1
|
Xu H, Mao X, Zhang S, Ren J, Jiang S, Cai L, Miao X, Tao Y, Peng C, Lv M, Li Y. Perfluorooctanoic acid triggers premature ovarian insufficiency by impairing NAD+ synthesis and mitochondrial function in adult zebrafish. Toxicol Sci 2024; 201:118-128. [PMID: 38830045 DOI: 10.1093/toxsci/kfae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
High-dose perfluorooctanoic acid (PFOA) impairs oocyte maturation and offspring quality. However, the physiological concentrations of PFOA in follicular fluids of patients with premature ovarian insufficiency (POI) were detected at lower levels, thus the relationship between physiological PFOA and reproductive disorders remains elusive. Here, we investigated whether physiological PFOA exposure affects gonad function in adult zebrafish. Physiological PFOA exposure resulted in POI-like phenotypes in adult females, which exhibited decreased spawning frequency, reduced number of ovulated eggs, abnormal gonadal index, and aberrant embryonic mortality. Meanwhile, oocytes from PFOA-exposed zebrafish showed mitochondrial disintegration and diminished mitochondrial membrane potential. Unlike the high-dose treated oocytes exhibiting high reactive oxygen species (ROS) levels and excessive apoptosis, physiological PFOA reduced the ROS levels and did not trigger apoptosis. Interestingly, physiological PFOA exposure would not affect testis function, indicating specific toxicity in females. Mechanistically, PFOA suppressed the NAD+ biosynthesis and impaired mitochondrial function in oocytes, thus disrupting oocyte maturation and ovarian fertility. Nicotinamide mononucleotide (NMN), a precursor for NAD+ biosynthesis, alleviated the PFOA-induced toxic effects in oocytes and improved the oocyte maturation and fertility upon PFOA exposure. Our findings discover new insights into PFOA-induced reproductive toxicity and provide NMN as a potential drug for POI therapy.
Collapse
Affiliation(s)
- Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, China
| | - Siling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jie Ren
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shanwen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lijuan Cai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaomin Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yixi Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Fisheries Development Department of Agriculture and Rural Committee of Nanchuan District, Chongqing 408400, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2024:S1043-2760(24)00202-9. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
3
|
Huang G, Li J, Zhou L, Duan T, Deng L, Yang P, Gong Y. Perfluoroalkyl and Polyfluoroalkyl Substances in Relation to the Participant-Reported Total Pregnancy and Live Birth Numbers among Reproductive-Aged Women in the United States. TOXICS 2024; 12:613. [PMID: 39195715 PMCID: PMC11359323 DOI: 10.3390/toxics12080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), widely utilized in various industries, may pose potential reproductive well-being risks. However, the research on the impact of PFAS exposures on pregnancy and live birth rates remains scarce. To address this gap, we conducted a cross-sectional study using the data from the United States National Health and Nutrition Examination Survey (NHANES) collected between 2013 and 2018. We focused on six PFAS compounds measured in the serum of women aged 20 to 50 years, employing the Poisson regression, Quantile G-composition (Qgcomp), and Weighted Quantile Sum (WQS) regression models. Adjusting for age, racial/ethnic origin, educational level, marital status, family income, body mass index (BMI), menarche age, birth control pill use, and other female hormone consumption, the Poisson regression identified significant negative associations between the individual PFAS exposures and pregnancy and live birth numbers (p < 0.05 for all 24 null hypotheses for which the slope of the trend line is zero). The Qgcomp analysis indicated that a one-quartile increase in the mixed PFAS exposures was associated with reductions of 0.09 (95% CI: -0.15, -0.03) in the pregnancy numbers and 0.12 (95% CI: -0.19, -0.05) in the live birth numbers. Similarly, the WQS analysis revealed that a unit increase in the WQS index corresponded to decreases of 0.14 (95% CI: -0.20, -0.07) in the pregnancy numbers and 0.14 (95% CI: -0.21, -0.06) in the live birth numbers. Among the six specific PFAS compounds we studied, perfluorononanoic acid (PFNA) had the most negative association with the pregnancy and live birth numbers. In conclusion, our findings suggest that PFAS exposures are associated with lower pregnancy and live birth numbers among women of reproductive age.
Collapse
Affiliation(s)
- Guangtong Huang
- School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Jiehao Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lixin Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Huang SN, Hu YH, Xu TT, Luan YL, Zeng LX, Zhang ZF, Guo Y. Exposure to per- and polyfluoroalkyl substances in lung cancer patients and their associations with clinical health indicators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123995. [PMID: 38636840 DOI: 10.1016/j.envpol.2024.123995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have potential carcinogenicity, immunotoxicity, and hepatotoxicity. Research has been conducted on PFAS exposure in people to discuss their potential health effects, excluding lung cancer. In this study, we recruited participants (n = 282) with lung cancer from Heilongjiang Province, northeast China. The PFAS concentrations were measured in their serum to fill the data gap of exposure, and relationships were explored in levels between PFASs and clinical indicators of tumor, immune and liver function. Ten PFASs were found in over 80 % of samples and their total concentrations were 5.27-152 ng/mL, with the highest level for perfluorooctanesulfonate (median: 12.4 ng/mL). Long-chain PFASs were the main congeners and their median concentration (20.5 ng/mL) was nearly three times to that of short-chain PFASs (7.61 ng/mL). Significantly higher concentrations of perfluorobutanoic acid, perfluorononanoic acid and perfluorohexanesulfonate were found in males than in females (p < 0.05). Serum levels of neuro-specific enolase were positively associated with perfluoropentanoic acid in all participants and were negatively associated with perfluorononanesulfonate in females (p < 0.05, multiple linear regression models). Exposure to PFAS mixture was significantly positively associated with the lymphocytic absolute value (difference: 0.224, 95% CI: 0.018, 0.470; p < 0.05, quantile g-computation models) and serum total bilirubin (difference: 2.177, 95% CI: 0.0335, 4.33; p < 0.05). Moreover, PFAS exposure can affect γ-glutamyl transpeptidase through several immune markers (p < 0.05, mediating test). Our results suggest that exposure to certain PFASs could interfere with clinical indicators in lung cancer patients. To our knowledge, this is the first study to detect serum PFAS occurrence and check their associations with clinical indicators in lung cancer patients.
Collapse
Affiliation(s)
- Si-Nan Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Ying-Hua Hu
- International Joint Research Center for Persistent Toxic Substances, Heilongjiang Institute of Labor Hygiene and Occupational Diseases, The Second Hospital of Heilongjiang Province, Harbin, 100028, China
| | - Ting-Ting Xu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Yu-Ling Luan
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Li-Xi Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ying Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Eze CG, Okeke ES, Nwankwo CE, Nyaruaba R, Anand U, Okoro OJ, Bontempi E. Emerging contaminants in food matrices: An overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicol Rep 2024; 12:436-447. [PMID: 38645434 PMCID: PMC11033125 DOI: 10.1016/j.toxrep.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in industrial and consumer applications for ages. The pervasive and persistent nature of PFAS in the environment is a universal concern due to public health risks. Experts acknowledge that exposure to high levels of certain PFAS have consequences, including reduced vaccine efficacy, elevated cholesterol, and increased risk of high blood pressure. While considerable research has been conducted to investigate the presence of PFAS in the environment, the pathways for human exposure through food and food packaging/contact materials (FCM) remain unclear. In this review, we present an exhaustive overview of dietary exposure pathways to PFAS. Also, the mechanism of PFAS migration from FCMs into food and the occurrence of PFAS in certain foods were considered. Further, we present the analytical techniques for PFAS in food and food matrices as well as exposure pathways and human health impacts. Further, recent regulatory actions working to set standards and guidelines for PFAS in food packaging materials were highlighted. Alternative materials being developed and evaluated for their safety and efficacy in food contact applications, offering promising alternatives to PFAS were also considered. Finally, we reported on general considerations and perspectives presently considered.
Collapse
Affiliation(s)
- Chukwuebuka Gabriel Eze
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Biological Environmental and Rural Science Aberystwyth University, Wales, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Uttpal Anand
- CytoGene Research & Development LLP, K-51, UPSIDA Industrial Area, Kursi Road (Lucknow), Dist.– Barabanki, 225001, Uttar Pradesh, India
| | - Onyekwere Joseph Okoro
- Department of Zoology and Environment Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Elza Bontempi
- INSTM and INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, Brescia 25123, Italy
| |
Collapse
|
6
|
Li S, Wang C, Yang C, Chen Y, Cheng Q, Liu J, Zhang Y, Jin L, Li Z, Ren A, Wang L. Prenatal exposure to poly/perfluoroalkyl substances and risk for congenital heart disease in offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134008. [PMID: 38503211 DOI: 10.1016/j.jhazmat.2024.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent congenital malformation worldwide, and the association between per- and polyfluoroalkyl substances (PFASs) exposure and CHD in population has only received limited study. Therefore, we conducted a multicenter case-control study to explore the associations between prenatal exposure to individual PFASs, and also a PFAS mixture, and CHD risk, including 185 CHDs and 247 controls in China from 2016 to 2021. Thirteen PFASs in maternal plasma were quantified using liquid chromatography-tandem mass spectrometry. Logistic regression and two multipollutant models (Bayesian kernel machine regression [BKMR] and quantile g-computation [qgcomp]) were used to assess the potential associations between any individual PFAS, and also a PFAS mixture, and CHD risk. After adjusting for potential confounders, logistic regression indicated significant associations between elevated levels of perfluorononanoic acid (odds ratio [OR]= 1.30, 95% confidence intervals [CI]: 1.07-1.58), perfluorodecanoic acid (OR=2.07, 95%CI: 1.32-3.26), and perfluoroundecanoic acid (OR=2.86, 95%CI:1.45-5.65) and CHD risk. The BKMR model and qgcomp approach identified that a significant positive association between the PFAS mixture and risk for CHD. These findings provide essential evidence that there is indeed a health crisis associated with PFASs and that it is linked to CHD.
Collapse
Affiliation(s)
- Sainan Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Yang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yongyan Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Qianhui Cheng
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Klingelhöfer D, Braun M, Groneberg DA, Brüggmann D. The "forever" per- and polyfluoroalkyl substances (PFAS): A critical accounting of global research on a major threat under changing regulations. CHEMOSPHERE 2024; 354:141694. [PMID: 38484998 DOI: 10.1016/j.chemosphere.2024.141694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The European Commission's current efforts to launch the largest proposal to restrict per- and polyfluoroalkyl substances (PFAS) in history reflect the dire global plight of PFAS accumulation in the environment and their health impacts. While there are existing studies on PFAS research, there is a lack of comprehensive analysis that both covers the entire research period and provides deep insights into global research patterns, incentives, and barriers based on various parameters. We have been able to demonstrate the increasing interest in PFAS research, although citation numbers are declining prematurely. Policy regulations based on proving and establishing the toxicity of PFASs have stimulated research in developed countries and vice versa, with increasing emphasis on ecological aspects. China, in particular, is investing increasingly in PFAS research, but without defining or implementing regulations - with devastating effects. The separation of industrial and environmental research interests is clear, with little involvement of developing countries, even though their exposure to PFAS is devastating. It, therefore, requires increased globally networked and multidisciplinary approaches to address PFAS contamination challenges.
Collapse
Affiliation(s)
- Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Dörthe Brüggmann
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
8
|
Hansen S, Xu S, Huber S, Alvarez MV, Odland JØ. Profile of per- and polyfluoroalkyl substances, source appointment, and determinants in Argentinean postpartum women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170096. [PMID: 38224894 DOI: 10.1016/j.scitotenv.2024.170096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals with potential adverse health effects. Information concerning PFAS concentrations in relation to pregnancy is scarce in South America and non-existent in Argentina. AIM We aimed to investigate an extended maternal PFAS profile herein serum concentrations in a regional and global view, source appointment, and determinants in Argentinean women. METHODS A cross-sectional study with a sampling period from 2011 to 2012 included 689 women from Ushuaia and Salta in Argentina. Serum samples collected two days postpartum were analyzed by ultra-high pressure liquid chromatography coupled to electrospray negative ionisation tandem-quadrupole mass-spectrometry. Principal Component Analysis (PCA) following absolute principal component score-multiple linear regression (APCS-MLR) was used for PFAS source appointments. Determinants of PFAS were explored through a MLR approach. A review of previous studies within the same period was conducted to compare with present levels. RESULTS Argentinean PFAS concentrations were the lowest worldwide, with PFOS (0.74 ng/mL) and PFOA (0.11 ng/mL) as the dominant substances. Detection frequencies largely aligned with the compared studies, indicating the worldwide PFAS distribution considering the restrictions. The PCA revealed region-specific loading patterns of two component groups of PFAS, a mixture of replaced and legacy substances in Ushuaia and long-chain in Salta. This might relate to a mix of non-diet and diet exposure in Ushuaia and diet in Salta. Region, age, lactation, parity, household members, migration, bottled water, and freshwater fish were among the determinants of various PFAS. CONCLUSION This is the first study to monitor human PFAS exposure in Argentina. Maternal PFAS concentrations were the lowest observed worldwide in the same period. Exposure contributions are suggested to be affected by restrictions and substitutions. Given the limited population-based studies and the emergence of PFAS, it is essential to conduct further monitoring of PFAS in Argentina and South America.
Collapse
Affiliation(s)
- Solrunn Hansen
- Department of Health and Care Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Shanshan Xu
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5009 Bergen, Norway.
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Department of General Hygiene I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia; School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
9
|
Du Y, Chen C, Zhou G, Cai Z, Man Q, Liu B, Wang WC. Perfluorooctanoic acid disrupts thyroid-specific genes expression and regulation via the TSH-TSHR signaling pathway in thyroid cells. ENVIRONMENTAL RESEARCH 2023; 239:117372. [PMID: 37827365 DOI: 10.1016/j.envres.2023.117372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Chaojie Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
10
|
Huang S, Li X, Deng L, Xie J, Huang G, Zeng C, Wu N, Zhu S, Liu C, Mei H, Xiao H, Chen D, Yang P. Exposure to per- and polyfluoroalkyl substances in women with twin pregnancies: Patterns and variability, transplacental transfer, and predictors. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132432. [PMID: 37688869 DOI: 10.1016/j.jhazmat.2023.132432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
The extensive exposure to per- and polyfluoroalkyl substances (PFASs) has raised public health concerns. The issue of PFAS exposures in women with twin pregnancies remains unresolved. To determine exposure profiles, the transplacental transfer efficiencies (TTEs) of PFASs and predictors were estimated. We found that serum PFASs were widely detected, with detection rates of over 50% for 12 PFASs in maternal serum throughout pregnancy. The majority of PFAS levels exhibited fair to good reproducibility (ICCs > 0.40). Moderate to low correlations were observed for most PFASs between twin cord serum and maternal serum at three trimesters (rs = 0.13-0.77, p values < 0.01). We first presented a U-shaped trend for TTEs with increasing chain length for perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in twins, even in twin sex subgroups. Further, we found that PC4 and PC5 (indicators of exposure to PFHxS and 6:2 Cl-PFESA) were positively associated with age (β = 0.85, 1.30, and 1.36, respectively). Our findings suggested that there is moderate variability among certain PFASs and that these PFASs have the ability to cross the placental barrier. Exposure patterns were found to be associated with maternal age.
Collapse
Affiliation(s)
- Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Chenyan Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Nanxin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
11
|
Zhang M, Aris IM, Lin PD, Rifas‐Shiman SL, Brady TM, James‐Todd T, Oken E, Hivert M. Prenatal and Childhood Per- and Polyfluoroalkyl Substance (PFAS) Exposures and Blood Pressure Trajectories From Birth to Late Adolescence in a Prospective US Prebirth Cohort. J Am Heart Assoc 2023; 12:e030760. [PMID: 37642023 PMCID: PMC10547341 DOI: 10.1161/jaha.123.030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Background Evidence is limited regarding the associations of prenatal and childhood per- and polyfluoroalkyl substance (PFAS) exposures with blood pressure (BP) trajectories in children. Methods and Results Participants are from Project Viva, a prospective prebirth cohort in eastern Massachusetts. We measured PFAS in early-pregnancy maternal (median, 9.6 weeks) and midchildhood (median, 7.7 years) plasma samples. We conducted standardized BP measurements at 6 research visits: birth, infancy (median, 6.3 months), early childhood (median, 3.2 years), midchildhood (median, 7.7 years), early adolescence (median, 12.9 years), and late adolescence (median, 17.5 years). We used linear regression to examine associations of individual PFASs with BP at each visit, linear spline mixed-effects regression to model BP trajectories, and a mixture approach to estimate PFAS exposure burden. We included 9036 BP measures from 1506 participants. We observed associations between particular individual prenatal PFASs and child BP at specific time points, for example, prenatal 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EtFOSAA) and 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) with higher systolic BP at birth; prenatal perfluorooctane sulfonate (PFOS) and EtFOSAA with lower diastolic BP in infancy; and prenatal PFOS, perfluorooctanoate (PFOA), and EtFOSAA with higher systolic BP at midchildhood. No prenatal or childhood PFAS was consistently associated with BP across all visits. Diastolic BP trajectories from 0 to 20 years differed slightly by prenatal PFOA, perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA) (P values 0.01-0.09). Diastolic BP trajectories from 6 to 20 years differed slightly by midchildhood PFHxS and MeFOSAA (P-values 0.03-0.08). Prenatal or childhood PFAS mixture burden scores were not associated with BP. Conclusions We found associations of prenatal and childhood PFAS exposures with BP at specific time points between birth and late adolescence but no consistent associations across all time points or PFAS types.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Izzuddin M. Aris
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Pi‐I Debby Lin
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Sheryl L. Rifas‐Shiman
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
| | - Tammy M. Brady
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tamarra James‐Todd
- Departments of Environmental Health and EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Emily Oken
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Marie‐France Hivert
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMAUSA
- Diabetes UnitMassachusetts General HospitalBostonMAUSA
| |
Collapse
|
12
|
Xiao F, An Z, Lv J, Sun X, Sun H, Liu Y, Liu X, Guo H. Association between per- and polyfluoroalkyl substances and risk of hypertension: a systematic review and meta-analysis. Front Public Health 2023; 11:1173101. [PMID: 37655293 PMCID: PMC10466234 DOI: 10.3389/fpubh.2023.1173101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/27/2023] [Indexed: 09/02/2023] Open
Abstract
Background Existing evidence indicates that exposure to per- and polyfluoroalkyl substances (PFASs) may increase the risk of hypertension, but the findings are inconsistent. Therefore, we aimed to explore the relationship between PFASs and hypertension through this systematic review and meta-analysis. Methods We searched PubMed, Embase, and the Web of Science databases for articles published in English that examined the relationship between PFASs and hypertension before 13 August 2022. The random effects model was used to aggregate the evaluation using Stata 15.0 for Windows. We also conducted subgroup analyses by region and hypertension definition. In addition, a sensitivity analysis was carried out to determine the robustness of the findings. Results The meta-analysis comprised 15 studies in total with 69,949 individuals. The risk of hypertension was substantially and positively correlated with exposure to perfluorooctane sulfonate (PFOS) (OR = 1.31, 95% CI: 1.14, 1.51), perfluorooctanoic acid (PFOA) (OR = 1.16, 95% CI: 1.07, 1.26), and perfluorohexane sulfonate (PFHxS) (OR = 1.04, 95% CI: 1.00, 1.09). However, perfluorononanoic acid (PFNA) exposure and hypertension were not significantly associated (OR = 1.08, 95% CI: 0.99, 1.17). Conclusion We evaluated the link between PFASs exposure and hypertension and discovered that higher levels of PFOS, PFOA, and PFHxS were correlated with an increased risk of hypertension. However, further high-quality population-based and pathophysiological investigations are required to shed light on the possible mechanism and demonstrate causation because of the considerable variability. Systematic review registration https://www.crd.york.ac.uk/prospero/ PROSPERO, registration number: CRD 42022358142.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyi Sun
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Heming Sun
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xuehui Liu
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
13
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
14
|
Ji D, Pan Y, Qiu X, Gong J, Li X, Niu C, Yao J, Luo S, Zhang Z, Wang Q, Dai J, Wei Y. Unveiling Distribution of Per- and Polyfluoroalkyl Substances in Matched Placenta-Serum Tetrads: Novel Implications for Birth Outcome Mediated by Placental Vascular Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5782-5793. [PMID: 36988553 DOI: 10.1021/acs.est.2c09184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The placenta is pivotal for fetal development and maternal-fetal transfer of many substances, including per- and polyfluoroalkyl substances (PFASs). However, the intraplacental distribution of PFASs and their effects on placental vascular function remain unclear. In this study, 302 tetrads of matched subchorionic placenta (fetal-side), parabasal placenta (maternal-side), cord serum, and maternal serum samples were collected from Guangzhou, China. Eighteen emerging and legacy PFASs and five placental vascular biomarkers were measured. Results showed that higher levels of perfluorooctanoic (PFOA), perfluorooctane sulfonic acid (PFOS), and chlorinated polyfluorinated ether sulfonic acids (Cl-PFESAs) were detected in subchorionic placenta compared to parabasal placenta. There were significant associations of PFASs in the subchorionic placenta, but not in the serum, with placental vascular biomarkers (up to 32.5%) and lower birth size. Birth weight was negatively associated with PFOA (β: -103.8, 95% CI: -186.3 and -21.32) and 6:2 Cl-PFESA (β: -80.04, 95% CI: -139.5 and -20.61), primarily in subchorionic placenta. Mediation effects of altered placental angiopoietin-2 and vascular endothelial growth factor receptor-2 were evidenced on associations of adverse birth outcomes with intraplacental PFOS and 8:2 Cl-PFESA, explaining 9.5%-32.5% of the total effect. To the best of our knowledge, this study is the first to report on differential intraplacental distribution of PFASs and placental vascular effects mediating adverse birth outcomes and provides novel insights into the placental plate-specific measurement in PFAS-associated health risk assessment.
Collapse
Affiliation(s)
- Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuelin Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjin Gong
- Department of Obstetrics and Gynecology, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou 511402, China
| | - Xianjie Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Conying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shili Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Song X, Wu J, Ji H, Liang H, Chen Y, Yang L, Yuan W, Tu X, Miao M. Maternal per- and poly-fluoroalkyl substances exposure and child adiposity measures: A birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114684. [PMID: 36857916 DOI: 10.1016/j.ecoenv.2023.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Maternal exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy may have a programming effect on the physical development of the offspring. However, the findings of the association between PFAS and the physical development of offspring were inconsistent, and the overall effects of the PFAS mixture were unclear. In this study, we examined the associations between maternal PFAS exposure and offspring adiposity during the first two years of life. A total of 937 mother-child pairs from the Jiashan Birth Cohort Study were investigated. Thirteen PFASs were analyzed in maternal blood samples. Child weight and length were measured at birth, 1, 3, 6, 8, 12, and 24 months, and the ponderal index (PI) and weight-for-age z-scores (WAZ) were calculated. Longitudinal associations of PFAS concentrations (by quartile) with repeated data of PI and WAZ were examined using linear mixed model, and the overall effect of the PFAS mixture on adiposity measures was evaluated using quantile g-computation (QGC). Maternal PFAS exposure was associated with increased PI in both the linear mixed model and the QGC model. Among the PFAS examined, the associations between maternal PFTrDA exposure and PI were the strongest. Maternal PFAS and WAZ showed similar patterns of association. In the longitudinal cohort study, we found that adiposity in young children is increased by maternal PFAS exposure. The associations between maternal PFASs concentrations and child adiposity may be chemical-specific.
Collapse
Affiliation(s)
- Xiuxia Song
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Jiajia Wu
- The First People's Hospital of Jianshan, Jiaxing, Zhejiang Province, China
| | - Honglei Ji
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Yao Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Lan Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Xiaowen Tu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China.
| |
Collapse
|
16
|
Zhou J, Yan J, Qi X, Wang M, Yang M. Development of a new matrix-certified reference material for accurate measurement of PFOA and PFOS in oyster meat powder. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
17
|
Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, Zhang Y. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. ENVIRONMENT INTERNATIONAL 2023; 173:107850. [PMID: 36857906 DOI: 10.1016/j.envint.2023.107850] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenxuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiufeng Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Liang Y, Lu J, Yi W, Cai M, Shi W, Li B, Zhang Z, Jiang F. 1α,25-dihydroxyvitamin D 3 supplementation alleviates perfluorooctanesulfonate acid-induced reproductive injury in male mice: Modulation of Nrf2 mediated oxidative stress response. ENVIRONMENTAL TOXICOLOGY 2023; 38:322-331. [PMID: 36321694 DOI: 10.1002/tox.23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanesulfonate acid (PFOS) is a typical persistent organic pollutant that widely exists in the environment. To clarify the toxic effects and mechanisms of PFOS and to find effective intervention strategies have been attracted global attention. Here, we investigated the effects of PFOS on the male reproductive system and explored the potential protective role of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ). Our results showed that 1α,25(OH)2 D3 intervention significantly improved PFOS-induced sperm quality decline and testicular damage. Moreover, 1α,25(OH)2 D3 aggrandized the total antioxidant capacity. Furthermore, after PFOS exposure, the transcription factor nuclear factor erythroid-related factor 2 (Nrf2) was adaptively increased together with its target genes, such as HO-1, NQO1, and SOD2. Meanwhile, 1α,25(OH)2 D3 ameliorated PFOS-induced augment of Nrf2 and target genes. These findings indicated that 1α,25(OH)2 D3 might attenuate PFOS-induced reproductive injury in male mice via Nrf2-mediated oxidative stress.
Collapse
Affiliation(s)
- Yongchao Liang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jingjing Lu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wenjie Yi
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ming Cai
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Shen H, Gao M, Li Q, Sun H, Jiang Y, Liu L, Wu J, Yu X, Jia T, Xin Y, Han S, Wang Y, Zhang X. Effect of PFOA exposure on diminished ovarian reserve and its metabolism. Reprod Biol Endocrinol 2023; 21:16. [PMID: 36726108 PMCID: PMC9890749 DOI: 10.1186/s12958-023-01056-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
Owing to its difficulty in degrading and ease of accumulation in the body, perfluorooctanoic acid (PFOA) has a detrimental effect on reproduction. This study aimed to examine the effect of PFOA concentration in follicular fluid during ovulation stimulation on embryo quality and the impact of PFOA exposure on the metabolic components of follicular fluid. This was a single-center prospective study that included 25 patients with diminished ovarian reserve (DOR), 25 with normal ovarian reserve (NOR), and 25 with polycystic ovary syndrome (PCOS). Follicular fluid samples were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry. We demonstrated that the PFOA levels of follicular fluid in the DOR group were higher than those in the NOR group and PCOS group (P < 0.05). PFOA concentration in the PCOS group was negatively correlated with high-quality embryos (P < 0.05). To gain more insight into the impact of PFOA on the metabolic composition of follicular fluid, we classified the DOR group based on the PFOA concentration, for which metabolomic analysis was performed. In the high-concentration PFOA group, there was an increase and a decrease in three and nine metabolites, respectively, compared to that in the low-concentration group. These results suggest that PFOA may alter the metabolic composition of follicular fluid, thus, affecting ovarian reserve function.
Collapse
Affiliation(s)
- Haofei Shen
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Lanzhou, 730030, Gansu, China
| | - Min Gao
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Qiuyuan Li
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Huipeng Sun
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingdi Jiang
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Lihong Liu
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Jingyuan Wu
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Lanzhou, 730030, Gansu, China
| | - Xiao Yu
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Tianyu Jia
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Yongan Xin
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China.
| | - Yiqing Wang
- Lanzhou University, Lanzhou, 730000, Gansu, China.
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China.
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Lanzhou, 730030, Gansu, China.
| | - Xuehong Zhang
- Lanzhou University, Lanzhou, 730000, Gansu, China.
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
20
|
Wang Z, Luo J, Zhang Y, Li J, Zhang J, Tian Y, Gao Y. High maternal glucose exacerbates the association between prenatal per- and polyfluoroalkyl substance exposure and reduced birth weight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160130. [PMID: 36372179 DOI: 10.1016/j.scitotenv.2022.160130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) exposure has been associated with reduced birth weight. However, the association may be complicated by glucose status due to PFAS impact on fetal growth and placental transport. OBJECTIVES To examine whether maternal glucose status modifies the association between prenatal PFAS exposure and birth weight z-score. METHODS We analyzed data of 1405 mother-child pairs from the prospective Shanghai Birth Cohort. Plasma concentrations of six PFAS were quantified in the first trimester. Fasting plasma glucose (FPG) was collected at 24-28 gestation weeks. A range of FPG cutoffs (4.9-5.4 mmol/L) covering current recommendations for gestational diabetes mellitus were used to define high and low FPG groups. Association between PFAS concentration and birth weight z-score was evaluated using multivariate linear regression in two FPG groups respectively, and the dose-response relationship was estimated with cutoffs ranging from low to high. We then used propensity score to counterbalance the effects of different PFAS concentrations between the high and low FPG groups, and run the regression again. RESULTS A doubling increase in concentrations of several PFAS was inversely associated with birth weight z-score. The association was more evident in high FPG groups and the magnitudes intensified when FPG cutoff increased. The strongest association was observed for PFOA, with the magnitude increased from -0.34 (95 % CI: -0.66, -0.03) for 5.0 mmol/L cutoff, to -0.41 (95 % CI: -0.77, -0.05) for 5.1 mmol/L cutoff, and further to -0.51 (95 % CI: -0.98, -0.03) for 5.3 mmol/L. Propensity score matching yielded similar results. CONCLUSIONS High maternal glucose level may increase the risk of reduced birth weight z-score related to prenatal PFAS exposure. Moreover, exploring the effects with different FPG cutoffs may contribute to providing intervention strategies for pregnant women with high PFAS exposure.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Li
- Department of Clinical Medicine, Department of Clinical Epidemiology, Aarhus University, Denmark
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Bloom MS, Varde M, Newman RB. Environmental toxicants and placental function. Best Pract Res Clin Obstet Gynaecol 2022; 85:105-120. [PMID: 36274037 PMCID: PMC11184919 DOI: 10.1016/j.bpobgyn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a temporary endocrine organ that facilitates gas, nutrient, and waste exchange between maternal and fetal compartments, partially shielding the fetus from potentially hazardous environmental toxicants. However, rather than being "opaque", the placenta is translucent or even transparent to some potential fetal developmental hazards, including toxic trace elements (TEs), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and environmental phenols (EPs) to which women with pregnancy are frequently exposed. These agents are both passively and actively transferred to the fetal compartment, where endocrine disruption, oxidative stress, and epigenetic changes may occur. These pathologies may directly impact the fetus or deposit and accumulate in the placenta to indirectly impact fetal development. Thus, it is critical for clinicians to understand the potential placental toxicity and transfer of widely distributed environmental agents ubiquitous during pregnancy. With such knowledge, targeted interventions and clinical recommendations can be developed to limit those risks.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Meghana Varde
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Rm 634, Clinical Science Bldg., 96 Jonathan Lucas St., Charleston, SC 29425, USA.
| |
Collapse
|
22
|
Tansel B. PFAS risk propagation terminology in spatial and temporal scales: Risk intensification, risk attenuation, and risk amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155503. [PMID: 35483458 DOI: 10.1016/j.scitotenv.2022.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Poly- and per fluorinated alkyl substances (PFAS) are man-made chemicals that are used in many industrial applications to improve performance and durability of products. The CF bond is one of the strongest bonds in organic chemistry which makes PFAS highly persistent in the environment. Therefore, PFAS levels have increased in different environmental compartments (air, water, soil) at global scale over time since the early 1950s. Terminology used for describing potential risks and those used in risk communication can be confusing as different disciplines use risk concepts and vocabulary that are different from those used for exposure and/or health risk assessment for hazardous materials. For example, terms such as emergent risk, emerging risk, risk intensification, risk awareness, risk perception, risk attenuation, risk amplification, and risk absorption are often misused or misinterpreted, especially in describing and communicating risks associated with PFAS in the environment or PFAS exposure. In addition, appropriate risk terms associated with psychological, social, institutional, and cultural elements are often misused. Here, appropriate risk terminology for describing and quantifying risks and health risks in reference to PFAS exposure and PFAS related risk propagation in spatial and temporal scales are explained with examples.
Collapse
Affiliation(s)
- Berrin Tansel
- Florida International University, Civil and Environmental Engineering Department, FL, USA.
| |
Collapse
|
23
|
Liu S, Yan L, Zhang Y, Junaid M, Wang J. Toxicological effects of polystyrene nanoplastics and perfluorooctanoic acid to Gambusia affinis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1100-1112. [PMID: 35835386 DOI: 10.1016/j.fsi.2022.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution has attracted huge attention from public and scientific community in recent years. In the environment, nanoplastics (NPs, <100 nm) can interact with persistent organic pollutants (POPs) such as perfluorooctanoic acid (PFOA) and may exacerbate associated toxic impacts. The present study aims to explore the single and combined ecotoxicological effects of PFOA and polystyrene nanoplastics (PS-NPs, 80 nm) on the PI3K/AKT3 signaling pathway using a freshwater fish model Gambusia affinis. Fish were exposed individually to PS-NPs (200 μg/L) and PFOA (50, 500, 5000 μg/L) and their chemical mixtures for 96 h. Our results showed that the co-exposure significantly altered the mRNA relative expression of PI3K, AKT3, IKKβ and IL-1β, compared to corresponding single exposure and control groups, indicating that the PFOA-NP co-exposure can activate the PI3K/AKT3 signaling pathway. The bioinformatic analyses showed that AKT3 had more probes and exhibited a significantly sensitive correlation with DNA methylation, compared to other genes (PIK3CA, IKBKB, and IL1B). Further, the mRNA expressions of PIK3CA, AKT3, and IKBKB had a significant correlation with copy number variation (CNV) in human liver hepatocellular carcinoma (LIHC). And PIK3CA had the highest mutation rate among other genes of interest for LIHC. Moreover, AKT3 showed a relatively lower expression in TAM and CAF cells, compared to PIK3CA, IKBKB, and IL1B. Besides, hsa-mir-155-5p was closely correlated with AKT3, PIK3CA, IKBKB, and IL1B. In summary, these results provide evidence that NPs could enhance the carcinogenic effects of POPs on aquatic organisms and highlight possible targets of LIHC induced by PFOA-NP co-exposure.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanling Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China.
| |
Collapse
|
24
|
Liu L, Yan P, Lv J, Liu X, Zhao J, Guo J, Liu G, Bian X, Gao L, Yan W, Huang Q, Chen G. Optimization and application of a method to determine 24 perfluorinated compounds in umbilical cord serum by using liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123365. [PMID: 35878431 DOI: 10.1016/j.jchromb.2022.123365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Perfluorinated compounds (PFCs) are a group of widely used synthetic chemicals. Owing to their unique chemical properties, PFCs can accumulate in the environment and living organisms. In vitro and in vivo studies have demonstrated the adverse effects of exposure to PFCs, resulting in increased concern. Therefore, a fast, reliable analytical method is crucial for human biomonitoring and health risk assessment. This study used two isotope internal standards to identify and quantify 24 PFCs in umbilical cord serum samples, based on classical liquid-liquid extraction (LLE) with liquid chromatography tandem mass spectrometry (LC-MS/MS). According to our review of the literature, this study is the first to determine the TFHSA, S4hPDS, S4hPOS, S4hPHS, SPHeS, SPNoS, and SPPeS by using this developed method. The average spiked recoveries of 24 PFCs were acceptable, ranging from approximately 64.0% to 124%; RSDs ranged from 0.74% to 11.2%; LOD and LOQ ranged from 0.013 to 0.248 μg/L and from 0.030 to 0.747 μg/L, respectively. This method was applied to measure the PFCs in umbilical cord serum samples; 24 PFCs were detected in the investigated samples, which are comparable to those reported in the literature. TFHSA, S4hPDS, S4hPOS, S4hPHS, SPHeS, SPNoS, and SPPeS were also detected in the samples, which should be investigated in further research. The sensitivity, accuracy, and precision of the developed method are sufficient for its application in large-scale biomonitoring studies.
Collapse
Affiliation(s)
- Liangpo Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Peixia Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jifang Lv
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xuan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Junxia Zhao
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Jianquan Guo
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guiying Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xia Bian
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Linying Gao
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wei Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Guixia Chen
- Department of Children Healthcare, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, PR China.
| |
Collapse
|
25
|
Liu M, Zhang G, Meng L, Han X, Li Y, Shi Y, Li A, Turyk ME, Zhang Q, Jiang G. Associations between Novel and Legacy Per- and Polyfluoroalkyl Substances in Human Serum and Thyroid Cancer: A Case and Healthy Population in Shandong Province, East China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6144-6151. [PMID: 34618433 DOI: 10.1021/acs.est.1c02850] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely detected in the environment and may cause adverse human health effects after exposure. Studies on the effect of PFASs on some health end points, including cancer, are still limited and show inconsistent results. In this research, 319 participants were recruited from Shandong Province, East China, consisting of patients with thyroid cancer and healthy controls. Seven novel and legacy PFASs were frequently detected (detection rate > 75%) in the serum samples of the participants. The concentrations of perfluorooctanoic acid (PFOA) were the highest in the case and control groups. Males showed significantly higher concentrations of PFASs than females. Exposure to PFASs was inversely associated with the risk of thyroid cancer. In the control group, we identified significant positive associations between PFASs and free thyroxine (FT4) as well as between PFOA and thyroid stimulating hormone (TSH) in females. A significant negative association between perfluorononanoic acid (PFNA) and triiodothyronine (T3) was observed in males. Our results suggest that exposure to certain PFASs could interfere with thyroid function. To our knowledge, this is the first case-control study demonstrating associations between novel and legacy PFASs in human and thyroid cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong Province China
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Mary E Turyk
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
26
|
Ma D, Lu Y, Liang Y, Ruan T, Li J, Zhao C, Wang Y, Jiang G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6014-6026. [PMID: 34142548 DOI: 10.1021/acs.est.1c01057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has aroused public concerns as it can pose multiple health threats to pregnant women and cause adverse birth outcomes for fetuses. In previous studies, the prenatal exposure levels and transplacental transfer efficiencies (TTE) of PFASs have been reported and discussed. Specifically, the binding affinities between PFASs and some transporters were determined, demonstrating that the TTE values of PFASs are highly dependent on their binding behaviors. To summarize primary findings of previous studies and propose potential guidance for future research, this article provides a systematic overview on levels and characteristics of prenatal exposure to PFASs worldwide, summarizes relationships between TTE values and structures of PFASs, and discusses possible transplacental transfer mechanisms, especially for the combination between PFASs and transporters. Given the critical roles of transporters in the transplacental transfer of PFASs, we conducted molecular docking to further clarify the binding behaviors between PFASs and the selected transporters. We proposed that the machine learning can be a superior method to predict and reveal behaviors and mechanisms of the transplacental transfer of PFASs. In total, this is the first review providing a comprehensive overview on the prenatal exposure levels and transplacental transfer mechanisms of PFASs.
Collapse
Affiliation(s)
- Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Huang C, Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Wang Y, Huo L, Sun F. Perfluorooctanoic acid alters the developmental trajectory of female germ cells and embryos in rodents and its potential mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113467. [PMID: 35390687 DOI: 10.1016/j.ecoenv.2022.113467] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The epidemiological studies regarding perfluorooctanoic acid (PFOA) suggests that its exposure causes reproductive health issues, the underlying mechanisms of which are still in its infancy. Here, we report that PFOA deteriorates female reproduction at multiple development stages. Oocyte meiosis and preimplantation development are severely impaired by PFOA with oxidative stress being a contributor. Supplementing with antioxidant melatonin partially rescues oocyte meiotic maturation and non-apoptotic demise. The attenuation in ovarian follicle development however can be improved by metformin but not melatonin. Importantly, metformin blunts PFOA-induced fetal growth retardation (FGR) and such protective effect could be recapitulated by transplantation of fecal material and pharmacological activation of AMPK. Mechanistically, PFOA causes gut microbiota dysbiosis, which might thereby rewire host metabolism of L-phenylalanine, histamine and L-palmitoylcarnitine that triggers hyperphenylalaninaemia, inflammation and ferroptosis to initiate FGR. Deregulated serine metabolism by the gut microbe constitutes an alternative mechanism underlying PFOA-induced FGR in that modulation of serine in dam's diet phenocopied the FGR. Our study expands the understanding of risk factors that impair human reproductive health, and proposes restoration of gut microbiota diversity and intervention of metabolism as therapeutics mitigating health risks predisposed by environmental perturbation.
Collapse
Affiliation(s)
- Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore 54782, Pakistan; Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Yongsheng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
28
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
29
|
LaKind JS, Verner MA, Rogers RD, Goeden H, Naiman DQ, Marchitti SA, Lehmann GM, Hines EP, Fenton SE. Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don't We Know More? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:25002. [PMID: 35195447 PMCID: PMC8865090 DOI: 10.1289/ehp10359] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Despite 20 y of biomonitoring studies of per- and polyfluoroalkyl substances (PFAS) in both serum and urine, we have an extremely limited understanding of PFAS concentrations in breast milk of women from the United States and Canada. The lack of robust information on PFAS concentrations in breast milk and implications for breastfed infants and their families were brought to the forefront by communities impacted by PFAS contamination. OBJECTIVES The objectives of this work are to: a) document published PFAS breast milk concentrations in the United States and Canada; b) estimate breast milk PFAS levels from maternal serum concentrations in national surveys and communities impacted by PFAS; and c) compare measured/estimated milk PFAS concentrations to screening values. METHODS We used three studies reporting breast milk concentrations in the United States and Canada We also estimated breast milk PFAS concentrations by multiplying publicly available serum concentrations by milk:serum partitioning ratios for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). Measured and estimated breast milk concentrations were compared to children's drinking water screening values. DISCUSSION Geometric means of estimated breast milk concentrations ranged over approximately two orders of magnitude for the different surveys/communities. All geometric mean and mean estimated and measured breast milk PFOA and PFOS concentrations exceeded drinking water screening values for children, sometimes by more than two orders of magnitude. For PFHxS and PFNA, all measured breast milk levels were below the drinking water screening values for children; the geometric mean estimated breast milk concentrations were close to-or exceeded-the children's drinking water screening values for certain communities. Exceeding a children's drinking water screening value does not indicate that adverse health effects will occur and should not be interpreted as a reason to not breastfeed; it indicates that the situation should be further evaluated. It is past time to have a better understanding of environmental chemical transfer to-and concentrations in-an exceptional source of infant nutrition. https://doi.org/10.1289/EHP10359.
Collapse
Affiliation(s)
- Judy S. LaKind
- LaKind Associates, LLC, Catonsville, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada
- Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Québec, Canada
| | - Rachel D. Rogers
- Office of the Director, National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA
| | - Helen Goeden
- Environmental Health Division, Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Daniel Q. Naiman
- Department of Applied Mathematics & Statistics, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Erin P. Hines
- Center for Public Health and Environmental Assessment, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Suzanne E. Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
30
|
Wise LA, Wesselink AK, Schildroth S, Calafat AM, Bethea TN, Geller RJ, Coleman CM, Fruh V, Claus Henn B, Botelho JC, Harmon QE, Thirkill M, Wegienka GR, Baird DD. Correlates of plasma concentrations of per- and poly-fluoroalkyl substances among reproductive-aged Black women. ENVIRONMENTAL RESEARCH 2022; 203:111860. [PMID: 34403666 PMCID: PMC8616815 DOI: 10.1016/j.envres.2021.111860] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in commercial and consumer goods. Black women are underrepresented in studies of PFAS exposure. METHODS We performed a cross-sectional analysis of correlates of plasma PFAS concentrations among 1499 Black women aged 23-35 participating in the Study of Environment, Lifestyle, and Fibroids (SELF), a Detroit-based cohort study. At baseline (2010-2012), participants provided questionnaire data on socio-demographics; behaviors; diet; and menstrual, contraceptive, and reproductive histories. Using mass spectrometry in non-fasting plasma samples collected at enrollment, we quantified several PFAS, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), and 2-N-methyl-perfluorooctane sulfonamido acetate (MeFOSAA). We used linear regression to calculate percentage differences (%D) and 95 % confidence intervals (CIs) for associations between selected correlates and PFAS concentrations, adjusting for all other correlates. RESULTS PFHxS, PFOS, PFOA, and PFNA were detected in ≥97 % of women; PFDA in 86 %; MeFOSAA in 70 %; and PFUnDA in 52 %. Age, income, education, and intakes of water, alcohol, and seafood were positively associated with several PFAS. Current smoking was positively associated with MeFOSAA. Body mass index was inversely associated with most PFAS, except PFHxS. Strong inverse associations (%D; 95 % CI) were observed between parity (≥3 vs. 0 births) and PFHxS (-34.7; -43.0, -25.1) and PFOA (-33.1; -39.2, -26.3); breastfeeding duration (≥6 months vs. nulliparous) and PFOA (-31.1; -37.8, -23.7), PFHxS (-24.2; -34.5, -12.3), and PFOS (-18.4; -28.3, -7.1); recent birth (<2 years ago vs. nulliparous) and PFOA (-33.1; -39.6, -25.8), PFHxS (-29.3; -39.0, -18.1), PFNA (-25.2; -32.7, -16.8), and PFOS (-18.3; -28.3, -6.9); and intensity of menstrual bleed (heavy vs. light) and PFHxS (-18.8; -28.3, -8.2), PFOS (-16.4; -24.9, -7.1), PFNA (-10.5; -17.8, -2.6), and PFOA (-10.0; -17.2, -2.1). Current use of depot medroxyprogesterone acetate (DMPA) was positively associated with PFOS (20.2; 1.4, 42.5), PFOA (16.2; 1.5, 33.0), and PFNA (15.3; 0.4, 32.4). CONCLUSIONS Reproductive factors that influence PFAS elimination showed strong associations with several PFAS (reduced concentrations with parity, recent birth, lactation, heavy menstrual bleeding; increased concentrations with DMPA use).
Collapse
Affiliation(s)
- Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ruth J Geller
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Chad M Coleman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Quaker E Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Maya Thirkill
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | | | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Gao X, Ni W, Zhu S, Wu Y, Cui Y, Ma J, Liu Y, Qiao J, Ye Y, Yang P, Liu C, Zeng F. Per- and polyfluoroalkyl substances exposure during pregnancy and adverse pregnancy and birth outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2021; 201:111632. [PMID: 34237336 DOI: 10.1016/j.envres.2021.111632] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/30/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy has been suggested to be associated with adverse pregnancy and birth outcomes; however, the findings have been inconsistent. We aimed to conduct a systematic review and meta-analysis to provide an overview of these associations. METHODS The online databases PubMed, EMBASE and Web of Science were searched comprehensively for eligible studies from inception to February 2021. Odds ratios (ORs) and 95% confidence intervals (CIs) were pooled using random- or fixed-effects models, and dose-response meta-analyses were also conducted when possible. FINDINGS A total of 29 studies (32,905 participants) were included. The pooled results demonstrated that perfluorooctane sulfonate (PFOS) exposure during pregnancy was linearly associated with increased preterm birth risk (pooled OR per 1-ng/ml increase: 1.01, 95% CIs: 1.00-1.02, P = 0.009) and perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) exposure showed inverted U-shaped associations with preterm birth risk (P values for the nonlinear trend: 0.025 and 0.030). Positive associations were also observed for exposure to perfluorodecanoate (PFDA) and miscarriage (pooled OR per 1-ng/ml increase: 1.87, 95% CIs: 1.15-3.03) and PFOS and preeclampsia (pooled OR per 1-log increase: 1.27, 95% CIs: 1.06-1.51), whereas exposure to perfluoroundecanoate (PFUnDA) was inversely associated with preeclampsia risk (pooled OR per 1-log increase: 0.81, 95% CIs: 0.71-0.93). Based on individual evidence, detrimental effects were observed between PFDA exposure and small for gestational age and between PFOA and PFOS and intrauterine growth restriction. No significant associations were found between pregnancy PFAS exposure and other adverse pregnancy outcomes (i.e., gestational diabetes mellitus, pregnancy-induced hypertension, low birth weight, and large and small for gestational age). INTERPRETATION Our findings indicated that PFOS, PFOA and PFNA exposure during pregnancy might be associated with increased preterm birth risk and that PFAS exposure might be associated with the risk of miscarriage and preeclampsia. Due to the limited evidence obtained for most associations, additional studies are required to confirm these findings.
Collapse
Affiliation(s)
- Xuping Gao
- Department of Epidemiology, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China; Department of Child & Adolescent Psychiatry, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), 51 HuayuanBei Road, Beijing, 100191, PR China
| | - Wanze Ni
- Department of Epidemiology, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China
| | - Sui Zhu
- Department of Medical Statistics, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China
| | - Yanxin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yunfeng Cui
- Department of Epidemiology, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China
| | - Junrong Ma
- Department of Epidemiology, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China
| | - Yanhua Liu
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China
| | - Jinlong Qiao
- Department of Epidemiology, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China
| | - Yanbin Ye
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China.
| | - Fangfang Zeng
- Department of Epidemiology, School of Basic Medicine and Public Health, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
32
|
Exposure to perfluoroalkyl substances through human milk in preterm infants. Eur J Pediatr 2021; 180:3047-3051. [PMID: 33839913 DOI: 10.1007/s00431-021-04073-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl substances (PFASs) are environmental contaminants that have been shown to exert toxic effects, which are dependent upon concentration, in animals and humans. No specific data on the exposure of preterm infants to PFASs are available. We aimed to quantify the potential exposure of preterm infants to PFASs through human milk (HM), to be compared to the exposure data recently reported for infants by EFSA. The amount of PFASs in ten preterm (PHM) and ten donor HM (DHM) samples was evaluated, and the expected daily intake (EDI) at full enteral feeding was calculated. This EDI was compared to the mean and the 95th centile dietary exposure ranges at the lower bound for infants issued by EFSA. The calculated median EDI for total PFASs was 20.72 ng/kg/day (range 10.72-107.84) for PHM and 17.92 ng/kg/day (range 6.4-28.96) for DHM, which were both higher than mean exposure ranges reported for infants (2.4-12.2 ng/kg/day). The calculated EDI for DHM was far more similar to the 95th centile (4.5-27.9 ng/kg/day) dietary exposure ranges. For PHM samples, higher EDI values were obtained, with 4 out of 10 samples exceeding the upper limit of the 95th centile range.Conclusion: The exposure of preterm infants to PFASs through HM feeding might exceed reference values reported for older and healthier infants. Given the immunological and developmental vulnerability of preterm infants, the risks related to their exposure to PFASs should be further investigated, also focusing on how maternal exposure and subsequent transfer through HM feeding can be reduced. What is Known: • Perfluoroalkyl substances (PFASs) are environmental contaminants that have been shown to exert toxic effects, which are dependent upon concentration, in animals and humans. The EFSA has recently issued reference values for PFASs exposure for different age groups. • Infants might be exposed to PFASs prenatally, as these substances can cross the placenta, and postnatally, through breastfeeding. No specific data about exposure of preterm infants through human milk (HM) feeding are currently available. What is New: • The exposure of preterm infants to PFASs through HM feeding might exceed reference values reported for older and healthier infants. • Given the immunological and developmental vulnerability of preterm infants, the risks related to their exposure to PFASs deserve further investigation. As HM represents the optimal feeding for preterm infants, it will be fundamental to focus on how maternal exposure and subsequent transfer through HM feeding can be reduced.
Collapse
|
33
|
Carrizosa C, Murcia M, Ballesteros V, Costa O, Manzano-Salgado CB, Ibarluzea J, Iñiguez C, Casas M, Andiarena A, Llop S, Lertxundi A, Schettgen T, Sunyer J, Ballester F, Vrijheid M, Lopez-Espinosa MJ. Prenatal perfluoroalkyl substance exposure and neuropsychological development throughout childhood: The INMA Project. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125185. [PMID: 33882389 DOI: 10.1016/j.jhazmat.2021.125185] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) have been related to neurodevelopmental toxicity in animals. However, human studies are inconclusive. OBJECTIVES To evaluate the association between prenatal PFAS exposure and neuropsychological development during childhood. METHODS 1240 mother-child pairs from the Spanish INMA Project were analyzed. Perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononanoic acid (PFNA) were measured in first-trimester maternal plasma. Neuropsychological development was assessed at 14 months, 4-5 and 7 years covering four domains: general cognitive, general motor, attention, and working memory. Associations were studied by means of multivariable regression analyses. RESULTS PFHxS, PFOA, PFOS, and PFNA medians were: 0.6, 2.4, 6.1, and 0.7 ng/mL. Higher PFAS prenatal exposure was associated with worse motor development at 14 months, especially in the case of PFHxS (β[95%CI]: -1.49[-2.73, -0.24]) and to a lesser extent PFOS (-1.25[-2.62, 0.12]). There was also a marginal positive association between general cognitive development at 4-5 years and PFOS (1.17[-0.10, 2.43]) and PFNA (0.99[-0.13, 2.12]). No clear associations for other neuropsychological outcomes or any sex differences were found. DISCUSSION This study shows no clear-cut evidence of an association between prenatal PFAS exposure and adverse neuropsychological development in children up to the age of 7 years.
Collapse
Affiliation(s)
- Christian Carrizosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Virginia Ballesteros
- Andalusian Health and Environment Observatory (OSMAN), Andalusian School of Public Health, Granada, Spain
| | - Olga Costa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Cyntia B Manzano-Salgado
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jesus Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; Biodonostia, Environmental Epidemiology and Child Development Group, Donostia-San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, Donostia-San Sebastian, Spain
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Statistics and Computational Research, Universitat de València, Valencia, Spain
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ainara Andiarena
- Faculty of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; Biodonostia, Environmental Epidemiology and Child Development Group, Donostia-San Sebastian, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia, Environmental Epidemiology and Child Development Group, Donostia-San Sebastian, Spain; Preventive Medicine and Public Health Department, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Thomas Schettgen
- Institute for Occupational Medicine, RWTH Aachen University, Aachen, Germany
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain.
| |
Collapse
|
34
|
Sarzo B, Ballesteros V, Iñiguez C, Manzano-Salgado CB, Casas M, Llop S, Murcia M, Guxens M, Vrijheid M, Marina LS, Schettgen T, Espada M, Irizar A, Fernandez-Jimenez N, Ballester F, Lopez-Espinosa MJ. Maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11144-11154. [PMID: 34314170 DOI: 10.1021/acs.est.1c01452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Results of studies on perfluoroalkyl substances (PFASs) and thyroid hormones (THs) are heterogeneous, and the mechanisms underlying the action of PFASs to target THs have not been fully characterized. We examined the relation between first-trimester maternal PFAS and TH levels and the role played by polymorphisms in the iodothyronine deiodinase 1 (DIO1) and 2 (DIO2) genes in this association. Our sample comprised 919 pregnant Spanish women (recruitment = 2003-2008) with measurements of perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), thyroid-stimulating hormone (TSH), total triiodothyronine (TT3), and free thyroxine (FT4), and we genotyped for single-nucleotide polymorphisms in the DIO1 (rs2235544) and DIO2 (rs12885300) genes. We performed multivariate regression analyses between PFASs and THs and included the interaction term PFAS-genotypes in the models. PFHxS was associated with an increase in TSH (% change in outcome [95% CI] per 2-fold PFAS increase = 6.09 [-0.71, 13.4]), and PFOA and PFNA were associated with a decrease in TT3 (-7.17 [-13.5, -0.39] and -6.28 [-12.3, 0.12], respectively). We found stronger associations between PFOA, PFNA, and TT3 for DIO1-CC and DIO2-CT genotypes, although interaction p-values were not significant. In conclusion, this study found evidence of an inverse association between PFOA and TT3 levels. No clear effect modification by DIO enzyme genes was observed.
Collapse
Affiliation(s)
- Blanca Sarzo
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
| | - Virginia Ballesteros
- Andalusian Health and Environment Observatory (OSMAN), Andalusian School of Public Health, 18011 Granada, Spain
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Department of Statistics and Operational Research, University of Valencia, 46100 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | | | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, 46010 Valencia, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013 Donostia-San Sebastian, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014 Donostia-San Sebastian, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Mercedes Espada
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, 8160 Bilbao, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014 Donostia-San Sebastian, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV-EHU), 20018 San Sebastian, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
35
|
Luo K, Liu X, Nian M, Wang Y, Qiu J, Yu H, Chen X, Zhang J. Environmental exposure to per- and polyfluoroalkyl substances mixture and male reproductive hormones. ENVIRONMENT INTERNATIONAL 2021; 152:106496. [PMID: 33744484 DOI: 10.1016/j.envint.2021.106496] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previous epidemiological studies on the relationship between per- and polyfluoroalkyl substances (PFAS) exposure and male reproductive hormones were mainly limited to a few legacy PFAS and ignored the possible mixture effects. OBJECTIVES To assess the associations of PFAS mixture, branched isomers and emerging alternatives of PFAS with male reproductive hormones. METHODS A total of 902 men (mean age: 31.3 years) were recruited in this cross-sectional study. We quantified 24 targeted PFAS, including 7 branched PFOS isomers, 2 branched PFOA isomers and 2 components of F-53B, in blood plasma. Five reproductive hormones, including total testosterone (TT), estradiol (E2), follicular stimulating hormone (FSH), luteinizing hormone (LH) and insulin like factor 3 (INSL3), and sex hormone binding globulin (SHBG) were measured in serum. Associations were first assessed by confounder-adjusted multiple linear regression while correcting for multiple comparisons. Bayesian kernel machine regression (BKMR) and adaptive elastic net (AENET) were further used to assess mixture effects and the adjusted exposure response (ER) relationship of individual PFAS. RESULTS After adjusting for confounders, we found that PFAS mixture was significantly and inversely associated with E2 and E2/TT, with perfluoro-n-undecanoic acid (PFuDA) being the major contributor. Although the associations between PFAS mixture and other hormones were non-significant, certain individual PFAS presented significant associations. Notably, perfluoro-n-tridecanoic acid (PFTrDA) and perfluoro-n-dodecanoic acid (PFDoA) were found to be significantly and inversely associated with INSL3, a unique indicator of Leydig cells function. Meanwhile, significant positive associations were found between perfluorobutane sulfonic acid (PFBS) and FSH and between PFuDA and LH. But the associations with branched isomers or F-53B were sporadic and inconsistent. CONCLUSIONS Our findings provided the evidence that PFAS mixture may reduce E2 level, and certain PFAS (i.e., PFTrDA and PFDoA) may have negative effects on Leydig cells function among young men. Additional studies are much needed to confirm our results and elucidate potential mechanisms.
Collapse
Affiliation(s)
- Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaotu Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jin Qiu
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Shanghai Human Sperm Bank, Shanghai 200135, China
| | - Hao Yu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Chen
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Shanghai Human Sperm Bank, Shanghai 200135, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
36
|
Logeshwaran P, Sivaram AK, Surapaneni A, Kannan K, Naidu R, Megharaj M. Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144577. [PMID: 33482550 DOI: 10.1016/j.scitotenv.2020.144577] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 05/27/2023]
Abstract
Widespread environmental contamination of per- and polyfluoroalkyl substances (PFAS) is well established. Nevertheless, few studies have reported on the aquatic toxicity of PFAS, especially in indicator species such as Daphnia. In this study, the toxicity of two major PFAS, namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), was investigated on water flea (Daphnia carinata) using a battery of comprehensive toxicity tests, including a 48 h acute and a 21-day chronic assays. The survival, growth, and reproduction of D. carinata were monitored over a 21-day life cycle. PFOS exhibited higher toxicity than PFOA. The 48 h LC50 values (confidence interval) based on acute toxicity for PFOA and PFOS were 78.2 (54.9-105) mg L-1 and 8.8 (6.4-11.6) mg L-1, respectively. Chronic exposure to PFOS for 21 days displayed mortality and reproductive defects in D. carinata at a concentration as low as 0.001 mg L-1. Genotoxicity assessment using comet assay revealed that exposure for 96 h to PFOS at 1 and 10.0 mg L-1 significantly damaged the organism's genetic makeup. The results of this study have great implications for risk assessment of PFOS and PFOA in aquatic ecosystems, given the potential of PFOS to pose a risk to Daphnia even at lower concentrations (1 μg L-1).
Collapse
Affiliation(s)
- Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aravind Surapaneni
- South East Water, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, Bundoora, Victoria, Australia
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
37
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
38
|
Liu Y, Liu K, Zheng P, Yin S, Jin H, Bai X, Li Y, Zheng J, Dai Y, Zhao M, Liu W. Prenatal exposure and transplacental transfer of perfluoroalkyl substance isomers in participants from the upper and lower reaches of the Yangtze River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116202. [PMID: 33333405 DOI: 10.1016/j.envpol.2020.116202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Data on gestational exposure characteristics and transplacental transfer are quite limited for perfluoroalkyl substance (PFAS) isomers, especially those from large-scale comparative studies. To fill this gap, we examined isomers of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) in matched maternal and cord serum from Mianyang and Hangzhou, which are located in the upper and lower reaches of the Yangtze River, China, respectively. These data were compared with those from our previous study on Wuhan in the middle reach. The average ΣPFAS concentration increased from upstream to downstream (Mianyang (4.44 ng/mL) < Wuhan (9.88 ng/mL) < Hangzhou (19.72 ng/mL)) and may be related to the per capita consumption expenditure of each city. The ln-transformed PFAS concentrations showed significant differences between Mianyang and Hangzhou after adjusting confounding factors (p < 0.05). The percentages of linear PFOS and PFOA in maternal and cord serum from these cities all exceeded those in electrochemical fluorination products. The isomer profiles of PFASs in maternal and cord serum might be greatly influenced by local production processes of PFASs and residents' dietary habits. The transplacental transfer efficiencies decreased significantly with increasing concentrations in maternal serum for ΣPFAS, ΣPFOS, ΣPFOA, ΣPFHxS, n-PFOS, iso-PFOS, 4m-PFOS, 1m-PFOS, n-PFOA, n-PFHxS, and br-PFHxS (Spearman rank correlation coefficients (r) = 0.373-0.687, p < 0.01). These findings support an understanding of the regional characteristics in maternal exposure to PFASs along the Yangtze River, isomeric profiles of PFASs in these regions, and the transplacental transfer processes of PFAS isomers.
Collapse
Affiliation(s)
- Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Kai Liu
- Division of Engineering and Applied Science, W. M. Keck Laboratories, California Institute of Technology, 1200 East California Blvd., Pasadena, CA, 91125, USA
| | - Ping Zheng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310058, China
| | - Xiaoxia Bai
- Women Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongqing Li
- Mianyang Municipal Center for Disease Control and Prevention, Mianyang, 621000, China
| | - Jingxian Zheng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yishuang Dai
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310058, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Yu G, Luo F, Nian M, Li S, Liu B, Feng L, Zhang J. Exposure to Perfluoroalkyl Substances During Pregnancy and Fetal BDNF Level: A Prospective Cohort Study. Front Endocrinol (Lausanne) 2021; 12:653095. [PMID: 34140927 PMCID: PMC8204808 DOI: 10.3389/fendo.2021.653095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Humans are widely exposed to environmental perfluoroalkyl substances (PFAS), which may affect fetal neurodevelopment. Brain-derived neurotrophic factor (BDNF) is an important factor in neurodevelopment, but its role in PFAS-induced neurotoxicity is unclear. We investigated the association between prenatal PFAS exposure and fetal BDNF level in the umbilical cord blood in a large prospective cohort. METHODS A total of 725 pregnant women who participated in the Shanghai Birth Cohort were included. 10 PFAS were measured by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in the plasma samples of early pregnancy. The BDNF level was determined by ELISA. The concentration of total mercury (Hg) in the umbilical cord blood was tested by cold vapor atomic absorption spectrometry (AAS) and included as a main confounder, along with other covariates. Multiple linear regression was used to explore the associations between PFAS concentrations and BDNF level. Quantile-based g-computation was applied to explore the joint and independent effects of PFAS on BDNF level. RESULTS The mean BDNF level in the total population was 10797 (±4713) pg/ml. Male fetuses had a higher level than female fetuses (P<0.001). A significant positive association was observed between PFHxS and BDNF level after adjusting for potential confounders [β=1285 (95% CI: 453, 2118, P=0.003)]. No association was observed between other PFAS congeners and BDNF level. Results of the mixed exposure model showed that the joint effects of PFAS mixture were not associated with BDNF [β=447 (95% CI: -83, 978, P=0.10)], while the positive association with PFHxS exposure remained significant after controlling for other PFAS [β=592 (95% CI: 226, 958, P=0.002)]. The above associations were more prominent in male [β=773 (95% CI: 25, 1520, P= 0.04)] than female fetuses [β=105 (95% CI: -791, 1002, P= 0.82)] for the mixed effects. CONCLUSIONS Prenatal exposure to PFHxS was associated with an increased BDNF level in the umbilical blood, especially in male fetuses.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fei Luo
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
- *Correspondence: Jun Zhang, ; Liping Feng,
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Zhang, ; Liping Feng,
| |
Collapse
|
40
|
Perfluorooctane sulfonate (PFOS) disrupts testosterone biosynthesis via CREB/CRTC2/StAR signaling pathway in Leydig cells. Toxicology 2020; 449:152663. [PMID: 33359577 DOI: 10.1016/j.tox.2020.152663] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a stable end-product of perfluorinated compounds (PFCs), is associated with male reproductive disorders, but its underlying mechanisms are still unclear. We used in vivo and in vitro models to investigate the effects of PFOS on testosterone biosynthesis and related mechanisms. First, male ICR mice were orally administered PFOS (0-10 mg/kg/bw) for 4 weeks. Bodyweight, sperm count, reproductive hormones, mRNA expression of the genes related to testosterone biosynthesis, and the protein expression of protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), cAMP-response element binding protein (CREB), CREB regulated transcription coactivator 2 (CRTC2) and steroidogenic acute regulatory protein (StAR) were evaluated. Furthermore, mouse primary Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently decreased sperm count, testosterone level, CRTC2/StAR expression, and damaged testicular interstitium morphology, paralleled by increase in phosphorylated PKA, CREB and p38 in testes. Additionally, similar to the in vivo results, PFOS significantly decreased testosterone secretion, CRTC2/StAR expression, interaction between CREB and CRTC2 and binding of CREB/CRTC2 to StAR promoter region, paralleled by increase in phosphorylated-p38, PKA, and CREB expression. Meanwhile, inhibition of p38 by SB203580, or inhibition of PKA by H89 can significantly alleviate the above PFOS-induced effects. As such, the present study highlights a role of the CREB/CRTC2/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
|