1
|
Zhao L, Sun P, Gao J, Li Y, Pu Q, Lyu C, Zhao W. Improved microbial-plant soil bioremediation of PAHs and heavy metal through in silico methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135524. [PMID: 39181001 DOI: 10.1016/j.jhazmat.2024.135524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and organic cadmium (Cd) in farmland soils, and the field controlling strategy need to be studied urgently. In this study, 5 PAHs, 5 Cd and 11 soil conditioners were selected to explore the co-exposure risk and remediation efficiency. Firstly, a significant combination Fl-alkylalkoxy cadmium was obtained using forward and reverse methods coupling variation coefficient methods (the combined pollution value was 0.173). Secondly, the interaction energy of microbial degradation / plant absorption of Fl under Cd stress, and microbial mineralization / plant absorption of alkylalkoxy cadmium under PAHs stress were characterized using factorial experimental design, molecular docking and molecular dynamics simulation. The combined pollution of alkylalkoxy cadmium and dialkyl cadmium, phenanthrene and Benzo [a] pyrene was significant (synergistic contribution rates were 17.58 % and 19.22 %, respectively). In addition, 6 soil conditioners with significant efficiency were selected to design Taguchi orthogonal experimental schemes, indicating the microbial degradation / mineralization and plant absorption were significantly effective (the maximum increase of remediation efficiency was 93.81 %) under the combinations (i.e., trratone, coumarol, fulvamic acid, potassium fertilizer and others, etc.). Finally, it was found that the soil conditioners affected the hydrophobic groups and forces, and the efficiency was proportional to the highest peak value and minimum distance in the RDF curve. This study identifies the risk characteristics of co-exposure of PAHs and Cd and screens effective soil conditioners, providing theoretical guidance for risk controlling.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Jiaxuan Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yunxiang Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Wang JF, Liu C, Xu ZM, Wang FP, Sun YY, Huang JW, Li QS. Microbial mechanisms in nitrogen fertilization: Modulating the re-mobilization of clay mineral-bound cadmium in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171809. [PMID: 38513845 DOI: 10.1016/j.scitotenv.2024.171809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Soil cadmium (Cd) can affect crop growth and food safety, and through the enrichment in the food chain, it ultimately poses a risk to human health. Reducing the re-mobilization of Cd caused by the release of protons and acids by crops and microorganisms after stabilization is one of the significant technical challenges in agricultural activities. This study aimed to investigate the re-mobilization of stabilized Cd within the clay mineral-bound fraction of soil and its subsequent accumulation in crops utilizing nitrogen ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N), at 60 and 120 mg kg-1. Furthermore, the study harvested root exudates at various growth stages to assess their direct influence on the re-mobilization of stabilized Cd and to evaluate the indirect effects mediated by soil microorganisms. The results revealed that, in contrast to the NO3--N treatment, the NH4+-N treatment significantly enhanced the conversion of clay mineral-bound Cd in the soil to NH4NO3-extractable Cd. It also amplified the accumulation of Cd in edible amaranth, with concentrations in roots and shoots rising from 1.7-6.0 mg kg-1 to 4.3-9.8 mg kg-1. The introduction of NH4+-N caused a decrease in the pH value of the rhizosphere soil and stimulated the production and secretion organic and amino acids, such as oxalic acid, lactic acid, stearic acid, succinic acid, and l-serine, from the crop roots. Furthermore, compared to NO3--N, the combined interaction of root exudates with NH4+-N has a more pronounced impact on the abundance of microbial genes associated with glycolysis pathway and tricarboxylic acid cycle, such as pkfA, pfkB, sucB, sucC, and sucD. The effects of NH4+-N on crops and microorganisms ultimately result in a significant increase in the re-mobilization of stabilized Cd. However, the simulated experiments showed that microorganisms only contribute to 3.8-6.6 % of the re-mobilization of clay mineral-bound Cd in soil. Therefore, the fundamental strategy to inhibit the re-mobilization of stabilized Cd in vegetable cultivation involves the regulation of proton and organic acid secretion by crops.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Can Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Wang Y, Li A, Zou B, Qian Y, Li X, Sun Z. The Combination of Buchloe dactyloides Engelm and Biochar Promotes the Remediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbons. Microorganisms 2024; 12:968. [PMID: 38792797 PMCID: PMC11124401 DOI: 10.3390/microorganisms12050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial degradation strategies under plants and biochar were explored by analyzing the effects of plants and biochar on microbial community composition, soil metabolism and enzyme activity in the process of PAH degradation. The combination of plants and biochar significantly increased the removal of phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when compared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%) and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the combination of plants and biochar significantly increased soil nutrient availability, enhanced soil enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were up-regulated through the combined action of plants and biochar. In view of the aforementioned results, the combined application of plants and biochar can enhance the degradation of PAHs and alleviate the stress of PAH on soil microorganisms.
Collapse
Affiliation(s)
- Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| | - Bokun Zou
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Yongqiang Qian
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Xiaoxia Li
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; (B.Z.); (Y.Q.)
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.W.); (A.L.)
| |
Collapse
|
4
|
Zhong M, Yang C, Su L, Sun Z, Xu J, Zhang J, Li Q, Hao Y, Ma H, Chen H, Chen J, Chen S. Interactions between plants and bacterial communities for phytoremediation of petroleum-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37564-37573. [PMID: 38780843 DOI: 10.1007/s11356-024-33667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Plants can stimulate the microbes to degrade ubiquitous petroleum hydrocarbons (PHCs), which has prompted a novel view on rhizoremediation. In the present study, the degradation rate of PHCs was investigated and 16S rRNA gene analysis was performed to investigate the PHC-degrading bacteria in petroleum-contaminated soil with different plants. Mirabilis jalapa (M. jalapa) has a higher PHC degradation rate than Lolium perenne (L. perenne) under petroleum contamination. The bacterial diversity in rhizospheric soil was decreased but the relative abundance of Actinobacteriota, Proteobacteria, and Candidatus Saccharibacteria were significant increased on 45 days petroleum-contaminated rhizospheric soil. In addition, the relative expression of PHC degradation-related genes, the content of malic acid and citric acid of the root exudates in the two plants was significantly increased in response to petroleum stress. The content of citric acid increased 11.9 times in M. jalapa and 3.4 times in L. perenne, respectively, in response to petroleum stress. These results indicate that M. jalapa changes the hydrocarbon-degrading microbial community to enhance the degradation of PHCs by root exudates and phytostimulation.
Collapse
Affiliation(s)
- Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Caiyu Yang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Liping Su
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ziyu Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Juanjuan Xu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jin Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yimin Hao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongman Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiamei Chen
- Department of foreign languages, Shenyang Agricultural University, Shenyang, China
| | - Shuisen Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
5
|
Ashkanani Z, Mohtar R, Al-Enezi S, Smith PK, Calabrese S, Ma X, Abdullah M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133813. [PMID: 38402679 DOI: 10.1016/j.jhazmat.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.
Collapse
Affiliation(s)
- Zainab Ashkanani
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Rabi Mohtar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salah Al-Enezi
- Petroleum Research Center, Kuwait Institute for Scientific Research, Al-Ahmadi, Kuwait
| | - Patricia K Smith
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Meshal Abdullah
- Sultan Qaboos University, College of Arts & Social Sciences. Al-Khoud, Sultanate of Oman
| |
Collapse
|
6
|
Shang X, Wu S, Liu Y, Zhang K, Guo M, Zhou Y, Zhu J, Li X, Miao R. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133684. [PMID: 38310844 DOI: 10.1016/j.jhazmat.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.
Collapse
Affiliation(s)
- Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Sirui Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yuli Liu
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuhui Li
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004 China.
| | - Renhui Miao
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Shi J, Du Y, Zou J, Ma S, Mao S, Li W, Yu C. Mechanisms of microbial-driven changes in soil ecological stoichiometry around gold mines. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133239. [PMID: 38118202 DOI: 10.1016/j.jhazmat.2023.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
In this study, we used soils with different pollution and nutrient levels (non-polluted S1, highly polluted low-nutrient S2, and highly polluted high nutrient S3) around the gold mine tailing ponds, and combined with metabolic limitation modeling and macro-genomics approaches, aiming to investigate the relationship between soil microbial composition and soil eco-chemometrics characteristics under heavy metal stress. The results showed that heavy pollution resulted in reduced SOC, TN, microbial biomass, and with C- and P- acquisition (BG, CBH, ALP) as well as nitrogen limitation of soil microbial metabolism in soils (S2, S3). Further analysis by macrogenomics showed that heavy metal contamination led to an increase in α-microbial diversity and altered the composition of microbial communities in the soil. The cycling of C, N, and P nutrients was altered by affecting the relative abundance of Anaeromyxobacter, Steroidobacter, Bradyrhizobium, Acidobacterium, Limnochorda (predominantly in the Ascomycetes and Acidobacteria phyla), with the most pronounced effect on the composition of microorganisms synthesizing C-acquiring enzymes, and heavy metals and pH were the main influences on ecological stoichiometry. The results of this study are useful for understanding the sustainability of ecological remediation in heavy metal contaminated areas and for developing ecological restoration strategies.
Collapse
Affiliation(s)
- Jinshuai Shi
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Jiacheng Zou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shuaixian Mao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Wenyao Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| |
Collapse
|
8
|
Mathur J, Panwar R. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21012-21027. [PMID: 38383928 DOI: 10.1007/s11356-024-32499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India.
| | - Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
9
|
Ni Z, Gong Z, Song L, Jia C, Zhang X. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. CHEMOSPHERE 2024; 351:141139. [PMID: 38185422 DOI: 10.1016/j.chemosphere.2024.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
10
|
Lü H, Tang GX, Huang YH, Mo CH, Zhao HM, Xiang L, Li YW, Li H, Cai QY, Li QX. Response and adaptation of rhizosphere microbiome to organic pollutants with enriching pollutant-degraders and genes for bioremediation: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169425. [PMID: 38128666 DOI: 10.1016/j.scitotenv.2023.169425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Phytoremediation largely involves microbial degradation of organic pollutants in rhizosphere for removing organic pollutants like polycyclic aromatic hydrocarbons, phthalates and polychlorinated biphenyls. Microbial community in rhizosphere experiences complex processes of response-adaptation-feedback up on exposure to organic pollutants. This review summarizes recent research on the response and adaptation of rhizosphere microbial community to the stress of organic pollutants, and discusses the enrichment of the pollutant-degrading microbial community and genes in the rhizosphere for promoting bioremediation. Soil pollution by organic contaminants often reduces the diversity of rhizosphere microbial community, and changes its functions. Responses vary among rhizosphere microbiomes up on different classes of organic pollutants (including co-contamination with heavy metals), plant species, root-associated niches (e.g., rhizosphere, rhizoplane and endosphere), geographical location and soil properties. Soil pollution can deplete some sensitive microbial taxa and enrich some tolerant microbial taxa in rhizosphere. Furthermore, rhizosphere enriches pollutant-degrading microbial community and functional genes including different gene clusters responsible for biodegradation of organic pollutants and their intermediates, which improve the adaptation of microbiome and enhance the remediation efficiency of the polluted soil. The knowledge gaps and future research challenges are highlighted on rhizosphere microbiome in response-adaptation-feedback processes to organic pollution and rhizoremediation. This review will hopefully update understanding on response-adaptation-feedback processes of rhizosphere microbiomes and rhizoremediation for the soil with organic pollutants.
Collapse
Affiliation(s)
- Huixiong Lü
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Xuan Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
11
|
Peng P, Zhou L, Yilimulati M, Zhang S. Unleashing the power of acetylacetone: Effective control of harmful cyanobacterial blooms with ecological safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168644. [PMID: 38000755 DOI: 10.1016/j.scitotenv.2023.168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Harmful algal blooms resulting from eutrophication pose a severe threat to human health. Acetylacetone (AA) has emerged as a potential chemical for combatting cyanobacterial blooms, but its real-world application remains limited. In this study, we conducted a 42-day evaluation of AA's effectiveness in controlling blooms in river water, with a focus on the interplay between ecological community structure, organism functional traits, and water quality. At a concentration of 0.2 mM, AA effectively suppressed the growth of Cyanobacteria (88 %), Bacteroidia (49 %), and Alphaproteobacteria (52 %), while promoting the abundance of Gammaproteobacteria (5.0 times) and Actinobacteria (7.2 times) that are associated with the degradation of organic matter. Notably, after dosing of AA, the OD680 (0.07 ± 0.02) and turbidity (8.6 ± 2.1) remained at a satisfactory level. AA induced significant disruptions in two photosynthesis and two biosynthesis pathways (P < 0.05), while simultaneously enriching eight pathways of xenobiotics biodegradation and metabolism. This enrichment facilitated the reduction of organic pollutants and supported improved water quality. Importantly, AA treatment decreased the abundance of two macrolide-related antibiotic resistance genes (ARGs), ereA and vatE, while slightly increased the abundance of two aminoglycoside-related ARGs, aacA and strB. Overall, our findings establish AA as an efficient and durable algicide with favorable ecological safety. Moreover, this work contributes to the development of effective strategies for maintaining and restoring the health and resilience of aquatic ecosystems impacted by harmful algal blooms.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Zhang MX, Zhao LY, He YY, Hu JP, Hu GW, Zhu Y, Khan A, Xiong YC, Zhang JL. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). BIORESOURCE TECHNOLOGY 2024; 391:129987. [PMID: 37951551 DOI: 10.1016/j.biortech.2023.129987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Iron (Fe) is one of the essential nutrient elements for plant growth and development. However, the potential roles of iron nanomaterials in regulating growth and nitrogen fixation and modulating rhizomicrobiome in legume plants are poorly known. In this study, we reported that 10 mg L-1 is the optimal concentration for the application of iron nanoparticles (FeNPs) and seed soaking plus leaf spraying is the optimal application method of FeNPs in alfalfa (Medicago sativa L.); FeNPs had more positive effects on the growth and nitrogen fixation capability in alfalfa than FeCl2; FeNPs enhanced the intensity of corporations and competitions among rhizosphere fungal taxa of alfalfa. This work provides insights into the regulation mechanism of FeNPs on growth, nitrogen fixation, and the composition and function of rhizosphere microbial community in legume plants as well as the potential application value of FeNPs in agriculture system.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ling-Yu Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan-Yuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guo-Wen Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
13
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
14
|
Wu F, Wang Z, Li X, Wang X. Amide herbicides: Analysis of their environmental fate, combined plant-microorganism soil remediation scheme, and risk prevention and control strategies for sensitive populations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132452. [PMID: 37683346 DOI: 10.1016/j.jhazmat.2023.132452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
In this study, we predicted the environmental fate of amide herbicides (AHs) using the EQC (EQuilibrium Criterion) model. We found that the soil phase is the main reservoir of AHs in the environment. Second, a toxicokinetic prediction indicated that butachlor have a low human health risk, while the alachlor, acetochlor, metolachlor, napropamide, and propanil are all uncertain. To address the environmental and human-health-related threats posed by AHs, 27 new proteins/enzymes that easily absorb, degrade, and mineralize AHs were designed. Compared with the target protein/enzyme, the comprehensive evaluation value of the new proteins/enzymes increased significantly: the absorption protein increased by 20.29-113.49%; the degradation enzyme increased by 151.26-425.22%; and the mineralization enzyme increased by 23.70-52.16%. Further experiments revealed that the remediating effect of 13 new proteins/enzymes could be significantly enhanced to facilitate their applicability under real environmental conditions. The hydrophobic interactions, van der Waals forces, and polar solvation are the key factors influencing plant-microorganism remediation. Finally, the simulations revealed that appropriate consumption of kiwifruit or simultaneous consumption of ginseng, carrot, and spinach, and avoiding the simultaneous consumption of maize and carrot/spinach are the most effective means reduce the risk of exhibiting AH-linked toxicity.
Collapse
Affiliation(s)
- Fuxing Wu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zini Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xinao Li
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xiaoli Wang
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Deng Y, Mou T, Wang J, Su J, Yan Y, Zhang YQ. Characterization of three rapidly growing novel Mycobacterium species with significant polycyclic aromatic hydrocarbon bioremediation potential. Front Microbiol 2023; 14:1225746. [PMID: 37744919 PMCID: PMC10517868 DOI: 10.3389/fmicb.2023.1225746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Mycobacterium species exhibit high bioremediation potential for the degradation of polycyclic aromatic hydrocarbons (PAHs) that are significant environmental pollutants. In this study, three Gram-positive, rapidly growing strains (YC-RL4T, MB418T, and HX176T) were isolated from petroleum-contaminated soils and were classified as Mycobacterium within the family Mycobacteriaceae. Genomic average nucleotide identity (ANI; < 95%) and digital DNA-DNA hybridization (dDDH; < 70%) values relative to other Mycobacterium spp. indicated that the strains represented novel species. The morphological, physiological, and chemotaxonomic characteristics of the isolates also supported their affiliation with Mycobacterium and their delineation as novel species. The strains were identified as Mycobacterium adipatum sp. nov. (type strain YC-RL4T = CPCC 205684T = CGMCC 1.62027T), Mycobacterium deserti sp. nov. (type strain MB418T = CPCC 205710T = KCTC 49782T), and Mycobacterium hippophais sp. nov. (type strain HX176T = CPCC 205372T = KCTC 49413T). Genes encoding enzymes involved in PAH degradation and metal resistance were present in the genomes of all three strains. Specifically, genes encoding alpha subunits of aromatic ring-hydroxylating dioxygenases were encoded by the genomes. The genes were also identified as core genes in a pangenomic analysis of the three strains along with 70 phylogenetically related mycobacterial strains that were previously classified as Mycolicibacterium. Notably, strain YC-RL4T could not only utilize phthalates as their sole carbon source for growth, but also convert di-(2-ethylhexyl) phthalate into phthalic acid. These results indicated that strains YC-RL4T, MB418T, and HX176T were important resources with significant bioremediation potential in soils contaminated by PAHs and heavy metals.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| | - Tong Mou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| |
Collapse
|
16
|
He X, Yan B, Jiang J, Ouyang Y, Wang D, Liu P, Zhang XX. Identification of key degraders for controlling toxicity risks of disguised toxic pollutants with division of labor mechanisms in activated sludge microbiomes: Using nonylphenol ethoxylate as an example. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131740. [PMID: 37269567 DOI: 10.1016/j.jhazmat.2023.131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes. The results of our batch experiments revealed that the transformation of NPEO into NP and subsequent NP degradation were the rate-limiting processes for controlling the risk of estrogenicity, resulting in an inverted V-shaped curve of estrogenicity in water samples during the biodegradation of NPEO by textile activated sludge. By utilizing enrichment sludge microbiomes treated with NPEO or NP as the sole carbon and energy source, a total of 15 bacterial degraders, including Sphingbium, Pseudomonas, Dokdonella, Comamonas, and Hyphomicrobium, were identified as capable of participating in these processes, Among them, Sphingobium and Pseudomonas were the two key degraders that could cooperatively interact in the degradation of NPEO with division of labor mechanisms. Co-culturing Sphingobium and Pseudomonas isolates exhibited a synergistic effect in degrading NPEO and reducing estrogenicity. Our study underscores the potential of the identified functional bacteria for controlling estrogenicity associated with NPEO and provides a methodological framework for identifying key cooperators engaged in labor division, contributing to the management of risks associated with DTPs by leveraging intrinsic microbial metabolic interactions.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingwei Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yixin Ouyang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Li C, Yao Y, Liu X, Chen H, Li X, Zhao M, Zhao H, Wang Y, Cheng Z, Wang L, Cheng J, Sun H. Integrated metabolomics, transcriptomics, and proteomics analyses reveal co-exposure effects of polycyclic aromatic hydrocarbons and cadmium on ryegrass (Lolium perenne L.). ENVIRONMENT INTERNATIONAL 2023; 178:108105. [PMID: 37517176 DOI: 10.1016/j.envint.2023.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are prominent soil contaminants found in industrial sites, and their combined effects on plants are not yet fully understood. To investigate the mechanisms underlying the co-exposure of Cd and PAHs and identify key biomarkers for their co-effects, an integrated analysis of metabolomics, transcriptomics, and proteomics was conducted on ryegrass leaves cultivated in soil. In nontarget metabolomics analysis, nine differentially expressed metabolites that were specifically induced by the compound exposure were identified. When combined with the analysis of differentially expressed genes and proteins, it was determined that the major pathways involved in the response to the co-stress of Cd and PAHs were linoleic acid metabolism and phenylpropanoid biosynthesis. The upregulation of 12,13-dihydroxy-9Z-octadecenoic acid and the downregulation of sinapyl alcohol were identified as typical biomarkers, respectively. Compared to scenarios of single exposures, the compound exposure to Cd and PAHs disrupted the oxidation of linoleic acid, leading to alterations in the profiles of linoleate metabolites. Additionally, it intensified hydroxylation, carboxylation, and methylation processes, and interfered with reactions involving coenzyme A, thus inhibiting lignin production. As a result, oxidative stress was elevated, and the cell wall defense system in ryegrass was weakened. The findings of this study highlight the ecological risks associated with unique biological responses in plants co-exposed to Cd and PAHs in polluted soils.
Collapse
Affiliation(s)
- Cheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaosong Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Sun C, Shen X, Zhang Y, Song T, Xu L, Xiao J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. Int J Mol Sci 2023; 24:11020. [PMID: 37446196 DOI: 10.3390/ijms241311020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The understanding of the molecular defensive mechanism of Echinacea purpurea (L.) Moench against polycyclic aromatic hydrocarbon (PAH) contamination plays a key role in the further improvement of phytoremediation efficiency. Here, the responses of E. purpurea to a defined mixture of phenanthrene (PHE) and pyrene (PYR) at different concentrations or a natural mixture from an oilfield site with a history of several decades were studied based on transcriptomics sequencing and widely targeted metabolomics approaches. The results showed that upon 60-day PAH exposure, the growth of E. purpurea in terms of biomass (p < 0.01) and leaf area per plant (p < 0.05) was negatively correlated with total PAH concentration and significantly reduced at high PAH level. The majority of genes were switched on and metabolites were accumulated after exposure to PHE + PYR, but a larger set of genes (3964) or metabolites (208) showed a response to a natural PAH mixture in E. purpurea. The expression of genes involved in the pathways, such as chlorophyll cycle and degradation, circadian rhythm, jasmonic acid signaling, and starch and sucrose metabolism, was remarkably regulated, enhancing the ability of E. purpurea to adapt to PAH exposure. Tightly associated with transcriptional regulation, metabolites mainly including sugars and secondary metabolites, especially those produced via the phenylpropanoid pathway, such as coumarins, flavonoids, and their derivatives, were increased to fortify the adaptation of E. purpurea to PAH contamination. These results suggest that E. purpurea has a positive defense mechanism against PAHs, which opens new avenues for the research of phytoremediation mechanism and improvement of phytoremediation efficiency via a mechanism-based strategy.
Collapse
Affiliation(s)
- Caixia Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiangbo Shen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yulan Zhang
- Liaoning Province Outstanding Innovation Team, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tianshu Song
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Lingjing Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Junyao Xiao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
19
|
Cui C, Shen J, Zhu Y, Chen X, Liu S, Yang J. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163279. [PMID: 37019226 DOI: 10.1016/j.scitotenv.2023.163279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contaminated saline-alkali soil is commonly salinized and hardened, which leads to low self-purification efficiency, making it difficult to reuse and remediate. In this study, pot experiments were conducted to investigate remediation of PAH contaminated saline-alkali soil using biochar-immobilized Martelella sp. AD-3, and Suaeda salsa L (S. salsa). Reduction in phenanthrene concentration, PAH degradation functional genes, and the microbial community in the soil were analyzed. The soil properties and plant growth parameters were also analyzed. After a 40-day remediation, the removal rate of phenanthrene by biochar-immobilized bacteria combined with S. salsa (MBP group) was 91.67 %. Additionally, soil pH and electrical conductivity (EC) reduced by 0.15 and 1.78 ds/m, respectively. The fresh weight and leaf pigment contents increased by 1.30 and 1.35 times, respectively, which effectively alleviated the growth pressure on S. salsa in PAH-contaminated saline-alkali soil. Furthermore, this remediation resulted in abundance of PAH degradation functional genes in the soil, with a value of 2.01 × 103 copies/g. The abundance of other PAH degraders such as Halomonas, Marinobacter, and Methylophaga in soil also increased. Furthermore, the highest abundance of Martelella genus was observed after the MBP treatment, indicating that strain AD-3 has a higher survival ability in the rhizosphere of S. salsa under the protection of biochar. This study provides a green, low-cost technique for remediation of PAH-contaminated saline-alkali soils.
Collapse
Affiliation(s)
- Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiamin Shen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco-Chongming, Fudan University, Shanghai 200438, China
| | - Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
20
|
You Y, Wang L, Ju C, Wang X, Wang Y. How does phosphorus influence Cd tolerance strategy in arbuscular mycorrhizal - Phragmites australis symbiotic system? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131318. [PMID: 37011447 DOI: 10.1016/j.jhazmat.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
To clarify how phosphorus (P) influences arbuscular mycorrhizal fungi (AMF) interactions with host plants, we measured the effects of variation in environmental P levels and AMF colonization on photosynthesis, element absorption, ultrastructure, antioxidant capacity, and transcription mechanisms in Phragmites australis (P. australis) under cadmium (Cd) stress. AMF maintained photosynthetic stability, element balance, subcellular integrity and enhanced antioxidant capacity by upregulating antioxidant gene expression. Specifically, AMF overcame Cd-induced stomatal limitation, and mycorrhizal dependence peaked in the high Cd-moderate P treatment (156.08%). Antioxidants and compatible solutes responded to P-level changes: the primary driving forces of removing reactive oxygen species (ROS) and maintaining osmotic balance were superoxide dismutase, catalase, and sugars at limited P levels and total polyphenol, flavonoid, peroxidase, and proline at abundant P levels, we refer to this phenomenon as "functional link." AMF and phosphorus enhanced Cd tolerance in P. australis, but the regulation of AMF was P-dependent. Phosphorus prevented increases in total glutathione content and AMF-induced GSH/GSSG ratio (reduced to oxidized glutathione ratio) by inhibiting the expression of assimilatory sulfate reduction and glutathione reductase genes. The AMF-induced flavonoid synthesis pathway was regulated by P, and AMF activated Cd-tolerance mechanisms by inducing P-dependent signaling.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| |
Collapse
|
21
|
Li W, Zhu Y, Li K, Wang L, Li D, Liu N, Huang S. Synergistic remediation of phenanthrene-cadmium co-contaminants by an immobilized acclimated bacterial-fungal consortium and its community response. CHEMOSPHERE 2023:139234. [PMID: 37327827 DOI: 10.1016/j.chemosphere.2023.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Bioremediation has tremendous potential to mitigate the serious threats posed by polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). In the present study, nine bacterial-fungal consortia were progressively acclimated under different culture conditions. Among them, a microbial consortium 1, originating from activated sludge and copper mine sludge microorganisms, was developed through the acclimation of a multi-substrate intermediate (catechol)-target contaminant (Cd2+, phenanthrene (PHE)). Consortium 1 exhibited the best PHE degradation, with an efficiency of 95.6% after 7 d of inoculation, and its tolerance concentration for Cd2+ was up to 1800 mg/L within 48 h. Bacteria Pandoraea and Burkholderia-Caballeronia-Paraburkholderia, as well as fungi Ascomycota and Basidiomycota predominated in the consortium 1. Furthermore, a biochar-loaded consortium was constructed to better cope with the co-contamination behavior, which exhibited excellent adaptation to Cd2+ ranging of 50-200 mg/L. Immobilized consortium efficiently degraded 92.02-97.77% of 50 mg/L PHE within 7 d while removing 93.67-99.04% of Cd2+. In remediation of co-pollution, immobilization technology improved the bioavailability of PHE and dehydrogenase activity of the consortium to enhance PHE degradation, and the phthalic acid pathway was the main metabolic pathway. As for Cd2+ removal, oxygen-containing functional groups (-OH, C=O, and C-O) of biochar or microbial cell walls and EPS components, fulvic acid and aromatic proteins, participated through chemical complexation and precipitation. Furthermore, immobilization led to more active consortium metabolic activity during the reaction, and the community structure developed in a more favorable direction. The dominant species were Proteobacteria, Bacteroidota, and Fusarium, and the predictive expression of functional genes corresponding to key enzymes was elevated. This study provides a basis for combining biochar and acclimated bacterial-fungal consortia for co-contaminated site remediation.
Collapse
Affiliation(s)
- Wei Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yanfeng Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Kang Li
- College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
22
|
Liu H, Huang H, Liang K, Lin K, Shangguan Y, Xu H. Characterization of a cadmium-resistant functional bacteria (Burkholderia sp. SRB-1) and mechanism analysis at physiochemical and genetic level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27824-2. [PMID: 37269515 DOI: 10.1007/s11356-023-27824-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
In this study, the capacity of cadmium (Cd)-resistant plant growth-promoting bacteria (PGPB) Burkholderia sp. SRB-1 (SRB-1) and its mechanisms were explored through morphological characterizations, biochemical response, plant growth-promoting traits, and functional gene expression patterns. The results showed that SRB-1 was an excellent Cd-resistant bacteria (MIC was 420 mg L-1), and its maximum Cd removal rate reached 72.25%. Biosorption was the main removal method of Cd for SRB-1, preventing intracellular Cd accumulation and maintaining cellular metabolism. Various functional groups on the cell wall were involved in Cd binding, which deposited as CdS and CdCO3 on the cell surface according to XPS analysis and might be critical for reducing Cd physiochemical toxicity. Furthermore, metals exporting (zntA, czcA, czcB, czcC), detoxification (dsbA, cysM), and antioxidation (katE, katG, SOD1) related genes were annotated in the SRB-1 genome. The results of Cd distribution and antioxidative enzyme activity in SRB-1 also illustrated that Cd2+ efflux and antioxidative response were the main intracellular Cd-resistant mechanisms. These conclusions were further verified by qRT-PCR analysis. Overall, the strategies of extracellular biosorption, cation efflux, and intracellular detoxification jointly build the Cd-resistant system, which invested Burkholderia sp. SRB-1 with potential for bioremediation in heavily Cd-contaminated environmental sites.
Collapse
Affiliation(s)
- Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ke Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China.
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
Cui X, Cao X, Xue W, Xu L, Cui Z, Zhao R, Ni SQ. Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162202. [PMID: 36775162 DOI: 10.1016/j.scitotenv.2023.162202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soils co-contaminated by organic and inorganic pollutants usually pose major ecological risks to soil ecosystems including plants. Thus, effective strategies are needed to alleviate the phytotoxicity caused by such co-contamination. In this study, microbial agents (a mixture of Bacillus subtilis, Sphingobacterium multivorum, and a commercial microbial product named OBT) and soil amendments (β-cyclodextrin, rice husk, biochar, calcium magnesium phosphate fertilizer, and organic fertilizer) were evaluated to determine their applicability in alleviating toxicity to crops (maize and soybean) posed by polycyclic aromatic hydrocarbon (PAHs) and potentially toxic metals co-contaminated soils. The results showed that peroxidase, catalase, and superoxide dismutase activity levels in maize or soybean grown in severely or mildly contaminated soils were significantly enhanced by the integrative effects of amendments and microbial agents, compared with those in single plant treatments. The removal rates of Zn, Pb, and Cd in severely contaminated soils were 49 %, 47 %, and 51 % and 46 %, 45 %, and 48 %, for soybean and maize, respectively. The total contents of Cd, Pb, Zn, and PAHs in soil decreased by day 90. Soil organic matter content, levels of nutrient elements, and enzyme activity (catalase, urease, and dehydrogenase) increased after the amendments and application of microbial agents. Moreover, the amendments and microbial agents also increased the diversity and distribution of bacterial species in the soil. These results suggest that the amendments and microbial agents were beneficial for pollutant purification, improving the soil environment and enhancing both plant resistance to pollutants and immune systems of plants.
Collapse
Affiliation(s)
- Xiaowei Cui
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Wenxiu Xue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lei Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
24
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
25
|
Saldarriaga JF, López JE, Díaz-García L, Montoya-Ruiz C. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49498-49511. [PMID: 36781665 PMCID: PMC10104932 DOI: 10.1007/s11356-023-25501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 04/16/2023]
Abstract
The contamination of soil and water by metals such as mercury (Hg) and cadmium (Cd) has been increasing in recent years, because of anthropogenic activities such as mining and agriculture, respectively. In this work, the changes in the rhizosphere microbiome of Lolium perenne L. during the phytoremediation of soils contaminated with Hg and Cd were evaluated. For this, two soil types were sampled, one inoculated with mycorrhizae and one without. The soils were contaminated with Hg and Cd, and L. perenne seeds were sown and harvested after 30 days. To assess changes in the microbiome, DNA isolation tests were performed, for which samples were subjected to two-step PCR amplification with specific 16S rDNA V3-V4 primers (337F and 805R). With mycorrhizae, changes had been found in the absorption processes of metals and a new distribution. While with respect to microorganisms, families such as the Enterobacteriaceae have been shown to have biosorption and efflux effects on metals such as Hg and Cd. Mycorrhizae then improve the efficiency of removal and allow the plant to better distribute the absorbed concentrations. Overall, L. perenne is a species with a high potential for phytoremediation of Cd- and Hg-contaminated soils in the tropics. Inoculation with mycorrhizae modifies the phytoremediation mechanisms of the plant and the composition of microorganisms in the rhizosphere. Mycorrhizal inoculation and changes in the microbiome were associated with increased plant tolerance to Cd and Hg. Microorganism-assisted phytoremediation is an appropriate alternative for L. perenne.
Collapse
Affiliation(s)
- Juan F Saldarriaga
- Dept. of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este, #19A-40, 111711, Bogotá, Colombia.
| | - Julián E López
- Facultad de Arquitectura E Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Laura Díaz-García
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Carolina Montoya-Ruiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle, 59A #63-20, 050034, Medellín, Colombia
| |
Collapse
|
26
|
Jin Y, Wang Y, Li X, Luo T, Ma Y, Wang B, Liang H. Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161344. [PMID: 36610630 DOI: 10.1016/j.scitotenv.2022.161344] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Multi-metal contaminated soil has received extensive attention. The biochar and bentonite-supported nano zero-valent iron (nZVI) (BC-BE-nZVI) composite was synthesized in this study by the liquid-phase reduction method. Subsequently, the BC-BE-nZVI composite was applied to immobilize cadmium (Cd), chromium (Cr), and lead (Pb) in simulated contaminated soil. The simultaneous immobilization efficiencies of Cd, Cr(VI), Crtotal, and Pb were achieved at 70.95 %, 100 %, 86.21 %, and 100 %, respectively. In addition, mobility and bioavailabilities of Cd, Cr, and Pb were significantly decreased and the risk of iron toxicity was reduced. Stabilized metal species in the contaminated soil (e.g., Cd(OH)2, Cd-Fe-(OH)2, CrxFe1-xOOH, CrxFe1-x(OH)3, PbO, PbCrO4, and Pb(OH)2) were formed after the BC-BE-nZVI treatment. Thus, the immobilization mechanisms of Cd, Cr, and Pb, including adsorption, reduction, co-precipitation, and complexation co-exist with the metals. More importantly, bacterial richness, bacterial diversity, soil enzyme activities (dehydrogenase, urease, and fluorescein diacetate hydrolase), and microbial activity were enhanced by applying the BC-BE-nZVI composite, thus increasing the soil metabolic function. Over all, this work applied a promising procedure for remediating multi- metal contaminated soil by using the BC-BE-nZVI composite.
Collapse
Affiliation(s)
- Yi Jin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yaxuan Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China.
| | - Ting Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yongsong Ma
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China
| | - Hong Liang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
27
|
Li X, Li X, Hong J, Wang Y, Guo D, Liu J, Zhang Z, He W, Xue K, Wang Q. Comparative Analyses of Soil Bacterial Colonies of Two Types of Chinese Ginger after a Major Flood Disaster. Microbiol Spectr 2023; 11:e0435522. [PMID: 36744938 PMCID: PMC10100910 DOI: 10.1128/spectrum.04355-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Ginger, an important cash crop, has been cultivated for thousands of years in China. However, comparative studies on soil bacterial communities of Chinese ginger varieties, especially after flooding, are lacking. Here, we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, the 100-year flood (20 July 2021, in Henan, China) did not significantly affect the soil bacterial composition compared with previous reports. In contrast, flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria, and Alphaproteobacteria were the most abundant in the Zhangliang region (~25%). However, due to the most severe flooding and inundation, the Zhangliang region, also probably contaminated with polycyclic aromatic hydrocarbons and heavy metals, showed the lowest microbial diversity. Moreover, the geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking. Further, the interaction mechanisms underlying these emerging phenomena need to be further investigated. IMPORTANCE There are few comparative studies on the soil bacterial communities of Chinese ginger varieties after flooding. After a 100-year flood (20 July 2021, in Henan, China), we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, this flood did not significantly affect the soil bacterial composition compared with previous reports. In contrast, it was found that the flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria for the Zhangliang region. However, the flooding had also brought in polycyclic aromatic hydrocarbon and heavy metal contamination. Moreover, we also verified that geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking.
Collapse
Affiliation(s)
- Xinyang Li
- Henan University of Urban Construction, Ping Dingshan, China
| | - Xiaokang Li
- Wuhan Jinxin Gynecology and Obstetrics Hospital of Integrative Medicine, Wuhan, China
| | - Jun Hong
- Henan University of Urban Construction, Ping Dingshan, China
| | - Yan Wang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Duanqiang Guo
- Henan University of Urban Construction, Ping Dingshan, China
| | - Jinlong Liu
- Henan University of Urban Construction, Ping Dingshan, China
| | - Zewen Zhang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Wenwei He
- Henan University of Urban Construction, Ping Dingshan, China
| | - Kaisheng Xue
- Henan University of Urban Construction, Ping Dingshan, China
| | - Qingqing Wang
- Henan University of Urban Construction, Ping Dingshan, China
| |
Collapse
|
28
|
Song L, Niu X, Zhou B, Xiao Y, Zou H. Application of biochar-immobilized Bacillus sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant. CHEMOSPHERE 2022; 307:136084. [PMID: 35988767 DOI: 10.1016/j.chemosphere.2022.136084] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The co-existence of heavy metals and polycyclic aromatic hydrocarbons (PAHs) challenges the remediation of polluted soil. This study aimed to investigate whether a combined amendment of biochar-immobilized bacterium (BM) could enhance the phytoremediation of heavy metals and PAHs in co-contaminated soil. The Bacillus sp. KSB7 with the capabilities of plant-growth promotion, metal tolerance, and PAH degradation was immobilized on the peanut shell biochar prepared at 400 °C and 600 °C (PBM4 and PBM6, respectively). After 90 days, PBM4 treatment increased the removal of PAHs by 94.17% and decreased the amounts of diethylenetriamine pentaacetic acid-extractable Zn, Pb, Cr, and Cu by 58.46%, 53.42%, 84.94%, and 83.15%, respectively, compared with Kochia scoparia-alone treatment. Meanwhile, PBM4 was more effective in promoting K. scoparia growth and reducing the uptake of co-contaminants. The abundance of Gram-negative PAH-degrader and 1-aminocyclopropane-1-carboxylic deaminase-producing bacteria within rhizosphere soil was significantly improved after PBM4 treatment. Moreover, the relative abundance of the Bacillus genus increased by 0.66 and 2.05 times under PBM4 treatment compared with biochar alone and KSB7, indicating that KSB7 could colonize in the rhizosphere soil of K. scoparia. However, the removal of PAHs and heavy metals after PBM6 and 600 °C biochar-alone treatments caused no obvious difference. This study suggested that low-temperature BM-amended plant cultivation would be an effective approach to remove PAHs and heavy metals in co-contaminated soil.
Collapse
Affiliation(s)
- Lichao Song
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Xuguang Niu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bin Zhou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Yinong Xiao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China; Key Laboratory of Northeast Arable Land Conservation of Ministry of Agriculture, Shenyang Agricultural University, Shenyang, 110866, PR China.
| |
Collapse
|
29
|
Yu Z, Liu H, Mao S, Zhang J, Zhang J, Yu E, Qu L. Low-Temperature Thermal Desorption Effectively Mitigates Accumulation of Total Mercury and Methylmercury in Rice (Oryza sativa L.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:757-763. [PMID: 35137244 DOI: 10.1007/s00128-021-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
For maximally reserving soil fertility, two critical parameters (i.e. time and temperature) of low-temperature thermal desorption (LTTD) were initially optimized to remediate the mercury-contaminated soil from a mercury mining area. The effect of LTTD on soil properties was investigated, and the bioaccumulation of total mercury (THg) and methylmercury (MeHg) in rice (Oryza sativa L.) were researched via a pot experiment. Results indicated that the physicochemical properties and fertility of the soil after LTTD still meet the requirements of rice growth. Moreover, the concentrations of THg and MeHg in the remediated soil were decreased by 94.1% and 98.8%, respectively. Further, the bioavailability of Hg in soil was significantly reduced. More importantly, the concentrations of THg and MeHg in the seed of rice plant cultivated on the remediated soil were decreased by 57.6% and 80.2%, respectively. Overall, LTTD technology could efficiently remediate Hg-contaminated soil and be a promise remediation strategy.
Collapse
Affiliation(s)
- Zhi Yu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Research and Designing Institute of Environmental Sciences, Guiyang, 550081, China
| | - Hongyan Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environment of Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Shijia Mao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Junfang Zhang
- Guizhou Research and Designing Institute of Environmental Sciences, Guiyang, 550081, China
| | - Jian Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Enjiang Yu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Liya Qu
- Guizhou Research and Designing Institute of Environmental Sciences, Guiyang, 550081, China
| |
Collapse
|
30
|
Li C, Shi Z, Cai J, Wang P, Wang F, Ju M, Liu J, Yu Q. Synthesis of Phenylboronic Acid-Functionalized Magnetic Nanoparticles for Sensitive Soil Enzyme Assays. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206883. [PMID: 36296473 PMCID: PMC9611590 DOI: 10.3390/molecules27206883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Soil enzymes, such as invertase, urease, acidic phosphatase and catalase, play critical roles in soil biochemical reactions and are involved in soil fertility. However, it remains a great challenge to efficiently concentrate soil enzymes and sensitively assess enzyme activity. In this study, we synthesized phenylboronic acid-functionalized magnetic nanoparticles to rapidly capture soil enzymes for sensitive soil enzyme assays. The iron oxide magnetic nanoparticles (MNPs) were firstly prepared by the co-precipitation method and then functionalized by (3-aminopropyl)triethoxysilane, polyethyleneimine and phenylboric acid in turn, obtaining the final nanoparticles (MNPPBA). Protein-capturing assays showed that the functionalized MNPs had a much higher protein-capturing capacity than the naked MNPs (56% versus 6%). Moreover, MNPPBA almost thoroughly captured the tested enzymes, i.e., urease, invertase, and alkaline phosphatase, from enzyme solutions. Based on MNPPBA, a soil enzyme assay method was developed by integration of enzyme capture, magnetic separation and trace enzyme analysis. The method was successfully applied in determining trace enzyme activity in rhizosphere soil. This study provides a strategy to sensitively determine soil enzyme activity for mechanistic investigation of soil fertility and plant–microbiome interaction.
Collapse
Affiliation(s)
- Can Li
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinxing Cai
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Wang
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fang Wang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-Forestry Science, Yinchuan 750002, China
| | - Meiting Ju
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinpeng Liu
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Correspondence: ; Tel.: +86-13752433799
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
32
|
Zhao X, Miao R, Guo M, Shang X, Zhou Y, Zhu J. Biochar enhanced polycyclic aromatic hydrocarbons degradation in soil planted with ryegrass: Bacterial community and degradation gene expression mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156076. [PMID: 35597344 DOI: 10.1016/j.scitotenv.2022.156076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Biochar and ryegrass have been used in the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils; however, the effects of different biochar application levels on the dissipation of PAHs, bacterial communities, and PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes in rhizosphere soil remain unclear. In this study, enzyme activity tests, real-time quantitative polymerase chain reaction (PCR), and high-throughput sequencing were performed to investigate the effects of different proportions of rape straw biochar (1%, 2%, and 4% (w/w)) on the degradation of PAHs, as well as the associated changes in the soil bacterial community and PAH-RHDα gene expression. The results revealed that biochar enhanced the rhizoremediation of PAH-contaminated soil and that 2% biochar-treated rhizosphere soil was the most effective in removing PAHs. Furthermore, urease activity, abundance and activity of total bacteria, and PAH-degrading bacteria were enhanced in soil that was amended with biochar and ryegrass. Additionally, the activity of 16S rDNA and PAH-RHDα gram-negative (GN) genes increased with increasing biochar dosage and had a positive correlation with the removal of PAHs. Biochar changed the rhizosphere soil bacterial composition and α-diversity, and promoted the growth of Pseudomonas and Zeaxanthinibacter. In addition, the relative abundance of Pseudomonas was positively correlated with PAH removal. These findings imply that rape straw biochar can enhance the rhizoremediation of PAH-contaminated soil by changing soil bacterial communities and stimulating the expression of PAH-RHDα GN genes. The 2% of rape straw biochar combined with ryegrass would be an effective method to remediate the PAH-contaminated soil.
Collapse
Affiliation(s)
- Xuyang Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Renhui Miao
- International Joint Research Laboratory for Global Change Ecology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Liu H, Luo L, Jiang G, Li G, Zhu C, Meng W, Zhang J, Jiao Q, Du P, Li X, Fahad S, Jie X, Liu S. Sulfur enhances cadmium bioaccumulation in Cichorium intybus by altering soil properties, heavy metal availability and microbial community in contaminated alkaline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155879. [PMID: 35568178 DOI: 10.1016/j.scitotenv.2022.155879] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) contamination seriously threatens the soil health and food safety. Combination of amendment and accumulator plant is a green and effective technique to improve phytoremediation of Cd-contaminated alkaline soil. In this study, a potting experiment was conducted to investigate the effect of sulfur on Cd phytoextraction by Cichorium intybus (chicory). Soil chemical and microbial properties were determined to reveal the mechanism of sulfur-assisting Cd phytoremediation by chicory. Soil pH decreased from 7.77 to the lowest 7.30 with sulfur addition (0.6, 0.9 and 1.2 g kg-1, LS, MS and HS treatment); Electric conductivity, sulfate anion and available cadmium concentration increased gradually with increasing sulfur doses. Cd concentration of shoot and root significantly increased from 1.47 to 4.43 mg kg-1, 6.15 to 20.16 mg kg-1 by sulfur treatment relative to CK, which were attributed to increased available Cd concentration induced by decreased pH. Sulfur treatments significantly increased the Cd bioconcentration factor by 64.1%, 118.6%, 201.0% for shoot, 76.3%, 145.6% and 227.7% for root under LS, MS and HS relative to CK treatment, respectively (P < 0.05). However, only MS treatment significantly improved the Cd removal efficiency by 82.9% in comparison of CK treatment (P < 0.05). Microbial community diversity measured by 16SrRNA showed that Thiobacillus and Actinobacteria were the key and dominant strains of soil microbial communities after sulfur addition, which played a pivotal role in the process of sulfur oxidation involved in decrease of soil pH and the transformation of Cd forms. Correlation analysis and path analysis by structural equation model indicated that soil sulfate anion and Thiobacillus directly affected Cd removal efficiency by chicory in Cd-contaminated alkaline soil. This suggests that combination of sulfur and chicory may provide a way to promote Cd bioaccumulation for phytoremediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Lan Luo
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gezi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Changwei Zhu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Weiwei Meng
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengqiang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; Department of Agronomy, Faculty of Agricultural Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Xiaolei Jie
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
34
|
Li Y, He X, Yuan H, Lv G. Differed Growth Stage Dynamics of Root-Associated Bacterial and Fungal Community Structure Associated with Halophytic Plant Lycium ruthenicum. Microorganisms 2022; 10:microorganisms10081644. [PMID: 36014066 PMCID: PMC9414475 DOI: 10.3390/microorganisms10081644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/02/2023] Open
Abstract
Lycium ruthenicum, a halophytic shrub, has been used to remediate saline soils in northwest China. However, little is known about its root-associated microbial community and how it may be affected by the plant’s growth cycle. In this study, we investigate the microbial community structure of L. ruthenicum by examining three root compartments (rhizosphere, rhizoplane, and endosphere) during four growth stages (vegetative, flowering, fruiting, and senescence). The microbial community diversity and composition were determined by Illumina MiSeq sequencing of the 16S V3–V4 and 18S ITS regions. Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most dominant fungal phyla. The alpha diversity of the bacterial communities was highest in the rhizosphere and decreased from the rhizosphere to the endosphere compartments; the fungal communities did not show a consistent trend. The rhizosphere, rhizoplane, and endosphere had distinct bacterial community structures among the three root compartments and from the bulk soil. Additionally, PERMANOVA indicated that the effect of rhizocompartments explained a large proportion of the total community variation. Differential and biomarker analysis not only revealed that each compartment had unique biomarkers and was enriched for specific bacteria, but also that the biomarkers changed with the plant growth cycle. Fungi were also affected by the rhizocompartment, but to a much less so than bacteria, with significant differences in the community composition along the root compartments observed only during the vegetative and flowering stages. Instead, the growth stages appear to account for most of the fungal community variation as demonstrated by PCoA and NMDS, and supported by differential and biomarker analysis, which revealed that the fungal community composition in the rhizosphere and endosphere were dynamic in response to the growth stage. Many enriched OTUs or biomarkers that were identified in the root compartments were potentially beneficial to the plant, meanwhile, some harmful OTUs were excluded from the root, implying that the host plant can select for beneficial bacteria and fungi, which can promote plant growth or increase salt tolerance. In conclusion, the root compartment and growth stage were both determinant factors in structuring the microbial communities of L. ruthenicum, but the effects were different in bacteria and fungi, suggesting that bacterial and fungal community structures respond differently to these growth factors.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Hongfei Yuan
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
- Correspondence:
| |
Collapse
|
35
|
Villalobos-Flores LE, Espinosa-Torres SD, Hernández-Quiroz F, Piña-Escobedo A, Cruz-Narváez Y, Velázquez-Escobar F, Süssmuth R, García-Mena J. The Bacterial and Fungal Microbiota of the Mexican Rubiaceae Family Medicinal Plant Bouvardia ternifolia. MICROBIAL ECOLOGY 2022; 84:510-526. [PMID: 34553243 DOI: 10.1007/s00248-021-01871-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Bouvardia ternifolia is a medicinal plant considered a source of therapeutic compounds, like the antitumoral cyclohexapeptide bouvardin. It is known that large number of secondary metabolites produced by plants results from the interaction of the host and adjacent or embedded microorganisms. Using high-throughput DNA sequencing of V3-16S and V5-18S ribosomal gene libraries, we characterized the endophytic, endophytic + epiphyte bacterial, and fungal communities associated to flowers, leaves, stems, and roots, as well as the rhizosphere. The Proteobacteria (average 80.7%) and Actinobacteria (average 14.7%) were the most abundant bacterial phyla, while Leotiomycetes (average 54.8%) and Dothideomycetes (average 27.4%) were the most abundant fungal classes. Differential abundance for the bacterial endophyte group showed a predominance of Erwinia, Propionibacterium, and Microbacterium genera, while Sclerotinia, Coccomyces, and Calycina genera predominated for fungi. The predictive metagenome analysis for bacteria showed significative abundance of pathways for secondary metabolite production, while a FUNguild analysis revealed the presence of pathotroph, symbiotroph, and saprotrophs in the fungal community. Intra and inter copresence and mutual exclusion interactions were identified for bacterial and fungal kingdoms in the endophyte communities. This work provides a description of the diversity and composition of bacterial and fungal microorganisms living in flowers, leaves, stems, roots, and the rhizosphere of this medicinal plant; thus, it paves the way towards an integral understanding in the production of therapeutic metabolites.
Collapse
Affiliation(s)
- Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Samuel David Espinosa-Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química E Industrias Extractivas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, 07738, Ciudad de México, Mexico
| | - Francisco Velázquez-Escobar
- Max Volmer Laboratorium Für Biophysikalische Chemie Technische Universität Berlin, Technische Universität Berlin, Str. des 17. Juni 135/Sekr. PC-14, 10623, Berlin, Germany
| | - Roderich Süssmuth
- Department of Chemistry, Institut Für Chemie, Technische Universität Berlin, Sekr. TC 2, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Avenida Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Gabriele I, Race M, Papirio S, Papetti P, Esposito G. Phytoremediation of a pyrene-contaminated soil by Cannabis sativa L. at different initial pyrene concentrations. CHEMOSPHERE 2022; 300:134578. [PMID: 35417760 DOI: 10.1016/j.chemosphere.2022.134578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
This study proposes the phytoremediation of a pyrene (PYR)-contaminated soil by Cannabis sativa L. The experimental campaign was conducted along a 60 days period using three different initial PYR concentrations (i.e., 50, 100 and 150 mg kg TS-1 of soil) in 300 mL volume pots under greenhouse conditions (18-25 °C and 45-55% humidity). After 60 days of hemp growth and flourishing, the highest PYR removal reached approximately 95% in planted soil, 35% higher than in the unplanted control. PYR accumulation was observed in both roots and aerial parts of the plant, with a higher PYR uptake at increasing initial PYR concentrations in soil. The initial PYR concentration affected the growth and, thus, the phytoremediation potential of C. sativa L., which was the result of different removal mechanisms. Overall, the lowest initial PYR concentration was the one that resulted in the highest PYR removal. The interaction between the plant roots and microorganisms in rhizosphere was likely associated with PYR removal in this study. The highest DHO activity of 66.26 μg INTF g-1 TS-1 was observed in the soil spiked with 50 mg PYR·kg TS-1.
Collapse
Affiliation(s)
- Ilaria Gabriele
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patrizia Papetti
- Department of Economics and Law, Territorial and Products Analysis Laboratory, University of Cassino and Southern Lazio, Via S. Angelo, Folcara, 03043, Cassino, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
37
|
Rostami S, Jaskulak M, Rostami M, Baghapour MA, Azhdarpoor A. Efficient Biodegradation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere Using Plant Growth Regulators and Biological Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Saeid Rostami
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Jaskulak
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, Lille, France
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Poland
| | - Majid Rostami
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Liu C, Li B, Dong Y, Lin H. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128829. [PMID: 35429753 DOI: 10.1016/j.jhazmat.2022.128829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the phytoremediation efficiency of Cd-contaminated soils by hyperaccumulator P. acinosa and its endophyte B. cereus, and evaluated the variation of rhizosphere/endosphere microecology characteristics. The result showed that endophyte PE31, which could successfully colonize on P. acinosa root, increased plant Cd uptake by 42.90% and 28.85% in low and high Cd contaminated soils by promotion of plant biomass and Cd concentration in plant tissues. The improved phytoremediation may attribute to the endophyte inoculation, which significantly improved the bioavailable heavy metal (HM) percentage, nutrient cycling related enzyme activities and nutrient contents including available potassium, phosphorus and organic matter. Additionally, the relative abundance beneficial bacteria Bacillus (significantly increased by 81.23% and 34.03% in the endosphere, and by 4.86% and 8.54% in rhizosphere in low and high Cd contaminated soils) and Lysobacter, showed positive and close correlation with plant growth and HM accumulation. These results indicated that endophyte inoculation could reshape rhizosphere and endosphere microecology characteristics, which enhanced the potential for phytoremediation of Cd contaminated soils.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
39
|
Wang X, Sun J, Liu R, Zheng T, Tang Y. Plant contribution to the remediation of PAH-contaminated soil of Dagang Oilfield by Fire Phoenix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43126-43137. [PMID: 35091936 DOI: 10.1007/s11356-021-18230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Pot experiments were conducted to evaluate plant contribution during remediation of the polycyclic aromatic hydrocarbons (PAH)-contaminated soil of Dagang Oilfield by Fire Phoenix (a mixture of Festuca L.). The results showed that Fire Phoenix could grow in soil contaminated by high and low concentrations of PAHs. After being planted for 150 days, the total removal rate of six PAHs in the high and low PAH concentrations was 80.36% and 79.79%, significantly higher than the 58.79% and 53.29% of the unplanted control group, respectively. Thus, Fire Phoenix can effectively repair the soil contaminated by different concentrations of PAHs. In high concentrations of PAHs, the results indicated a positive linear relationship between PAH absorption in tissues of Fire Phoenix and the growth time in the early stage. In contrast, the contents of PAHs were just slightly increased in the late period of plant growth. The main factor for the dissipation of PAHs was plant-promoted biodegradation (99.04%-99.93%), suggesting a low contribution of PAH uptake and transformation (0.07%-0.96%). The results revealed that Fire Phoenix did not remove the PAHs in the soil by accumulation but promoted PAH dissipation in the soil by stimulating the microbial metabolism in the rhizosphere.
Collapse
Affiliation(s)
- Xiaomei Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110179, China
| | - Jianping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110179, China
| | - Rui Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Tingyu Zheng
- Zhongke Dingshi Environmental Engineering Co., Ltd, Beijing, 100028, China
| | - Yingnan Tang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
40
|
Chen C, Zhong C, Gao X, Tan C, Bai H, Ning K. Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites. ENVIRONMENTAL MICROBIOME 2022; 17:23. [PMID: 35526053 PMCID: PMC9080174 DOI: 10.1186/s40793-022-00418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Glycyrrhiza uralensis Fisch. is an important, perennial medicinal plant whose root microbiome is considered to play an important role in promoting accumulation of effective medicinal ingredients (liquiritin and glycrrhizic acid). Here, we report a comprehensive analysis of the microbial community structural composition and metabolite-plant-microbes association of G. uralensis Fisch. We collected both soil and rhizosphere samples of G. uralensis from different environmental conditions (cultivated and wild) and growth years (grown for one year and three years). Our data revealed higher species diversity in the wild group than in the cultivated group. The core rhizosphere microbiome of G. uralensis comprised 78 genera, including Bacillus, Pseudomonas, Rhizobium, some of which were potential plant beneficial microbes. Our results suggest that the growth of G. uralensis has a correlation with the root-associated microbiota assemblage. Integrated analysis among rhizosphere microbial taxa, plant gene expressions, and liquiritin and glycrrhizic acid accumulation showed that the liquiritin and glycrrhizic acid accumulation exhibited associations with the rhizosphere microbial composition at the genus level. The results provide valuable information to guide cultivation of G. uralensis, and potentially to harness the power of the root-associated microbiota to improve medicinal plant production.
Collapse
Affiliation(s)
- Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Xi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Chongyang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| |
Collapse
|
41
|
Yang J, Li X, Yang H, Zhao W, Li Y. OPFRs in e-waste sites: Integrating in silico approaches, selective bioremediation, and health risk management of residents surrounding. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128304. [PMID: 35074750 DOI: 10.1016/j.jhazmat.2022.128304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A multilevel index system of organophosphate flame retardant bioremediation effect in an e-waste handling area was established under three bioremediation scenarios (scenario I, plant absorption; scenario II, plant-microbial combined remediation; scenario III, microbial degradation). Directional modification of OPFR substitutes with high selective bioremediation was performed. The virtual amino acid mutation approach was utilised to generate high-efficiency selective absorption/degradation mutant proteins (MPs) in a plant-microbial system under varying conditions. In scenario III, the MP's microbial degrading ability to replace molecules was increased to the greatest degree (165.82%). Appropriate foods such as corn, pig liver, and yam should be consumed, whereas the simultaneous consumption of high protein foods such as pig liver and walnut should be avoided; sweet potato and yam are believed to be prevent OPFRs and substitute molecules from entering the human body through multiple pathways for reduced genotoxicity of OPFRs in the populations of e-waste handling areas (the reduction degree can reach 85.12%). The study provides a theoretical basis for the development of ecologically acceptable OPFR substitutes and innovative high-efficiency bioremediation MPs, as well as for the reduction of the joint toxicity risk of multiple ingestion route exposure/gene damage of OPFRs in high OPFR exposure sites.
Collapse
Affiliation(s)
- Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's NL A1B 3X5, Canada.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
42
|
Jiao A, Gao B, Gao M, Liu X, Zhang X, Wang C, Fan D, Han Z, Hu Z. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. CHEMOSPHERE 2022; 294:133654. [PMID: 35066084 DOI: 10.1016/j.chemosphere.2022.133654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is commonly used in the remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) because of its economy and effectiveness. Sudan grass (Sorghum sudanense (Piper) Stapf.) has well-developed roots and strong tolerance to heavy metals, so it has been widely concerned. In this study, nitrilotriacetic acid (NTA) and tea saponin (TS) were used as enhancers and combined with Sudan grass for improving the remediation efficiency of Ni-pyrene co-contaminated soil. The results of the pot experiment in soils showed that enhancers promoted the enrichment of Ni in plants. With the function of enhancers, more inorganic and water-soluble Ni were converted into low-toxic phosphate-bonded and residual Ni, so as to reinforce the tolerance of Sudan grass to Ni. In the pot experiment based on vermiculite, it was found that enhancers increased the accumulation of Ni in cell wall by 49.71-102.73%. Enhancers also had the positive effect on the relative abundance of Proteobacteria, Patescibacteria and Bacteroidetes that could tolerate heavy metals at phylum level. Simultaneously, the study found that pyrene reduced the exchangeable Ni in soils. More Ni entered the organelles and transfer to more high-toxic forms in Sudan grass when pynere coexisted. The study manifested that enhancers improved the phytoremediation effect of Ni significantly, yet the co-existence of pyrene weakened the process. Our results provided meaningful references for remediating actual co-contaminated soil of heavy metals and PAHs.
Collapse
Affiliation(s)
- Anxing Jiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bingjie Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Mingjing Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Chuanhua Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Delong Fan
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zongrui Han
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ziqiao Hu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
43
|
Chen Y, Huang Y, Ding X, Yang Z, He L, Ning M, Yang Z, He D, Yang L, Liu Z, Chen Y, Li G. A Multi-Omics Study of Familial Lung Cancer: Microbiome and Host Gene Expression Patterns. Front Immunol 2022; 13:827953. [PMID: 35479075 PMCID: PMC9037597 DOI: 10.3389/fimmu.2022.827953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology. The lung microbiome is getting rising attention in carcinogenesis. The present work sought to investigate the microbiome in lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution (IAP); and further, to compare host gene expression patterns with their microbiome for potential links. Methods Tissue sample pairs (cancer and adjacent nonmalignant tissue) were used for 16S rRNA (microbiome) and RNA-seq (host gene expression). Subgroup microbiome diversities and their matched gene expression patterns were analyzed. Significantly enriched taxa were screened out, based on different clinicopathologic characteristics. Results Our FLC microbiome seemed to be smaller, low-diversity, and inactive to change; we noted microbiome differences in gender, age, blood type, anatomy site, histology type, TNM stage as well as IAP and smoking conditions. We also found smoking and IAP dramatically decreased specific-OTU biodiversity, especially in normal lung tissue. Intriguingly, enriched microbes were in three categories: opportunistic pathogens, probiotics, and pollutant-detoxication microbes; this third category involved Sphingomonas, Sphingopyxis, etc. which help degrade pollutants, but may also cause epithelial damage and chronic inflammation. RNA-seq highlighted IL17, Ras, MAPK, and Notch pathways, which are associated with carcinogenesis and compromised immune system. Conclusions The lung microbiome can play vital roles in carcinogenesis. FLC and IAP subjects were affected by fragile lung epithelium, vulnerable host-microbes equilibrium, and dysregulated immune surveillance and response. Our findings provided useful information to study the triple interplay among environmental carcinogens, population genetic background, and diversified lung microbiome.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xiaojie Ding
- The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zhenlin Yang
- National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang He
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zhenghong Yang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | | | | | - Yan Chen
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Guangjian Li
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| |
Collapse
|
44
|
Song X, Li C, Chen W. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113389. [PMID: 35272194 DOI: 10.1016/j.ecoenv.2022.113389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Soils co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and cadmium (Cd) have serious environmental impacts and are highly toxic to humans and ecosystems. Phytoremediation is an effective biotechnology for the remediation and restoration of PAH- and Cd-polluted soils. Pot experiments were conducted to investigate the individual and combined effects of PAHs (1238.62 mg kg-1) and Cd (23.1 mg kg-1) on the phytoremediation potential of Bermuda grass grown in contaminated soils. Bermuda grass exhibited a significant decrease in plant growth rate, leaf pigment content, root activity, plant height and biomass and a remarkable increase in malondialdehyde content and electrolyte leakage when grown in PAH- and Cd-contaminated soils compared with grass grown in uncontaminated soils. The activity of soil enzymes, including urease, alkaline phosphatase, sucrose, and fluorescein diacetate hydrolysis, were reduced in soil with PAH and Cd stress. Furthermore, the toxicity of combined PAHs and Cd on Bermuda grass growth and soil enzyme activity was much higher than that of PAH or Cd stress alone, suggesting a synergistic effect of PAHs and Cd on cytotoxicity. To scavenge redundant reactive oxygen species and avoid oxidative damage, Bermuda grass increased plant catalase, superoxide dismutase, and peroxidase activity and soluble sugar and proline content. The bioconcentration factor of Cd in Bermuda grass grown under Cd alone and combined PAH and Cd exposure was greater than 1 for both, suggesting that Bermuda grass has a high Cd accumulation ability. Under PAH alone and combined PAH and Cd exposure conditions, a higher PAH removal rate (41.5-56.8%) was observed in soils planted with Bermuda grass than in unplanted soils (24.8-29.8%), indicating that Bermuda grass has a great ability to degrade PAHs. Bermuda grass showed great phytoremediation potential for the degradation of PAHs and phytoextraction of Cd in co-contaminated soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China
| | - Changjiang Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China.
| |
Collapse
|
45
|
Response of Rhizosphere Microbial Community in High-PAH-Contaminated Soil Using Echinacea purpurea (L.) Moench. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Under polycyclic aromatic hydrocarbon (PAH) pollution conditions (149.17–187.54 mg/kg), we had found the dominant flora of PAHs by observing the response of the soil microbial community after planting purple coneflower (Echinacea purpurea (L.) Moench). In this study, pot experiments were conducted in a growth chamber to explore the changes in the rhizosphere microbial community structure during remediation of heavily PAH-contaminated soil using purple coneflower (Echinacea purpurea (L.) Moench). The phospholipid fatty acid (PLFA) content in the soil was measured during four periods before and after planting, and the results showed that: (i) at 120 days, E. purpurea can regulate the microbial community structure but had no significant effect on soil microbial diversity, (ii) at 120 days, the number of PLFAs characterizing actinomycetes, bacteria, and fungi increased, and both Gram-negative bacteria and Arbuscular mycorrhizal fungi (AMF) were significant with the observed PLFA level (p < 0.05), and (iii) the results indicated that AMF and Gram-negative bacteria represent some of the main factors that can promote the degradation of PAHs. The results obtained in this work are important to future research on PAH-degradation-functional genes and degradation mechanisms of the selection of flora.
Collapse
|
46
|
Cao X, Cui X, Xie M, Zhao R, Xu L, Ni S, Cui Z. Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128096. [PMID: 34952500 DOI: 10.1016/j.jhazmat.2021.128096] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Co-existence of polycyclic aromatic hydrocarbons (PAHs) and multi-metals challenges the decontamination of large-scale contaminated sites. This study aims to comprehensively evaluate the remediation potential of intensified phytoremediation in coping with complex co-contaminated soils. Results showed that the removal of PAHs and heavy metals is time-dependent, pollution-relevant, and plant-specific. Removal of sixteen PAHs by Medicago sativa L. (37.3%) was significantly higher than that of Solanum nigrum L. (20.7%) after 30 days. S. nigrum L. removed higher amounts of Cd than Zn and Pb, while M. sativa L. uptake more Zn. Nevertheless, amendments and microbial agents significantly increased the phytoremediation efficiency of pollutants and shortened the gap between plants. Cd removal and PAHs dissipation reached up to 80% and 90% after 90 days for both plants. Heavy metal stability in soil was promoted after the intensified phytoremediation. Plant lipid peroxidation was alleviated, regulated by changed antioxidant defense systems (superoxide dismutase, peroxidase, catalase). Soil enzyme activities including dehydrogenase, urease, and catalase increased up to 5-fold. Soil bacterial diversity and structure were changed, being largely composed of Proteobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Firmicutes. These findings provide a green and sustainable approach to decontaminating complex-polluted environments with comprehensive improvement of soil health.
Collapse
Affiliation(s)
- Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Xiaowei Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Meng Xie
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Lei Xu
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Shouqing Ni
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao 266237, Shandong, PR China.
| |
Collapse
|
47
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Chen X, Wang J, You Y, Wang R, Chu S, Chi Y, Hayat K, Hui N, Liu X, Zhang D, Zhou P. When nanoparticle and microbes meet: The effect of multi-walled carbon nanotubes on microbial community and nutrient cycling in hyperaccumulator system. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126947. [PMID: 34481400 DOI: 10.1016/j.jhazmat.2021.126947] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanotubes can potentially stimulate phytoremediation of heavy metal contaminated soil by promoting plant biomass and root growth. Yet, the regulating mechanism of carbon nanotubes on the rhizosphere microenvironment and their potential ecological risks remain poorly characterized. The purpose of this study was to systematically evaluate the effects of multi-walled carbon nanotubes (MCNT) on the diversity and structure of rhizosphere soil bacterial and fungal communities, as well as soil enzyme activities and nutrients, in Solanum nigrum L. (S. nigrum)-soil system. Here, S. nigrum were cultivated in heavy metal(loid)s contaminated soils applied with MCNT (100, 500, and 1000 mg kg-1 by concentration, none MCNT addition as control) for 60 days. Our results demonstrated more significant urease, sucrase, and acid phosphatase activities in MCNT than in control soils, which benefit to promoting plant growth. Also, there were significant reductions in available nitrogen and available potassium contents with the treatment of MCNT, while the organic carbon and available phosphorus were not affected by MCNT application. Notably, the alpha diversity of bacterial and fungal communities in the MCNT treatments did not significantly vary relative to control. However, the soil microbial taxonomic compositions were changed under the application of MCNT. Compared to the control, MCNT application increased the relative abundances of the Micrococcaceae family, Solirubrobacteraceae family, and Conexibacter genus, which were positively correlated with plant growth. In addition, the non-metric multidimensional scaling (NMDS) analysis revealed that the community structure of bacterial and fungal communities did not significantly change among all the treatments, and bacterial community structure was significantly correlated with soil organic carbon. At the same time, sucrase activity had the highest relation to fungal community structure. This study highlighted soil microbes have strong resistance and adaptation ability to carbon nanotubes with existence of plants, and revealed linkage between the rhizosphere microenvironment and plant growth, which well improved our understanding of carbon nanotubes in heavy metal phytoremediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinxin Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
49
|
Li Y, Ma J, Li Y, Xiao C, Shen X, Chen J, Xia X. Nitrogen addition facilitates phytoremediation of PAH-Cd cocontaminated dumpsite soil by altering alfalfa growth and rhizosphere communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150610. [PMID: 34597578 DOI: 10.1016/j.scitotenv.2021.150610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Thousands of unlined landfills and open dumpsites seriously threatened the safety of soil and groundwater due to leachate leakage with a mass of pollutants, particularly heavy metals, organic contaminants and ammonia. Phytoremediation is widely used in the treatment of cocontaminated soils because it is cost-effective and environmentally friendly. However, the extent to which phytoremediation efficiency and plant physiological responses are affected by the high nitrogen (N) content in such cocontaminated soil is still uncertain. Here, pot experiments were conducted to investigate the effects of N addition on the applicability of legume alfalfa remediation for polycyclic aromatic hydrocarbon‑cadmium (PAHCd) co-/contaminated soil and the corresponding microbial regulation mechanism. The results showed that the PAH dissipation rates and Cd removal rates in the high-contamination groups increased with the external N supply, among which the pyrene dissipation rates in the cocontaminated soil was elevated most significantly, from 78.10% to 87.25%. However, the phytoremediation efficiency weakened in low cocontaminated soil, possibly because the excessive N content had inhibitory effects on the rhizobium Ensifer and restrained alfalfa growth. Furthermore, the relative abundance of PAH-degrading bacteria in the rhizosphere dominated PAH dissipation. As reflected by principal coordinate analysis (PCoA) analysis and hierarchical dendrograms, the microbial community composition changed with N addition, and a more pronounced shift was found in the rhizosphere relative to the endosphere or shoots of alfalfa. This study will provide a theoretical basis for legume plant remediation of dumpsites as well as soil contaminated with multiple pollutants.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Chen Xiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Jiajun Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| |
Collapse
|
50
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|