant for changes in pre-dialysis systolic and diastolic blood pressure in hemodialysis patients. The temperature effect was greater for systolic blood pressure than for diastolic blood pressure.
Collapse
|
31
|
Chen X, Tu P, Sun XL, Hu TY, Wan J, Hu YW, Zhou HL, Su H. The Impact on Blood Pressure of a Short-Term Change in Indoor Temperature. Int J Gen Med 2021; 14:1507-1511. [PMID: 33911895 PMCID: PMC8075305 DOI: 10.2147/ijgm.s291431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study is to evaluate the impact on blood pressure (BP) of a 10°C change in room temperature (between 18°C and 28°C). Methods A total of 112 volunteers, 56 males and 56 females, 55 with and 57 without hypertension, were enrolled in the study. First, the participants were placed in a 25°C room. Second, they were randomly assigned to either a 28°C (group A) or an 18°C room (group B). Finally, they were moved from the 28°C to the 18°C room, or vice versa. They stayed in each room for 20 minutes. Seated BP was measured at the 17th and 19th minute in each room, and the average was used. The difference in the subject's BP between the second two rooms was recorded as delta BP. Results The baseline systolic BP (SBP), age, gender distribution, and incidence of hypertension were similar between the two groups. In group A, the decrease in room temperature of 10°C induced a mean rise in SBP of 4.1 mmHg. In group B, the increase of 10°C caused SBP to decrease by 4.0 mmHg. When compared with the group without hypertension, the group with hypertension had a significantly higher rise in mean SBP (6.8 vs 1.2 mmHg) as a result of the decrease in temperature and a significantly higher drop in SBP (7.3 vs 1.2 mmHg) as a result of the increase in temperature. The participants in the group with hypertension were older. Conclusion A 10°C change in room temperature, from 18°C to 28°C, for 20 min can cause a significant change in SBP. The extent of this change is more obvious in the older group.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ping Tu
- Department of Post Anesthesia Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xing-Lan Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ting-Ying Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jia Wan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yi-Wei Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hui-Ling Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hai Su
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
32
|
Wang YC, Sung FC, Chen YJ, Cheng CP, Lin YK. Effects of extreme temperatures, fine particles and ozone on hourly ambulance dispatches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142706. [PMID: 33071137 DOI: 10.1016/j.scitotenv.2020.142706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
There is a dearth of research on the hourly risk of ambulance dispatches with respect to ambient conditions. We evaluated hourly relative risks (RR) and 95% confidence interval (CI) of ambulance dispatches in Taiwan to treat respiratory distress, coma and unconsciousness, and out-of-hospital cardiac arrest (OHCA), from 2006 to 2015. We considered island-wide ambient temperatures, fine particulate matter (PM2.5), and ozone (O3) at lag 0-180 h while using a distributed lag nonlinear model and meta-analysis. Results showed the pooled risks peaked at lag 16-18 h for all ambulance dispatches at 99th percentile of hourly temperature (32 °C, versus reference temperature of 25 °C), with significant excess risk of 0.11% (95% CI; 0.06, 0.17) for coma and unconsciousness, and 0.06% (95% CI; 0.01, 0.11) for OHCA. The risks of exposure to 90th percentile of hourly O3 of 52.3 ppb relative to the Q1 level of 17.3 ppb peaked at lag 14 h, with excess risk of 0.17% (95% CI; 0.11, 0.23) for respiratory distress, 0.11% (95% CI; 0.06, 0.16) for coma and unconsciousness, and 0.07% (95% CI; 0.01, 0.14) for OHCA. The population exposed to reference temperatures of 28 °C, 20 °C, and 26 °C were exposed to the lowest levels of ambulance dispatches risk for respiratory distress, coma and unconsciousness, and OHCA, respectively; the highest cumulative 0-96 h RRs of ambulance dispatches were 1.27 (95% CI; 1.19, 1.35) for OHCA at 5th percentile temperatures and 1.25 (95% CI; 1.11, 1.41) for OHCA at 99th percentile temperatures. Following an accumulating lag of 0-96 h, no significant risk was identified for hourly levels of PM2.5 and O3. In conclusion, the analytical results of hourly data speak to immediate and real-time responses to environmental changes, rather than to short-term relationships. In our analyses, we emphasized health events in extreme heat; thus, we recommend a comparative study of daily versus hourly associations.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan; Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yi-Jhih Chen
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan
| | - Chia-Pei Cheng
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan
| | - Yu-Kai Lin
- Department of Health and Welfare, University of Taipei, 101 Zhongcheng Road Sec. 2, Taipei 111, Taiwan.
| |
Collapse
|
33
|
Ameya G, Biresaw G, Mohammed H, Chebud A, Meskele M, Hussein M, Endris M. Epistaxis and Its Associated Factors Among Precollege Students in Southern Ethiopia. J Blood Med 2021; 12:1-8. [PMID: 33442314 PMCID: PMC7797310 DOI: 10.2147/jbm.s285403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background Epistaxis is one of the most common otorhinolaryngological emergencies affecting the majority of the population in their lifetime, with some of them requiring serious medical attention. This study aimed to assess the prevalence and associated factors of epistaxis among pre-college students in Wolaita Sodo, Ethiopia. Methods An institution-based cross-sectional study was conducted. Data were collected using a pre-tested interviewer administered questionnaire. The study participants were selected by systematic random sampling technique. A logistic regression analysis was employed to assess the presence and strength of association factors with epistaxis. An adjusted odds ratio with 95% confidence interval was used to determine the presence and strength of the association at 0.05 level of significance. Results Of 387 participants, 57.1% of them were male, and the mean age of all participant was 18.05±1.401 SD years. The overall epistaxis prevalence was 108 (27.9%). Blood group O, which accounted for about 43.4% was more prevalent. Blood group O (AOR=3.96, 95% CI=1.5-10.4), participants who drink coffee daily (AOR=2.75, 95% CI=1.0-7.4), and participants who took a bath frequently with both hot and cold-water (AOR=4.55, 95% CI=1.1-18.6) were significantly associated with epistaxis. Conclusion The type of blood group, interval of coffee drinking, and type of bathing were significantly associated with epistaxis. Working on the identified associated factor and increased awareness about epistaxis for the students with effective first aid training is mandatory.
Collapse
Affiliation(s)
- Gemechu Ameya
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Gelila Biresaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Hayat Mohammed
- Department of Medical Laboratory Science, College of Medicine and Health Science, Jimma University, Jimma, Ethiopia
| | | | - Melese Meskele
- Worabe Comprehensive Specialized Hospital, Worabe, Ethiopia
| | | | - Muktar Endris
- Galikoma Health Center, Afar Region, Galikoma, Ethiopia
| |
Collapse
|
34
|
Masajtis-Zagajewska A, Pawłowicz E, Nowicki M. Effect of Short-Term Cold Exposure on Central Aortic Blood Pressure in Patients with CKD. Nephron Clin Pract 2020; 145:20-26. [PMID: 33053559 DOI: 10.1159/000510365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Study determined effects of arterial hypertension and impaired kidney function on acute cold exposure induced changes in peripheral and central aortic blood pressure (BP). METHODS Five-six subjects were divided into 3 groups including 20 hypertensive patients with normal kidney function (AH-non-CKD), 20 patients with hypertension and CKD (AH-CKD) stage 3b-4 and 16 healthy normotensive subjects (C). Baseline BP, central BP, and central pulse pressure, unadjusted augmentation index (AI) and central augmented pressure were assessed by applanation tonometry (SphygmoCor) before entering the room with constant temperature -10°C (°C), after 10 min in the cold room and in same conditions in room temperature. RESULTS Cold exposure led to significant increase of central aortic, systolic, and diastolic BP in both AH-non-CKD (p < 0.01) and AH-CKD (p < 0.001). The central aortic BP did not change in healthy subjects. The increase of central aortic systolic blood pressure was significantly larger in AH-CKD compared to AH-non-CKD group (p = 0.0002). Increase of aortic central and brachial systolic and diastolic BP was significantly larger in AH-CKD and AH-non-CKD patients than in controls. AI increased and subendocardial viability ratio and heart rate decreased after cold exposure in all groups. Central aortic and brachial rate pressure product increased by approximately 2,300 bpm × mm Hg (p < 0.001) and 1,600 bpm × mm Hg (p < 0.001), respectively, in the AH-CKD group and by 1,000 bpm × mm Hg (p = 0.007) and 500 bpm × mm Hg (p = 0.19) in AH-non-CKD group after cold exposure. CONCLUSION Short-term cold exposure induces larger increase of brachial and central aortic BP in patients with arterial hypertension than in healthy subjects. The changes in central aortic pressure are augmented in hypertensive patients with impaired kidney function.
Collapse
Affiliation(s)
- Anna Masajtis-Zagajewska
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Central University Hospital Lodz, Lodz, Poland
| | - Ewa Pawłowicz
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Central University Hospital Lodz, Lodz, Poland
| | | |
Collapse
|
35
|
Zheng S, Zhu W, Wang M, Shi Q, Luo Y, Miao Q, Nie Y, Kang F, Mi X, Bai Y. The effect of diurnal temperature range on blood pressure among 46,609 people in Northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138987. [PMID: 32428804 DOI: 10.1016/j.scitotenv.2020.138987] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A large number of studies have found a positive association between diurnal temperature range (DTR) and cardiovascular diseases (CVDs) incidence and mortality. Few studies regarding the effects of DTR on blood pressure (BP) are available. OBJECTIVE To investigate the effects of DTR on BP in Jinchang, northwestern China. METHODS Based on a prospective cohort research, a total of 46,609 baseline survey data were collected from 2011 to 2015. The meteorological observation data and environmental monitoring data were collected in the same period. The generalized additive model (GAM) was used to estimate the relationship between DTR and BP after adjusting for confounding variables. RESULTS Our study found that there was a positive linear correlation between DTR and systolic blood pressure (SBP) and plus pressure (PP), and a negative linear correlation between DTR and diastolic blood pressure (DBP). With a 1 °C increase of DTR, SBP and PP increased 0.058 mmHg (95%CI: 0.018-0.097) and 0.114 mmHg (95%CI: 0.059-0.168) respectively, and DBP decreased 0.039 mmHg (95%CI:-0.065 ~ -0.014). There was a significant interaction between season and DTR on SBP and PP. DTR had the greatest impact on SBP and PP in hot season. The association between DTR and BP varied significantly by education level. CONCLUSION There was a significant association between DTR and BP in Jinchang, an area with large temperature change at high altitudes in northwestern China. These results provide new evidence that DTR is an independent risk factor for BP changes among general population. Therefore, effective control and management of BP in the face of temperature changes can help prevent CVDs.
Collapse
Affiliation(s)
- Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China.
| | - Wenzhi Zhu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Qin Shi
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yan Luo
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Qian Miao
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yonghong Nie
- Jinchang Center for Disease Prevention and Control, Jinchang 737100, China
| | - Feng Kang
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737103, China
| | - Xiuying Mi
- Jinchang Meteorological Service, Jinchang 737100, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| |
Collapse
|
36
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
37
|
Cui Y, Ai S, Liu Y, Qian ZM, Wang C, Sun J, Sun X, Zhang S, Syberg KM, Howard S, Qin L, Lin H. Hourly associations between ambient temperature and emergency ambulance calls in one central Chinese city: Call for an immediate emergency plan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135046. [PMID: 31812379 DOI: 10.1016/j.scitotenv.2019.135046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Most studies examining the short-term effects of temperature on health were based on the daily scale, few were at the hourly level. Revealing the relationship between unfavorable temperatures on an hourly basis and health is conducive to the development of more accurate extreme temperature early warning systems and reasonable dispatch of ambulances. METHODS Hourly data on temperature, air pollution (including PM2.5, O3, SO2 and NO2) and emergency ambulance calls (EACs) for all-cause, cardiovascular and respiratory diseases from January 16, 2014 to December 31, 2016 were obtained from Luoyang, China. A distributed lag non-linear model (DLNM) was used to assess the association between hourly temperature and ambulance calls after adjusting for potential confounding factors. The fractions of EACs attributable to non-optimum temperatures were also estimated. RESULTS Hourly temperature was associated with increased ambulance calls with a varying lag pattern. Extreme hot temperature (>32.1 °C) was positively associated with all-cause, cardiovascular diseases at lag 0-30 h and lag 0-9 h, while no significant effects were found for respiratory morbidity. Extreme cold temperature (<-2.5 °C) was positively associated with all-cause, cardiovascular and respiratory morbidity at lag 56-157 h, 50-145 h and 123-170 h. An overall EACs fraction of 6.84% [Backward estimate, 95% confidence interval (CI): 5.01%, 8.59%] could be attributed to non-optimum temperatures, and more contributions were caused by cold [Backward estimate: 6.06% (95% CI: 5.10%, 8.48%)] than by heat [Backward estimate: 0.79% (95% CI: 0.12%, 1.45%)]. CONCLUSIONS Extreme hot temperature may lead to increased ambulance calls within a few hours, while extreme cold temperature may not increase ambulance calls until more than 2 days later. Effective measures, such as forming hourly temperature warning standards, optimizing ambulance services at extreme temperatures, etc., should be taken to reduce the unfavorable temperature - associated EACs burden.
Collapse
Affiliation(s)
- Yingjie Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Siqi Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuying Liu
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhengmin Min Qian
- Department of Epidemiology & Biostatistics, College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Changke Wang
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Jia Sun
- Department of Epidemiology & Biostatistics, College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Xiangyan Sun
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kevin M Syberg
- Department of Health Management & Policy, College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Steven Howard
- Department of Health Management & Policy, College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Lijie Qin
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Xu Z, Hu X, Tong S, Cheng J. Heat and risk of acute kidney injury: An hourly-level case-crossover study in queensland, Australia. ENVIRONMENTAL RESEARCH 2020; 182:109058. [PMID: 31869688 DOI: 10.1016/j.envres.2019.109058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The effects of hourly differences in temperature on the risk of acute kidney injury have not been investigated so far. This study aimed to examine a very short-term effect of heat on the risk of acute kidney injury at an hourly level and assessed potential modification effects by age, gender and preexisting diseases. METHODS We performed a time-stratified case-crossover design with a conditional logistic regression model to examine the association between hourly temperature and hourly emergency department visits for acute kidney injury (N = 1815) in Queensland state of Australia, 2013-2015. Heat effect on acute kidney injury was reported for temperature increases from 50th percentile (26.1 °C) to 95th percentile (33.6 °C). RESULTS The effect of heat on acute kidney injury occurred in the same hour of heat exposure (odds ratio (OR): 1.37; 95% confidence interval (CI): 1.10, 1.71), with no temperature threshold observed. Males (OR: 2.48; 95% CI: 1.85, 3.32) and those aged >64 years (OR: 2.93; 95% CI: 2.01, 4.27), particularly those with pre-existing diabetes (OR: 2.51; 95% CI: 1.91, 3.30), hypertension (OR: 2.25; 95% CI: 1.61, 3.15), heart failure (OR: 2.21; 95% CI: 1.72, 2.84), or chronic kidney disease (OR: 2.59; 95% CI: 1.89, 3.55), were at great risks of acute kidney injury attack after exposure to heat. CONCLUSIONS General practitioners and specialists should remind their patients about this risk in summer. Tailored heat adaptation strategies protecting adults working outdoors are urgently needed, especially within the context of climate change.
Collapse
Affiliation(s)
- Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia.
| | - Xinxin Hu
- The Third People's Hospital of Hefei, Hefei, China
| | - Shilu Tong
- Shanghai Children's Medical Centre, Shanghai Jiao-Tong University, Shanghai, China; School of Public Health and Institute of Environment and Human Health, Anhui Medical, University, Hefei, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jian Cheng
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Yan P, Zhang Z, Miao Y, Xu Y, Zhu J, Wan Q. Physiological serum total bilirubin concentrations were inversely associated with diabetic peripheral neuropathy in Chinese patients with type 2 diabetes: a cross-sectional study. Diabetol Metab Syndr 2019; 11:100. [PMID: 31827625 PMCID: PMC6889527 DOI: 10.1186/s13098-019-0498-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although bilirubin has been generally regarded as a waste with potential neurotoxicity at high levels, a few clinical studies suggest a potential protective role of physiological serum total bilirubin (TBIL) concentrations in diabetic peripheral neuropathy (DPN). However, the pathological mechanisms underlying the relationship remain poorly understood. The objective of this study was to explore the relationship between serum TBIL and DPN, and clinical and laboratory parameters. METHODS Serum TBIL was measured in 1342 patients with type 2 diabetes mellitus (T2DM). The relationship between TBIL and DPN and other parameters was analyzed. RESULTS Serum TBIL levels were significantly lower in T2DM patients with DPN, and were independently and negatively associated with vibration perception thresholds (VPT) (P < 0.01 or P < 0.05). Moreover, serum TBIL was negatively associated with neutrophil and white blood cell counts, fibrinogen, and the prevalence of hypertension, diabetic foot ulceration, peripheral arterial disease, diabetic nephropathy and diabetic retinopathy (P < 0.01 or P < 0.05). Additionally, serum TBIL was an independent decisive factor for the presence of DPN after multivariate adjustment. Compared to the highest quartile of TBIL, the lower quartiles were associated with a significantly increased risk of DPN (P < 0.01). Last but most importantly, the analysis of receiver operating characteristic curves revealed that the best cutoff value for serum TBIL to predict DPN was 10.75 μmol/L (sensitivity 54.6% and specificity 62.9%). CONCLUSIONS These findings suggest that lower physiological serum TBIL may be associated with the presence of DPN due to its decreased anti-inflammatory and vascular protective effects.
Collapse
Affiliation(s)
- Pijun Yan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Zhihong Zhang
- Department of General Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Ying Miao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jianhua Zhu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
40
|
Saho H, Takeuchi N, Ekuni D, Morita M. Incidence of the Acute Symptom of Chronic Periodontal Disease in Patients Undergoing Supportive Periodontal Therapy: A 5-Year Study Evaluating Climate Variables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3070. [PMID: 31450831 PMCID: PMC6747390 DOI: 10.3390/ijerph16173070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022]
Abstract
Although patients under supportive periodontal therapy (SPT) have a stable periodontal condition, the acute symptom of chronic periodontal disease occasionally occurs without a clear reason. Therefore, in the present study, to obtain a better understanding of this relationship in patients undergoing SPT, we hypothesized that the acute symptom of chronic periodontal disease might be affected by climate factors. We conducted a questionnaire study and carried out oral examinations on patients undergoing SPT who had been diagnosed as having the acute symptom of chronic periodontal disease. We collected climate data from the local climate office in Okayama city, Japan. We predicted parameters that affect the acute symptom of chronic periodontal disease with unidentified cause and divided patients into high and low groups in terms of climate predictors. Then we defined the cut-off values of parameters showing significant differences in the incidence of the acute symptom of chronic periodontal disease. The incidence of the acute symptom of chronic periodontal disease with unidentified cause was significantly different when the cases were classified according to the maximum hourly decrease in barometric pressure (1.5 and 1.9 hPa) (p = 0.04 and p = 0.03, respectively). This suggests that climate variables could be predictors of the acute symptom of chronic periodontal disease. Therefore, gaining a better understanding of these factors could help periodontal patients undergoing SPT prepare to avoid the acute symptom of chronic periodontal disease.
Collapse
Affiliation(s)
- Hikari Saho
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Noriko Takeuchi
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
41
|
Mitochondrial-Derived Peptide MOTS-c Increases Adipose Thermogenic Activation to Promote Cold Adaptation. Int J Mol Sci 2019; 20:ijms20102456. [PMID: 31109005 PMCID: PMC6567243 DOI: 10.3390/ijms20102456] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Cold exposure stress causes hypothermia, cognitive impairment, liver injury, and cardiovascular diseases, thereby increasing morbidity and mortality. Paradoxically, cold acclimation is believed to confer metabolic improvement to allow individuals to adapt to cold, harsh conditions and to protect them from cold stress-induced diseases. However, the therapeutic strategy to enhance cold acclimation remains less studied. Here, we demonstrate that the mitochondrial-derived peptide MOTS-c efficiently promotes cold adaptation. Following cold exposure, the improvement of adipose non-shivering thermogenesis facilitated cold adaptation. MOTS-c, a newly identified peptide, is secreted by mitochondria. In this study, we observed that the level of MOTS-c in serum decreased after cold stress. MOTS-c treatment enhanced cold tolerance and reduced lipid trafficking to the liver. In addition, MOTS-c dramatically upregulated brown adipose tissue (BAT) thermogenic gene expression and increased white fat “browning”. This effect might have been mediated by MOTS-c-activated phosphorylation of the ERK signaling pathway. The inhibition of ERK signaling disturbed the up-regulatory effect of MOTS-c on thermogenesis. In summary, our results indicate that MOTS-c treatment is a potential therapeutic strategy for defending against cold stress by increasing the adipose thermogenesis via the ERK pathway.
Collapse
|
42
|
Niiranen TJ. Increased Blood Pressure Variability: A Marker of Augmented Sympathetic Vascular Reactivity? Am J Hypertens 2019; 32:533-534. [PMID: 30929017 DOI: 10.1093/ajh/hpz030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Teemu J Niiranen
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
- National Institute for Health and Welfare, Turku, Finland
| |
Collapse
|