1
|
Struk-Sokołowska J, Kotowska U, Gwoździej-Mazur J, Polińska W, Canales FA, Kaźmierczak B. Benzotriazoles and bisphenols in wastewater from the food processing industry and the quantitative changes during mechanical/biochemical treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175387. [PMID: 39127214 DOI: 10.1016/j.scitotenv.2024.175387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Benzotriazoles (BTRs) and bisphenols (BPs), categorized as contaminants of emerging concern (CECs), pose significant risks to human health and ecosystems due to their endocrine-disrupting properties and environmental persistence. This study investigates the occurrence and behavior of nine BTRs and ten BPs in wastewater generated in a large-scale meat processing plant, evaluating the effectiveness of a modern mechanical-biological industrial on-site treatment plant in removing these contaminants, and based on the concentration levels from eleven sampling points at different stages of the treatment process. The method used to determine these micropollutants' concentration was ultrasound-assisted emulsification-microextraction for analytes isolation and gas chromatography-mass spectrometry for detection (USAEME-GC/MS). The results indicate that the rigorous quality control processes in the meat processing facility effectively limit the presence of these micropollutants, especially concerning BPs, which are absent or below detection limits in raw wastewater. While the concentrations of some of these micropollutants increased at different points in the treatment process, these values were relatively low, typically below one microgram per liter. Among the compounds analyzed, the only one present after completing the treatment was 5Cl-BTR (maximum concentration: 3007 ng/L), and these contamination levels are around seven times lower than the reference value associated with non-cancer health risk for drinking water. This study contributes to understanding these CECs in industrial wastewater and highlights the importance of effective treatment systems for environmental protection.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351 Bialystok, Poland.
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, 15-245 Bialystok, Poland
| | - Joanna Gwoździej-Mazur
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351 Bialystok, Poland
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland
| | - Fausto A Canales
- Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlantico, Colombia; Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Poland
| | - Bartosz Kaźmierczak
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Cinzori ME, Nicol M, Dewald AL, Goodrich JM, Zhou Z, Gardiner JC, Kerver JM, Dolinoy DC, Talge N, Strakovsky RS. Maternal mitochondrial DNA copy number and methylation as possible predictors of pregnancy outcomes in a Michigan pregnancy cohort. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae021. [PMID: 39628676 PMCID: PMC11614404 DOI: 10.1093/eep/dvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
Little is understood about the roles of mitochondria in pregnancy-related adaptations. Therefore, we evaluated associations of maternal early-to-mid pregnancy mitochondrial DNA copy number (mtDNAcn) and mtDNA methylation with birth size and gestational length. Michigan women (n = 396) provided venous bloodspots at median 11 weeks gestation to quantify mtDNAcn marker NADH-ubiquinone oxidoreductase chain 1 (ND1) using real-time quantitative PCR and mtDNA methylation at several regions within four mitochondria-specific genes using pyrosequencing: MTTF (mitochondrially encoded tRNA phenylalanine), DLOOP (D-loop promoter region, heavy strand), CYTB (cytochrome b), and LDLR (D-loop promoter region, light strand). We abstracted gestational length and birthweight from birth certificates and calculated birthweight z-scores using published references. We used multivariable linear regression to evaluate associations of mtDNAcn and mtDNA methylation with birthweight and birthweight z-scores. Cox Proportional Hazards Models (PHMs) and quantile regression characterized associations of mitochondrial measures with gestational length. We also considered differences by fetal sex. Using linear regression and Cox PHMs, mtDNAcn was not associated with birth outcomes, whereas associations of mtDNA methylation with birth outcomes were inconsistent. However, using quantile regression, mtDNAcn was associated with shorter gestation in female newborns at the upper quantiles of gestational length, but with longer gestational length in males at the lower quantiles of gestational length. Maternal LDLR, DLOOP, and MTTF methylation was associated with longer gestational length in females at the upper quantiles and in males at lower gestational length quantiles. Maternal mtDNAcn and mtDNA methylation were associated with gestational length in babies born comparatively early or late, which could reflect adaptations in mitochondrial processes that regulate the length of gestation.
Collapse
Affiliation(s)
- Maria E Cinzori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Megan Nicol
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Alisa L Dewald
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, United States
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Jean M Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nicole Talge
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
3
|
Zhou Y, Xie P, Cao G, Ran J, Xu S, Xia W, Cai Z. Metabolic signatures of prenatal exposure to 'Cocktails' of benzotriazoles and benzothiazoles and its health implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134717. [PMID: 38795493 DOI: 10.1016/j.jhazmat.2024.134717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Prenatal exposure to benzotriazoles and benzothiazoles (collectively as BTs) was associated with pregnancy complications. Identifying the metabolites associated with prenatal BTs exposure may help elucidate the mechanism and characterize the exposure risk. In this prospective study of 158 pregnant women from Wuhan, China, urinary BTs were repeatedly measured across three trimesters to provide an accurate estimation of exposure during pregnancy. We conducted high-throughput targeted metabolomics with great coverage and high accuracy to characterize the urinary metabolic profile in late pregnancy. We first identified the perturbed metabolites of cocktail BTs exposure and then pinned down to the pairwise associations between individual BTs and the identified metabolites. A total of 44 metabolites were identified as perturbed biomarkers of cocktail BTs exposure based on the variable influence on projection (VIP > 1.2) score. Further pairwise associations analysis showed positive association of BTs with oxidative stress related biomarkers and negative association of BTs with neuronal function metabolites. The shared metabolic signatures among BTs in the co-occurrence network of pairwise association analysis may partially be attributed to the correlation among cocktail BTs exposure. The findings provide the potential mechanisms of BTs-associated pregnancy complications and offer insight into the health implications for prenatal BTs exposure. Furthermore, the framework we employed, which integrates both cocktail exposure and individual exposure, may illuminate future epidemiological research that seeks to incorporate exposure to mixtures and omics scale data.
Collapse
Affiliation(s)
- Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinjun Ran
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Pálešová N, Bláhová L, Janoš T, Řiháčková K, Pindur A, Šebejová L, Čupr P. Exposure to benzotriazoles and benzothiazoles in Czech male population and its associations with biomarkers of liver function, serum lipids and oxidative stress. Int Arch Occup Environ Health 2024; 97:523-536. [PMID: 38546760 PMCID: PMC11130049 DOI: 10.1007/s00420-024-02059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Training Centre of Fire Rescue Service, General Directorate of Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Mao W, Qu J, Liu H, Guo R, Liao K, Wu S, Hangbiao J, Hu Z. Associations between urinary concentrations of benzothiazole, benzotriazole, and their derivatives and lung cancer: A nested case-control study. ENVIRONMENTAL RESEARCH 2024; 251:118750. [PMID: 38522739 DOI: 10.1016/j.envres.2024.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Benzothiazole (BTH), benzotriazole (BTR), and their respective derivatives (BTHs and BTRs) are emerging environmental pollutants with widespread human exposure and oncogenic potential. Studies have demonstrated adverse effects of exposure to certain BTHs and BTRs on the respiratory system. However, no study has examined the associations between exposure to BTHs and BTRs and lung cancer risk. We aimed to examine the associations between urinary concentrations of BTHs and BTRs and the risk of lung cancer in the general population from Quzhou, China. We conducted a nested case-control study in an ongoing prospective Quzhou Environmental Exposure and Human Health (QEEHH) cohort, involving 20, 694 participants who provided urine samples during April 2019-July 2020. With monthly follow-up until November 2022, 212 lung cancer cases were recruited and 1:1 matched with healthy controls based on age and sex. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer risk associated with urinary BTHs and BTRs concentrations using conditional logistic regression models after controlling for potential covariates. We also examined effect modification by several covariates, including sex, socioeconomic status, smoking status, alcohol consumption, and dietary habit. Creatinine-corrected urinary BTH and 2-hydroxy-benzothiazole (2-OH-BTH) levels were significantly associated with the risk of lung cancer, after adjusting for a variety of covariates. Participants in the highest quartile of BTH had a 95% higher risk of lung cancer, compared with those in the lowest quartile (adjusted OR = 1.95, 95% CI: 1.08-3.49; p for trend = 0.01). Participants with higher levels of urinary 2-OH-BTH had an 83% higher risk of lung cancer than those with lower levels (adjusted OR = 1.83, 95% CI: 1.16-2.88; p for trend = 0.01). Exposure to elevated levels of BTH and 2-OH-BTH may be associated with an increased risk of lung cancer. These associations were not modified by socio-demographic characteristics.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Jin Hangbiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
6
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic metabolite exposure is associated with increased newborn mitochondrial DNA copy number: evidence from a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38142-38152. [PMID: 38789711 DOI: 10.1007/s11356-024-32933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhangpeng Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Bi J, Song L, Wu M, Liu Q, Xu L, Fan G, Cao Z, Xiong C, Wang Y. Association of prenatal essential metal exposure with newborn mitochondrial DNA copy number: Results from a birth cohort study. Reprod Toxicol 2023; 122:108495. [PMID: 37926172 DOI: 10.1016/j.reprotox.2023.108495] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Imbalance or deficiencies of essential metals can lead to oxidative stress, that can damage mitochondrial DNA (mtDNA) molecule. Knowledge on effects of exposure to essential metals and their mixture remains limited. We aimed to evaluate individual and joint associations of prenatal essential metals with neonatal mtDNA copy number. We recruited 746 mother-newborn pairs from a birth cohort study conducted in Wuhan City, China, and collected trimester-specific urine and cord blood samples. We measured the concentrations of seven urinary essential metals, include zinc (Zn), iron (Fe), selenium (Se), cobalt (Co), manganese (Mn), copper (Cu), and chromium (Cr), using inductively coupled plasma mass spectrometry, and measured cord blood mtDNA copy number using real-time quantitative polymerase chain reaction. We estimated the trimester-specific associations of individual essential metal concentrations with mtDNA copy number using a multiple informant model, and assessed their joint association using weighted quantile sum (WQS) regression. For individual essential metal, a doubling of maternal urinary Zn concentrations during the second trimester was associated with a 7.47% (95% CI: 1.17-14.17%) higher level of neonatal mtDNA copy number. For the essential metal mixture, one-unit increased in the WQS index of the essential metals mixture during the second trimester resulted in a 10.41% (95% CI: 3.04-18.30%) increase in neonatal mtDNA copy number. Our findings suggest that exposure to both Zn and essential metal mixture during the second trimester is associated with a higher neonatal mtDNA copy number. Further research should assess whether mtDNA copy number is associated with child health.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luli Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Altered cord blood mitochondrial DNA content and prenatal exposure to arsenic metabolites in low-arsenic areas. RESEARCH SQUARE 2023:rs.3.rs-3414865. [PMID: 37961501 PMCID: PMC10635372 DOI: 10.21203/rs.3.rs-3414865/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether arsenic metabolism in different trimesters was related to cord blood mtDNAcn alteration. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters using HPLC-ICPMS. We decided on cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each two-fold increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the 3rd trimester were related to 8.43% (95% CI: 1.13%, 16.26%) and 12.15% (95% CI:4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the 3rd trimester with mtDNAcn. These findings may prove the relationships between arsenic species and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Xin Wang
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhenxian Jia
- Huazhong University of Science and Technology Tongji Medical College
| | - Yujie He
- Huazhong University of Science and Technology Tongji Medical College
| | - Yi Wu
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhangpeng Li
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Wei Xia
- Huazhong University of Science and Technology Tongji Medical College
| | - Shunqing Xu
- Huazhong University of Science and Technology Tongji Medical College
| | - Yuanyuan Li
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College
| |
Collapse
|
9
|
Smith AR, Hinojosa Briseño A, Picard M, Cardenas A. The prenatal environment and its influence on maternal and child mitochondrial DNA copy number and methylation: A review of the literature. ENVIRONMENTAL RESEARCH 2023; 227:115798. [PMID: 37001851 PMCID: PMC10164709 DOI: 10.1016/j.envres.2023.115798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is sensitive to environmental stressors and associated with human health. We reviewed epidemiological literature examining associations between prenatal environmental, dietary, and social exposures and alterations in maternal/child mtDNA copy number (mtDNAcn) and mtDNA methylation. Evidence exists that prenatal maternal exposures are associated with alterations in mtDNAcn for air pollution, chemicals (e.g. metals), cigarette smoke, human immunodeficiency virus (HIV) infection and treatment. Evidence for their associations with mtDNA methylation was limited. Given its potential implications as a disease pathway biomarker, studies with sufficient biological specificity should examine the long-term implications of prenatal and early-life mtDNA alterations in response to prenatal exposures.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Alejandra Hinojosa Briseño
- Department of Environmental and Occupational Health, California State University, Northridge, Northridge, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Zhang H, Zhao X, Li Y, Xie P. A meta-analysis on the toxicity of microcystin-LR to fish and mammals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121780. [PMID: 37150342 DOI: 10.1016/j.envpol.2023.121780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Microcystin-leucine arginine (MC-LR), the most prevalent and dangerous microcystin, poses high risks to living organisms, especially fish and mammals. Although many studies have focused on the toxic effect on fish and mammals exposed to MC-LR, works that incorporate published data into a comprehensive comparison and analysis are still limited. Here, the adverse effects of oxidative stress markers, health, functional traits, and performance traits in fish and mammals were systematically verified by collecting data from 67 studies for the first time. Notably, we first found that the activities of malondialdehyde (MDA) (p < 0.05) and lactoperoxidase (LPO) always showed increases, whereas the growth (performance traits) always had a significant decrease (p < 0.001) under all variables of MC-LR exposure, i.e., exposure time, exposure concentration, exposure route, and even life stage. Additionally, our study first verified that the activities of MDA and LPO can be employed as oxidative stress indicators of MC-LR effects in fish and mammals instead of other biomarkers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), considered by previous studies. Growth may be regarded as a highly sensitive indicator of MC-LR toxicity in mammals and fish. At the same time, we first found that the impact of MC-LR exposure concentration on LPO, MDA, and growth is higher than that of exposure time, exposure route, and different life stages using the random forest (RF) model. In short, this work sheds light on the potential biochemical and individual toxicity of MC-LR exposure in fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Xu Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Yehao Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
11
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
12
|
Extraction of selected benzothiazoles, benzotriazoles and benzenesulfonamides from environmental water samples using a home-made sol-gel silica-based mixed-mode zwitterionic sorbent modified with graphene. Talanta 2023; 256:124315. [PMID: 36739742 DOI: 10.1016/j.talanta.2023.124315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023]
Abstract
A novel sol-gel silica-based mixed-mode zwitterionic sorbent modified with graphene microparticles was synthesized. Thanks to the inclusion of multiple functional groups and graphene microparticles to exert a wide range of intermolecular/interionic interactions including dipole-dipole interactions, ion-exchange interactions and π-π interactions, the sorbent showed high retention in the solid-phase extraction (SPE) of benzothiazoles, benzotriazoles and benzenesulfonamides. The SPE protocol was optimized in terms of pH, sample loading volume and elution conditions using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). The method based on SPE followed by LC-HRMS was validated. Apparent recoveries at two levels of concentration were in the range from 48 to 85% (in most cases) in matrices such as influent wastewater, matrix effect was lower than ±30% in most cases, method detection and quantification limits being lower than 20 ng/L and repeatability and reproducibility between days were lower than 18% (n = 4). River, effluent and influent wastewaters samples were analyzed, obtaining concentrations ranging from 3 to 175 ng/L in river samples, from 12 to 499 ng/L in effluent samples and from 15 to 632 ng/L in influent samples, when the compounds were above the method quantification limits.
Collapse
|
13
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
14
|
Cao S, Liu J, Yu L, Fang X, Xu S, Li Y, Xia W. Prenatal exposure to benzotriazoles and benzothiazoles and child neurodevelopment: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161188. [PMID: 36581292 DOI: 10.1016/j.scitotenv.2022.161188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Benzotriazoles (BTRs) and benzothiazoles (BTHs) are emerging benzo-heterocyclic compounds that may induce neurotoxicity. However, the effect of prenatal exposure to BTs (BTRs and BTHs) on child neurodevelopment has not been elucidated. We aimed to explore the associations between maternal urinary concentrations of BTs in single or in mixture with child neurodevelopment at the age of two. This study recruited 513 mother-child pairs based on a birth cohort from 2014 to 2015 in Wuhan. Maternal urinary concentrations of eight BTs (four BTRs and four BTHs) in the first, second, and third trimesters were measured. The mental development index (MDI) and psychomotor development index (PDI) of children, as two indexes of neurodevelopment, were assessed at two years old by the Bayley Scales. In the analyses of single BTs, prenatal average tolyltriazole (TTR) exposure level was associated with decreased boys' MDI scores (β = -2.84, 95 % CI: -5.11, -0.57) and prenatal average 1-H-benzotriazole (1-H-BTR) exposure level was associated with decreased boys' PDI scores (β = -1.44, 95 % CI: -2.70, -0.17), respectively. Maternal urinary concentrations of benzothiazole (BTH) in the 1st trimester (β = -1.79, 95 % CI: -2.78, -0.80), 2nd trimester (β = -1.14, 95 % CI: -2.19, -0.09), and the prenatal average exposure (β = -2.15, 95 % CI: -3.69, -0.61) were also negatively associated with boys' PDI scores. However, no significantly negative association was observed among girls. In the further mixture analysis, the quantile g-computation model found a significant negative association between prenatal average concentrations of BTs in mixture and boys' PDI scores [β = -4.80 (95 % CI: -9.08, -0.52)], and BTH weighted the highest in the negative association. As far as we know, this is the first research to estimate the effect of prenatal exposure to BTs on child neurodevelopment. The findings showed that prenatal exposure to BTs was negatively associated with neurodevelopment among boys, suggesting that the associations may be modified by infant sex.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Jiangtao Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Ling Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Xingjie Fang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
15
|
Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep 2022; 9:631-649. [PMID: 35902457 PMCID: PMC9729331 DOI: 10.1007/s40572-022-00371-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Mitochondria play various roles that are important for cell function and survival; therefore, significant mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the recent literature (2012-2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction in human populations. RECENT FINDINGS The literature suggests that there are a number of biomarkers that are commonly used to identify mitochondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane potential, calcium levels, and ATP levels. This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy number and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and nanoparticles as a gap in knowledge that needs attention.
Collapse
|
16
|
Mishra PK, Kumari R, Bhargava A, Bunkar N, Chauhan P, Tiwari R, Shandilya R, Srivastava RK, Singh RD. Prenatal exposure to environmental pro-oxidants induces mitochondria-mediated epigenetic changes: a cross-sectional pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74133-74149. [PMID: 35633452 DOI: 10.1007/s11356-022-21059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 05/24/2023]
Abstract
Mitochondria play a central role in maintaining cellular and metabolic homeostasis during vital development cycles of foetal growth. Optimal mitochondrial functions are important not only to sustain adequate energy production but also for regulated epigenetic programming. However, these organelles are subtle targets of environmental exposures, and any perturbance in the defined mitochondrial machinery during the developmental stage can lead to the re-programming of the foetal epigenetic landscape. As these modifications can be transferred to subsequent generations, we herein performed a cross-sectional study to have an in-depth understanding of this intricate phenomenon. The study was conducted with two arms: whereas the first group consisted of in utero pro-oxidant exposed individuals and the second group included controls. Our results showed higher levels of oxidative mtDNA damage and associated integrated stress response among the exposed individuals. These disturbances were found to be closely related to the observed discrepancies in mitochondrial biogenesis. The exposed group showed mtDNA hypermethylation and changes in allied mitochondrial functioning. Altered expression of mitomiRs and their respective target genes in the exposed group indicated the possibilities of a disturbed mitochondrial-nuclear cross talk. This was further confirmed by the modified activity of the mitochondrial stress regulators and pro-inflammatory mediators among the exposed group. Importantly, the disturbed DNMT functioning, hypermethylation of nuclear DNA, and higher degree of post-translational histone modifications established the existence of aberrant epigenetic modifications in the exposed individuals. Overall, our results demonstrate the first molecular insights of in utero pro-oxidant exposure associated changes in the mitochondrial-epigenetic axis. Although, our study might not cement an exposure-response relationship for any particular environmental pro-oxidant, but suffice to establish a dogma of mito-epigenetic reprogramming at intrauterine milieu with chronic illness, a hitherto unreported interaction.
Collapse
Affiliation(s)
- Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Radha Dutt Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Struk-Sokołowska J, Gwoździej-Mazur J, Jurczyk Ł, Jadwiszczak P, Kotowska U, Piekutin J, Canales FA, Kaźmierczak B. Environmental risk assessment of low molecule benzotriazoles in urban road rainwaters in Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156246. [PMID: 35644405 DOI: 10.1016/j.scitotenv.2022.156246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to identify and quantify benzotriazoles (BTRs) emissions from road traffic and paved areas in an urban environment. Heterocyclic organic compounds BTRs are an emerging threat, under-recognized and under-analyzed in most environmental and water legislation. They are hazardous, potentially mutagenic, and carcinogenic micropollutants, not susceptible to effective biodegradation, and they move easily through the trophic chain, contaminating the environment and water resources. Traffic activities are a common source of BTR emissions in the urban environment, directly polluting human habitats through the different routes and numerous vehicles circulating in the cities. Using twelve heterogeneous locations scattered over a metropolitan area in Poland as a case study, this research analyzed the presence of BTRs in water samples from runoff produced from rainwater and snowmelt. 1H-BTR, 4Me-BTR, 5Me-BTR and 5Cl-BTR were detected in the tested runoff water. 5Cl-BTR was present in all samples and in the highest concentrations reaching 47,000 ng/L. Risk quotients calculated on the basis of the determined concentrations indicate that the highest environmental risk is associated with the presence of 5Cl-BTR and the sum of 4Me-BTR and 5Me-BTR, and the most sensitive organisms are bacteria and invertebrates. The results indicate that it is possible to associate the occurrence of these contaminants with the type of cover, traffic intensity, and vehicle type.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Department of Environmental Engineering Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland.
| | - Joanna Gwoździej-Mazur
- Department of Water Supply and Sewerage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszów, Poland
| | - Piotr Jadwiszczak
- Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, 15-245 Białystok, Poland
| | - Janina Piekutin
- Department of Environmental Engineering Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Fausto A Canales
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Bartosz Kaźmierczak
- Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
18
|
Development and validation of a simultaneous method for the analysis of benzothiazoles and organic ultraviolet filters in various environmental matrices by GC-MS/MS. Anal Bioanal Chem 2022; 414:6541-6555. [PMID: 35819475 DOI: 10.1007/s00216-022-04212-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/01/2022]
Abstract
The presence of benzothiazoles (BTHs) and organic ultraviolet filters (UV filters) in aquatic ecosystems has emerged as a significant environmental issue, requiring urgent and efficient determination methods. A new, rapid, and sensitive determination method using gas chromatography triple quadrupole mass spectrometer (GC-MS/MS) was developed for the simultaneous extraction and analysis of 10 commonly used BTHs and 10 organic UV filters in surface water, wastewater, sediment, and sludge. For aqueous samples, solid-phase extraction (SPE) method was employed with optimizing of SPE cartridge type, pH, and elution solvent. For solid samples, ultrasonic extraction-solid-phase extraction purification (UE-SPE) and pressurized liquid extraction (PLE) methods were compared. And extraction conditions for ultrasonic extraction method (extraction solvents and extraction times) and PLE method (extraction temperatures and extraction cycles) were optimized. The limits of quantification for the 20 target compounds in surface water and wastewater were 0.01-2.12 ng/L and 0.05-6.14 ng/L, while those for sediment and sludge with UE-SPE method were 0.04-5.88 ng/g and 0.22-6.61 ng/g, respectively. Among the 20 target compounds, the recoveries ranged from 70 to 130% were obtained for 16, 15, 15, and 15 analytes in the matrix-spiked samples of surface water, wastewater, sediment, and sludge with three levels, respectively. And the precision was also acceptable with relative standard deviation (RSD) below 20% for all analytes. The developed methods were applied for the determination and quantification of target compounds in surface water, sediment, wastewater, and sludge samples collected from two wastewater treatment plants (WWTPs) and the Pearl River in Guangzhou, China. BTHs were frequently detected in surface water and wastewater, while UV filters were mainly found in sediment and sludge. Benzotriazole (BT) and 2-hydroxybenzothiazole (2-OH-BTH) were the two major BTHs in influent wastewater and surface water, respectively, with concentrations up to 966 and 189 ng/L. As for sediment and sludge, 2-(2'-hydroxy-5'-octylphenyl)-benzotriazole (UV-329) was a predominant chemical, detected at concentrations of 111 and 151 ng/g, respectively.
Collapse
|
19
|
Yu Y, Li H, Chen J, Wang F, Chen X, Huang B, He Y, Cai Z. Exploring the adsorption behavior of benzotriazoles and benzothiazoles on polyvinyl chloride microplastics in the water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153471. [PMID: 35101490 DOI: 10.1016/j.scitotenv.2022.153471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
As a kind of emerging pollutant, microplastics (MPs) play an important role as a carrier for pollutant migration in the water environment. Carried by the MPs, benzotriazoles, and benzothiazoles (collectively referred to as BTs)1 are ubiquitous water contaminants. In this paper, the adsorption behavior of BTs on polyvinyl chloride (PVC) MPs was first studied systematically to explain the adsorptive mechanisms and the consequential pollution caused by the absorption-desorption process. The studies on kinetics, isotherms, and thermodynamics revealed that the adsorption of BTs on PVC MPs was a multi-rate, heterogeneous multi-layer, and exothermic process, which was affected by external diffusion, intra-particle diffusion, and dynamic equilibrium. The factors including pH, salinity, and particle size also influenced the adsorption process. In the multi-solute system, competitive adsorption would occur between different BTs. The desorption of BTs from PVC MPs was positively associated with the increase of adsorption amount. Based on the results, the adsorption mechanisms of PVC MPs were clarified, involving hydrophobic interaction, electrostatic force, and non-covalent bonds. It was demonstrated that BTs in the water environment could most probably be accumulated and migrated through MPs, and eventually carried into organisms, posing an increased risk to the ecological environment.
Collapse
Affiliation(s)
- Yanbin Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Huichen Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Fangjie Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoning Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Bowen Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Zongwei Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
20
|
Yang C, He S, Lu S, Liao X, Song Y, Chen ZF, Zhang G, Li R, Dong C, Qi Z, Cai Z. Pollution characteristics, exposure assessment and potential cardiotoxicities of PM 2.5-bound benzotriazole and its derivatives in typical Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151132. [PMID: 34695464 DOI: 10.1016/j.scitotenv.2021.151132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Benzotriazole and its derivatives (BTRs), classified as high-volume production chemicals, have been widely detected in various environmental media, including the atmosphere, water, soil and dust, as well as organisms. However, studies on the pollution characteristics and health impact of PM2.5 related BTRs are so far limited. This study is the first to demonstrate the regional scale distribution of PM2.5-bound BTRs and their potential cardiotoxicities. Optimized methods of extraction, purification and GC-EI-MS/MS were applied to characterize and analyze PM2.5-bound BTRs from three cities in China during the winter of 2018. The concentration of ∑BTRs in Taiyuan (6.28 ng·m-3) was more than three times that in Shanghai (1.53 ng·m-3) and Guangzhou (1.99 ng·m-3). Benzotriazole (BTR) and 5-methyl-1H-benzotriazole (5TTR) contributed more than 80% of ∑BTRs concentration as the major pollutants among three cities. The correlation analysis indicated that there was a positive correlation between temperature and concentration of BTR and a negative correlation between temperature and concentration of 5TTR. In addition, the risk of BTRs exposure to toddlers should be paid more attention in Taiyuan by the human exposure assessment. Furthermore, toxicity screening by experimental methods indicated that 4-methyl-1H-benzotriazole (4TTR) was the most harmful to cardiomyocytes. The western blot assay showed a ROS-mediated mitochondrial apoptosis signaling pathway was activated after exposure to 4TTR in neonatal rat cardiomyocytes (NRCMs). On the other hand, metabolomics revealed that exposure of 4TTR to NRCMs disturbed mitochondrial energy metabolism by disturbing pantothenate and coenzyme A synthesis pathway. Our study not only clarifies the contamination profiles of PM2.5-bound BTRs in typical Chinese cities but also reveals their cardiotoxicities associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chun Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shiyao He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shimin Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoliang Liao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
21
|
Yin W, Shao H, Huo Z, Wang S, Zou Q, Xu G. Degradation of anticorrosive agent benzotriazole by electron beam irradiation: Mechanisms, degradation pathway and toxicological analysis. CHEMOSPHERE 2022; 287:132133. [PMID: 34826893 DOI: 10.1016/j.chemosphere.2021.132133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Benzotriazole (BTA), which is extensively served as household and engineering agent, is one of the emerging and persistent contaminants. Despite the spirit to remove BTA is willing, the traditional wastewater treatments are weak. Therefore, the degradation of BTA via electron beam was systematically explored in this study. It turned out that after 5.0 kGy irradiation, even 87.5 mg L-1 BTA could be completely removed, and the irradiation conformed perfectly to the pseudo first-order kinetics model. The effects of solution pH, inorganic anions (CO32-, HCO3-, NO3-, NO2-, SO42-, SO32-, Cl-), and gas atmosphere were all explored. And results indicated that oxidative hydroxyl radicals played critical role in BTA irradiation. Additionally, presence of H2O2 and K2S2O8 promoted significantly not only degradation extent but also mineralization efficiency of BTA due to they both augmented the generation of oxidative free radicals. Moreover, by combining theoretical calculations with experimental results, it could be inferred that degradation of BTA was mainly carried out by the benzene ring-opening. Further toxicity evaluation proved that as irradiation proceeded, the toxicity alleviated. Taken together, there were various indications that BTA could be effectively eliminated by electron beam irradiation in aquatic environments.
Collapse
Affiliation(s)
- Wentao Yin
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Zhuhao Huo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Qi Zou
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
22
|
Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021; 22:ijms22126634. [PMID: 34205712 PMCID: PMC8235559 DOI: 10.3390/ijms22126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
23
|
Zhu J, Liu K, Pei L, Hu X, Cai Y, Ding J, Li D, Han X, Wu J. The mechanisms of mitochondrial dysfunction and glucose intake decrease induced by Microcystin-LR in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111931. [PMID: 33508714 DOI: 10.1016/j.ecoenv.2021.111931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a cyclic heptapeptide; it is an intracellular toxin released by cyanobacteria that exhibits strong reproductive toxicity. Previous studies have demonstrated that MC-LR induces oxidative stress in granulosa cells by damaging the mitochondria, which eventually leads to follicle atresia and female subfertility. In the present study, granulosa cells were exposed to 0, 0.01, 0.1 and 1 μM MC-LR. After 24 h, we observed changes in mitochondrial cristae morphology and dynamics by analyzing the results of mitochondrial transmission electron microscopy and detecting the expression of DRP1. We also evaluated glucose intake using biochemical assays and expression of glucose transport related proteins. MC-LR exposure resulted in mitochondrial fragmentation and glucose intake decrease in granulosa cells, as shown by increasing mitochondrial fission via dynamin-related protein 1 (DRP1) upregulation and decreasing glucose transporter 1 and 4 (GLUT1 and GLUT4). Furthermore, the expression levels of forkhead box protein M1 (FOXM1) significantly increased due to the overproduction of reactive oxygen species (ROS) after MC-LR exposure. Our results proved that MC-LR exposure causes mitochondrial fragmentation and glucose intake decrease in granulosa cells, which provides new insights to study the molecular mechanism of female reproductive toxicity induced by MC-LR.
Collapse
Affiliation(s)
- Jinling Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Kunyang Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ligang Pei
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China
| | - Xinyue Hu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuchen Cai
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|