1
|
Burns E, Harner R, Kodali V, Afshari A, Antonini J, Leonard S. Comparative in vitro toxicity of compositionally distinct thermal spray particulates in human bronchial cells. Toxicol Rep 2024; 13:101851. [PMID: 39717857 PMCID: PMC11665665 DOI: 10.1016/j.toxrep.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Thermal spray, in general, is a process that involves forcing a melted substance, such as metal or ceramic in the form of wire or powder, onto the surface of a targeted object to enhance its desired surface properties. In this paper, the melted substance is metal wire generated by an electric arc and forcibly coated on a rotary iron substrate using compressed air. This thermal process is referred to as double-wire arc thermal spray. The particles generated through these methods fall within the nanometer to micrometer agglomerate size range. There is concern regarding potential human health outcomes as these particles exhibit a similarity in particle morphology to welding fumes. Thermal spray wires with zinc (PMET540), iron and chromium (PMET731), and nickel (PMET885) as primary metal compositions were used to generate particulate via an electric arc wire thermal spray generator for exposure to human bronchial cells (BEAS-2B) to examine comparative toxicity ranging from 0 to 200 µg/mL. Resulting cellular viability was assessed through live cell counts, and percent cytotoxicity was measured as a function of LDH release. Oxidative stress, genotoxicity, and alteration in total antioxidant capacity were evaluated through DNA damage (COMET analysis) and antioxidant concentration at 0, 3.125, 25, and 100 µg/mL. Protein markers for endothelin-1 (ET-1), interleukin-6 (IL-6), and interleukin-8 (IL-8) were also assessed to determine inflammation and endothelial alteration. Results indicate modulation of oxidative stress response in a material and dose dependent manner. PMET540 exhibited the greatest cytotoxic effect between wires and across doses. DNA damage and antioxidant concentration induced by PMET540 were significantly higher than other wires at higher doses (DNA damage increased at 25 and 100 µg/mL; Antioxidant concentration increased at 100 µg/mL). However, ET-1 concentration significantly increased only after application of 100 µg/mL PMET885. IL-6 and IL-8 were most highly expressed in BEAS2B culture after 25 µg/mL exposure to PMET540 (99.4 % Zn). This data suggests that metal composition of thermal spray wires dictates the diverse response in human bronchial cells.
Collapse
Affiliation(s)
- E.S. Burns
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R.E. Harner
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
- West Virginia University, School of Medicine, Morgantown, WV, United States
| | - V. Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - A.A. Afshari
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J.M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - S.S. Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| |
Collapse
|
2
|
De Rosa M, Giampaoli O, Sciubba F, Marini F, Tranfo G, Sisto R, Miccheli A, Tricarico L, Fetoni AR, Spagnoli M. NMR-based metabolomics for investigating urinary profiles of metal carpentry workers exposed to welding fumes and volatile organic compounds. Front Public Health 2024; 12:1386441. [PMID: 39171307 PMCID: PMC11335539 DOI: 10.3389/fpubh.2024.1386441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Metal carpentry includes a wide range of work activities such as welding and cutting metallic components, use of solvents and paints. Therefore, the employees in these types of activities are mainly exposed to welding fumes and volatile organic solvents. Here, we present an NMR-based metabolomic approach for assessing urinary profiles of workers in the same company that are exposed to two different risk factors. Methods The study enrolled 40 male subjects exposed to welding fumes, 13 male subjects exposed to volatile organic compounds of a metal carpentry company, and 24 healthy volunteers. All samples were collected, in the middle of the working week at fast. Thirty-five urinary metabolites belonging to different chemical classes such as amino acids, organic acids and amines were identified and quantified. Results were processed by multivariate statistical analysis for identifying significant metabolites for each working group examined, compared to controls. Results Workers exposed to welding fumes displayed urinary increase in glutamine, tyrosine, taurine, creatine, methylguanidine and pseudouridine associated to oxidative impairment, while workers exposed to volatile organic compounds showed higher urinary levels of branched chain aminoacids. Conclusion Our work identified specific urinary profile related to each occupational exposure, even if it is below the threshold limit values.
Collapse
Affiliation(s)
- Michele De Rosa
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Giovanna Tranfo
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, Istituto Nazionale Assicurazione contro gli Infortuni sul Lavoro (INAIL), Monte Porzio Catone, Italy
| | - Renata Sisto
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, Istituto Nazionale Assicurazione contro gli Infortuni sul Lavoro (INAIL), Monte Porzio Catone, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Laura Tricarico
- Catholic University of the Sacred Hearth, Faculty of Medicine and Surgery, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive and Odontostomatological Sciences-Audiology Section, University of Naples Federico II, Naples, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, Istituto Nazionale Assicurazione contro gli Infortuni sul Lavoro (INAIL), Monte Porzio Catone, Italy
| |
Collapse
|
3
|
Schlünssen V, Ádám B, Momen NC, Nemery B, Pega F. Response to Letter to the Editor regarding "The prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal): A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury". ENVIRONMENT INTERNATIONAL 2023; 179:108165. [PMID: 37669593 DOI: 10.1016/j.envint.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Affiliation(s)
- Vivi Schlünssen
- Department of Public Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark.
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Ben Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
4
|
Schlünssen V, Mandrioli D, Pega F, Momen NC, Ádám B, Chen W, Cohen RA, Godderis L, Göen T, Hadkhale K, Kunpuek W, Lou J, Mandic-Rajcevic S, Masci F, Nemery B, Popa M, Rajatanavin N, Sgargi D, Siriruttanapruk S, Sun X, Suphanchaimat R, Thammawijaya P, Ujita Y, van der Mierden S, Vangelova K, Ye M, Zungu M, Scheepers PTJ. The prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal): A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2023; 178:107980. [PMID: 37487377 DOI: 10.1016/j.envint.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large number of individual experts. Evidence from human, animal and mechanistic data suggests that occupational exposure to dusts and/or fibres (silica, asbestos and coal dust) causes pneumoconiosis. In this paper, we present a systematic review and meta-analysis of the prevalences and levels of occupational exposure to silica, asbestos and coal dust. These estimates of prevalences and levels will serve as input data for estimating (if feasible) the number of deaths and disability-adjusted life years that are attributable to occupational exposure to silica, asbestos and coal dust, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the prevalences and levels of occupational exposure to silica, asbestos and coal dust among working-age (≥ 15 years) workers. DATA SOURCES We searched electronic academic databases for potentially relevant records from published and unpublished studies, including Ovid Medline, PubMed, EMBASE, and CISDOC. We also searched electronic grey literature databases, Internet search engines and organizational websites; hand-searched reference lists of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥ 15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (< 15 years) and unpaid domestic workers. We included all study types with objective dust or fibre measurements, published between 1960 and 2018, that directly or indirectly reported an estimate of the prevalence and/or level of occupational exposure to silica, asbestos and/or coal dust. STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, then data were extracted from qualifying studies. We combined prevalence estimates by industrial sector (ISIC-4 2-digit level with additional merging within Mining, Manufacturing and Construction) using random-effects meta-analysis. Two or more review authors assessed the risk of bias and all available authors assessed the quality of evidence, using the ROB-SPEO tool and QoE-SPEO approach developed specifically for the WHO/ILO Joint Estimates. RESULTS Eighty-eight studies (82 cross-sectional studies and 6 longitudinal studies) met the inclusion criteria, comprising > 2.4 million measurements covering 23 countries from all WHO regions (Africa, Americas, Eastern Mediterranean, South-East Asia, Europe, and Western Pacific). The target population in all 88 included studies was from major ISCO groups 3 (Technicians and Associate Professionals), 6 (Skilled Agricultural, Forestry and Fishery Workers), 7 (Craft and Related Trades Workers), 8 (Plant and Machine Operators and Assemblers), and 9 (Elementary Occupations), hereafter called manual workers. Most studies were performed in Construction, Manufacturing and Mining. For occupational exposure to silica, 65 studies (61 cross-sectional studies and 4 longitudinal studies) were included with > 2.3 million measurements collected in 22 countries in all six WHO regions. For occupational exposure to asbestos, 18 studies (17 cross-sectional studies and 1 longitudinal) were included with > 20,000 measurements collected in eight countries in five WHO regions (no data for Africa). For occupational exposure to coal dust, eight studies (all cross-sectional) were included comprising > 100,000 samples in six countries in five WHO regions (no data for Eastern Mediterranean). Occupational exposure to silica, asbestos and coal dust was assessed with personal or stationary active filter sampling; for silica and asbestos, gravimetric assessment was followed by technical analysis. Risk of bias profiles varied between the bodies of evidence looking at asbestos, silica and coal dust, as well as between industrial sectors. However, risk of bias was generally highest for the domain of selection of participants into the studies. The largest bodies of evidence for silica related to the industrial sectors of Construction (ISIC 41-43), Manufacturing (ISIC 20, 23-25, 27, 31-32) and Mining (ISIC 05, 07, 08). For Construction, the pooled prevalence estimate was 0.89 (95% CI 0.84 to 0.93, 17 studies, I2 91%, moderate quality of evidence) and the level estimate was rated as of very low quality of evidence. For Manufacturing, the pooled prevalence estimate was 0.85 (95% CI 0.78 to 0.91, 24 studies, I2 100%, moderate quality of evidence) and the pooled level estimate was rated as of very low quality of evidence. The pooled prevalence estimate for Mining was 0.75 (95% CI 0.68 to 0.82, 20 studies, I2 100%, moderate quality of evidence) and the pooled level estimate was 0.04 mg/m3 (95% CI 0.03 to 0.05, 17 studies, I2 100%, low quality of evidence). Smaller bodies of evidence were identified for Crop and animal production (ISIC 01; very low quality of evidence for both prevalence and level); Professional, scientific and technical activities (ISIC 71, 74; very low quality of evidence for both prevalence and level); and Electricity, gas, steam and air conditioning supply (ISIC 35; very low quality of evidence for both prevalence and level). For asbestos, the pooled prevalence estimate for Construction (ISIC 41, 43, 45,) was 0.77 (95% CI 0.65 to 0.87, six studies, I2 99%, low quality of evidence) and the level estimate was rated as of very low quality of evidence. For Manufacturing (ISIC 13, 23-24, 29-30), the pooled prevalence and level estimates were rated as being of very low quality of evidence. Smaller bodies of evidence were identified for Other mining and quarrying (ISIC 08; very low quality of evidence for both prevalence and level); Electricity, gas, steam and air conditioning supply (ISIC 35; very low quality of evidence for both prevalence and level); and Water supply, sewerage, waste management and remediation (ISIC 37; very low quality of evidence for levels). For coal dust, the pooled prevalence estimate for Mining of coal and lignite (ISIC 05), was 1.00 (95% CI 1.00 to 1.00, six studies, I2 16%, moderate quality of evidence) and the pooled level estimate was 0.77 mg/m3 (95% CI 0.68 to 0.86, three studies, I2 100%, low quality of evidence). A small body of evidence was identified for Electricity, gas, steam and air conditioning supply (ISIC 35); with very low quality of evidence for prevalence, and the pooled level estimate being 0.60 mg/m3 (95% CI -6.95 to 8.14, one study, low quality of evidence). CONCLUSIONS Overall, we judged the bodies of evidence for occupational exposure to silica to vary by industrial sector between very low and moderate quality of evidence for prevalence, and very low and low for level. For occupational exposure to asbestos, the bodies of evidence varied by industrial sector between very low and low quality of evidence for prevalence and were of very low quality of evidence for level. For occupational exposure to coal dust, the bodies of evidence were of very low or moderate quality of evidence for prevalence, and low for level. None of the included studies were population-based studies (i.e., covered the entire workers' population in the industrial sector), which we judged to present serious concern for indirectness, except for occupational exposure to coal dust within the industrial sector of mining of coal and lignite. Selected estimates of the prevalences and levels of occupational exposure to silica by industrial sector are considered suitable as input data for the WHO/ILO Joint Estimates, and selected estimates of the prevalences and levels of occupational exposure to asbestos and coal dust may perhaps also be suitable for estimation purposes. Protocol identifier: https://doi.org/10.1016/j.envint.2018.06.005. PROSPERO registration number: CRD42018084131.
Collapse
Affiliation(s)
- Vivi Schlünssen
- Department of Public Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark; National Research Center for the Working Environment, Copenhagen, Denmark.
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Robert A Cohen
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Thomas Göen
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Watinee Kunpuek
- International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Stefan Mandic-Rajcevic
- Department of Health Sciences, University of Milano, Milan, Italy; International Centre for Rural Health, San Paolo Hospital, Milan, Italy
| | - Federica Masci
- Department of Health Sciences, University of Milano, Milan, Italy; International Centre for Rural Health, San Paolo Hospital, Milan, Italy
| | - Ben Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Madalina Popa
- Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Somkiat Siriruttanapruk
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Xin Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Repeepong Suphanchaimat
- International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand; Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Panithee Thammawijaya
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Yuka Ujita
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland; Decent Work Technical Support Team for East and South-East Asia and the Pacific, International Labour Organization, Thailand
| | - Stevie van der Mierden
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy; Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Katya Vangelova
- National Center of Public Health and Analyses, Ministry of Health, Sofia, Bulgaria
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Muzimkhulu Zungu
- National Institute for Occupational Health, South Africa, Johannesburg, Gauteng Province, South Africa
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
The potential role of environmental factors in modulating mitochondrial DNA epigenetic marks. VITAMINS AND HORMONES 2023; 122:107-145. [PMID: 36863791 DOI: 10.1016/bs.vh.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many studies implicate mitochondrial dysfunction in the development and progression of numerous chronic diseases. Mitochondria are responsible for most cellular energy production, and unlike other cytoplasmic organelles, mitochondria contain their own genome. Most research to date, through investigating mitochondrial DNA copy number, has focused on larger structural changes or alterations to the entire mitochondrial genome and their role in human disease. Using these methods, mitochondrial dysfunction has been linked to cancers, cardiovascular disease, and metabolic health. However, like the nuclear genome, the mitochondrial genome may experience epigenetic alterations, including DNA methylation that may partially explain some of the health effects of various exposures. Recently, there has been a movement to understand human health and disease within the context of the exposome, which aims to describe and quantify the entirety of all exposures people encounter throughout their lives. These include, among others, environmental pollutants, occupational exposures, heavy metals, and lifestyle and behavioral factors. In this chapter, we summarize the current research on mitochondria and human health, provide an overview of the current knowledge on mitochondrial epigenetics, and describe the experimental and epidemiologic studies that have investigated particular exposures and their relationships with mitochondrial epigenetic modifications. We conclude the chapter with suggestions for future directions in epidemiologic and experimental research that is needed to advance the growing field of mitochondrial epigenetics.
Collapse
|
6
|
Náfrádi B, Kiiver H, Neupane S, Momen NC, Streicher KN, Pega F. Estimating the population exposed to a risk factor over a time window: A microsimulation modelling approach from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. PLoS One 2022; 17:e0278507. [PMID: 36584100 PMCID: PMC9803131 DOI: 10.1371/journal.pone.0278507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/17/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Burden of disease estimation commonly requires estimates of the population exposed to a risk factor over a time window (yeart to yeart+n). We present a microsimulation modelling approach for producing such estimates and apply it to calculate the population exposed to long working hours for one country (Italy). METHODS We developed a three-model approach: Model 1, a multilevel model, estimates exposure to the risk factor at the first year of the time window (yeart). Model 2, a regression model, estimates transition probabilities between exposure categories during the time window (yeart to yeart+n). Model 3, a microsimulation model, estimates the exposed population over the time window, using the Monte Carlo method. The microsimulation is carried out in three steps: (a) a representative synthetic population is initiated in the first year of the time window using prevalence estimates from Model 1, (b) the exposed population is simulated over the time window using the transition probabilities from Model 2; and (c) the population is censored for deaths during the time window. RESULTS We estimated the population exposed to long working hours (i.e. 41-48, 49-54 and ≥55 hours/week) over a 10-year time window (2002-11) in Italy. We populated all three models with official data from Labour Force Surveys, United Nations population estimates and World Health Organization life tables. Estimates were produced of populations exposed over the time window, disaggregated by sex and 5-year age group. CONCLUSIONS Our modelling approach for estimating the population exposed to a risk factor over a time window is simple, versatile, and flexible. It however requires longitudinal exposure data and Model 3 (the microsimulation model) is stochastic. The approach can improve accuracy and transparency in exposure and burden of disease estimations. To improve the approach, a logical next step is changing Model 3 to a deterministic microsimulation method, such as modelling of microflows.
Collapse
Affiliation(s)
- Bálint Náfrádi
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland
| | | | - Subas Neupane
- Department of Climate Change, Environment and Health, World Health Organization, Geneva, Switzerland
| | - Natalie C. Momen
- Department of Climate Change, Environment and Health, World Health Organization, Geneva, Switzerland
| | - Kai N. Streicher
- Department of Climate Change, Environment and Health, World Health Organization, Geneva, Switzerland
| | - Frank Pega
- Department of Climate Change, Environment and Health, World Health Organization, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Chartres N, Sass JB, Gee D, Bălan SA, Birnbaum L, Cogliano VJ, Cooper C, Fedinick KP, Harrison RM, Kolossa-Gehring M, Mandrioli D, Mitchell MA, Norris SL, Portier CJ, Straif K, Vermeire T. Conducting evaluations of evidence that are transparent, timely and can lead to health-protective actions. Environ Health 2022; 21:123. [PMID: 36471342 PMCID: PMC9720912 DOI: 10.1186/s12940-022-00926-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In February 2021, over one hundred scientists and policy experts participated in a web-based Workshop to discuss the ways that divergent evaluations of evidence and scientific uncertainties are used to delay timely protection of human health and the environment from exposures to hazardous agents. The Workshop arose from a previous workshop organized by the European Environment Agency (EEA) in 2008 and which also drew on case studies from the EEA reports on 'Late Lessons from Early Warnings' (2001, 2013). These reports documented dozens of hazardous agents including many chemicals, for which risk reduction measures were delayed for decades after scientists and others had issued early and later warnings about the harm likely to be caused by those agents. RESULTS Workshop participants used recent case studies including Perfluorooctanoic acid (PFOA), Extremely Low Frequency - Electrical Magnetic Fields (ELF-EMF fields), glyphosate, and Bisphenol A (BPA) to explore myriad reasons for divergent outcomes of evaluations, which has led to delayed and inadequate protection of the public's health. Strategies to overcome these barriers must, therefore, at a minimum include approaches that 1) Make better use of existing data and information, 2) Ensure timeliness, 3) Increase transparency, consistency and minimize bias in evidence evaluations, and 4) Minimize the influence of financial conflicts of interest. CONCLUSION The recommendations should enhance the production of "actionable evidence," that is, reliable evaluations of the scientific evidence to support timely actions to protect health and environments from exposures to hazardous agents. The recommendations are applicable to policy and regulatory settings at the local, state, federal and international levels.
Collapse
Affiliation(s)
- Nicholas Chartres
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California at San Francisco, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA.
| | - Jennifer B Sass
- Natural Resources Defense Council, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | | | - Simona A Bălan
- California Department of Toxic Substances Control, Berkeley, CA, USA
- University of California at Berkeley, Berkeley, CA, USA
| | - Linda Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Courtney Cooper
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California at San Francisco, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA
| | | | - Roy M Harrison
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Environmental Sciences/Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marike Kolossa-Gehring
- Department of Environmental Hygiene, Section Toxicology, Health Related Environmental Monitoring, German Federal Environmental Agency, Dessau-Roßlau, Germany
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Mark A Mitchell
- George Mason University, Fairfax, VA, USA
- Connecticut Coalition for Environmental Justice, Hartford, CT, USA
| | - Susan L Norris
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Christopher J Portier
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- CJP Consulting, Seattle, WA, USA
| | - Kurt Straif
- ISGlobal, Barcelona, Spain
- Boston College, Newton, MA, USA
| | - Theo Vermeire
- Retired, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| |
Collapse
|
8
|
Loomis D, Dzhambov AM, Momen NC, Chartres N, Descatha A, Guha N, Kang SK, Modenese A, Morgan RL, Ahn S, Martínez-Silveira MS, Zhang S, Pega F. The effect of occupational exposure to welding fumes on trachea, bronchus and lung cancer: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2022; 170:107565. [PMID: 36402034 DOI: 10.1016/j.envint.2022.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are the producers of the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury (WHO/ILO Joint Estimates). Welding fumes have been classified as carcinogenic to humans (Group 1) by the WHO International Agency for Research on Cancer (IARC) in IARC Monograph 118; this assessment found sufficient evidence from studies in humans that welding fumes are a cause of lung cancer. In this article, we present a systematic review and meta-analysis of parameters for estimating the number of deaths and disability-adjusted life years from trachea, bronchus, and lung cancer attributable to occupational exposure to welding fumes, to inform the development of WHO/ILO Joint Estimates on this burden of disease (if considered feasible). OBJECTIVES We aimed to systematically review and meta-analyse estimates of the effect of any (or high) occupational exposure to welding fumes, compared with no (or low) occupational exposure to welding fumes, on trachea, bronchus, and lung cancer (three outcomes: prevalence, incidence, and mortality). DATA SOURCES We developed and published a protocol, applying the Navigation Guide as an organizing systematic review framework where feasible. We searched electronic databases for potentially relevant records from published and unpublished studies, including Medline, EMBASE, Web of Science, CENTRAL and CISDOC. We also searched grey literature databases, Internet search engines, and organizational websites; hand-searched reference lists of previous systematic reviews; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥15 years) workers in the formal and informal economy in any Member State of WHO and/or ILO but excluded children (<15 years) and unpaid domestic workers. We included randomized controlled trials, cohort studies, case-control studies, and other non-randomized intervention studies with an estimate of the effect of any (or high) occupational exposure to welding fumes, compared with occupational exposure to no (or low) welding fumes, on trachea, bronchus, and lung cancer (prevalence, incidence, and mortality). STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first review stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. If studies reported odds ratios, these were converted to risk ratios (RRs). We combined all RRs using random-effects meta-analysis. Two or more review authors assessed the risk of bias, quality of evidence, and strength of evidence, using the Navigation Guide tools and approaches adapted to this project. Subgroup (e.g., by WHO region and sex) and sensitivity analyses (e.g., studies judged to be of "high"/"probably high" risk of bias compared with "low"/"probably low" risk of bias) were conducted. RESULTS Forty-one records from 40 studies (29 case control studies and 11 cohort studies) met the inclusion criteria, comprising over 1,265,512 participants (≥22,761 females) in 21 countries in three WHO regions (Region of the Americas, European Region, and Western Pacific Region). The exposure and outcome were generally assessed by job title or self-report, and medical or administrative records, respectively. Across included studies, risk of bias was overall generally probably low/low, with risk judged high or probably high for several studies in the domains for misclassification bias and confounding. Our search identified no evidence on the outcome of having trachea, bronchus, and lung cancer (prevalence). Compared with no (or low) occupational exposure to welding fumes, any (or high) occupational exposure to welding fumes increased the risk of acquiring trachea, bronchus, and lung cancer (incidence) by an estimated 48 % (RR 1.48, 95 % confidence interval [CI] 1.29-1.70, 23 studies, 57,931 participants, I2 24 %; moderate quality of evidence). Compared with no (or low) occupational exposure to welding fumes, any (or high) occupational exposure to welding fumes increased the risk dying from trachea, bronchus, and lung cancer (mortality) by an estimated 27 % (RR 1.27, 95 % CI 1.04-1.56, 3 studies, 8,686 participants, I2 0 %; low quality of evidence). Our subgroup analyses found no evidence for difference by WHO region and sex. Sensitivity analyses supported the main analyses. CONCLUSIONS Overall, for incidence and mortality of trachea, bronchus, and lung cancer, we judged the existing body of evidence for human data as "sufficient evidence of harmfulness" and "limited evidence of harmfulness", respectively. Occupational exposure to welding fumes increased the risk of acquiring and dying from trachea, bronchus, and lung cancer. Producing estimates for the burden of trachea, bronchus, and lung cancer attributable to any (or high) occupational exposure to welding fumes appears evidence-based, and the pooled effect estimates presented in this systematic review could be used as input data for the WHO/ILO Joint Estimates. PROTOCOL IDENTIFIER: https://doi.org/10.1016/j.envint.2020.106089.
Collapse
Affiliation(s)
- Dana Loomis
- School of Community Health Sciences, University of Nevada, Reno, Reno, NV, the United States of America; Plumas County Public Health Agency, Plumas County, CA, the United States of America.
| | - Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria.
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Nicholas Chartres
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, the United States of America.
| | - Alexis Descatha
- AP-HP (Paris Hospital "Assistance Publique Hôpitaux de Paris"), Occupational Health Unit, University Hospital of West Suburb of Paris, Poincaré Site, Garches, France /Versailles St-Quentin Univ - Paris Saclay Univ (UVSQ), UMS 011, UMR-S 1168, France; Univ Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, SFR ICAT, CAPTV CDC, Angers, France.
| | - Neela Guha
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, the United States of America.
| | - Seong-Kyu Kang
- Department of Occupational and Environmental Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy.
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.
| | - Seoyeon Ahn
- National Pension Research Institute, Jeonju-si, Republic of Korea.
| | | | - Siyu Zhang
- National Institute for Occupational Health and Poison Control, Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
9
|
Pega F, Momen NC, Gagliardi D, Bero LA, Boccuni F, Chartres N, Descatha A, Dzhambov AM, Godderis L, Loney T, Mandrioli D, Modenese A, van der Molen HF, Morgan RL, Neupane S, Pachito D, Paulo MS, Prakash KC, Scheepers PTJ, Teixeira L, Tenkate T, Woodruff TJ, Norris SL. Assessing the quality of evidence in studies estimating prevalence of exposure to occupational risk factors: The QoE-SPEO approach applied in the systematic reviews from the WHO/ILO Joint Estimates of the Work-related burden of disease and Injury. ENVIRONMENT INTERNATIONAL 2022; 161:107136. [PMID: 35182944 PMCID: PMC8885428 DOI: 10.1016/j.envint.2022.107136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) have produced the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury (WHO/ILO Joint Estimates). For these, systematic reviews of studies estimating the prevalence of exposure to selected occupational risk factors have been conducted to provide input data for estimations of the number of exposed workers. A critical part of systematic review methodology is to assess the quality of evidence across studies. In this article, we present the approach applied in these WHO/ILO systematic reviews for performing such assessments on studies of prevalence of exposure. It is called the Quality of Evidence in Studies estimating Prevalence of Exposure to Occupational risk factors (QoE-SPEO) approach. We describe QoE-SPEO's development to date, demonstrate its feasibility reporting results from pilot testing and case studies, note its strengths and limitations, and suggest how QoE-SPEO should be tested and developed further. METHODS Following a comprehensive literature review, and using expert opinion, selected existing quality of evidence assessment approaches used in environmental and occupational health were reviewed and analysed for their relevance to prevalence studies. Relevant steps and components from the existing approaches were adopted or adapted for QoE-SPEO. New steps and components were developed. We elicited feedback from other systematic review methodologists and exposure scientists and reached consensus on the QoE-SPEO approach. Ten individual experts pilot-tested QoE-SPEO. To assess inter-rater agreement, we counted ratings of expected (actual and non-spurious) heterogeneity and quality of evidence and calculated a raw measure of agreement (Pi) between individual raters and rater teams for the downgrade domains. Pi ranged between 0.00 (no two pilot testers selected the same rating) and 1.00 (all pilot testers selected the same rating). Case studies were conducted of experiences of QoE-SPEO's use in two WHO/ILO systematic reviews. RESULTS We found no existing quality of evidence assessment approach for occupational exposure prevalence studies. We identified three relevant, existing approaches for environmental and occupational health studies of the effect of exposures. Assessments using QoE-SPEO comprise three steps: (1) judge the level of expected heterogeneity (defined as non-spurious variability that can be expected in exposure prevalence, within or between individual persons, because exposure may change over space and/or time), (2) assess downgrade domains, and (3) reach a final rating on the quality of evidence. Assessments are conducted using the same five downgrade domains as the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach: (a) risk of bias, (b) indirectness, (c) inconsistency, (d) imprecision, and (e) publication bias. For downgrade domains (c) and (d), the assessment varies depending on the level of expected heterogeneity. There are no upgrade domains. The QoE-SPEO's ratings are "very low", "low", "moderate", and "high". To arrive at a final decision on the overall quality of evidence, the assessor starts at "high" quality of evidence and for each domain downgrades by one or two levels for serious concerns or very serious concerns, respectively. In pilot tests, there was reasonable agreement in ratings for expected heterogeneity; 70% of raters selected the same rating. Inter-rater agreement ranged considerably between downgrade domains, both for individual rater pairs (range Pi: 0.36-1.00) and rater teams (0.20-1.00). Sparse data prevented rigorous assessment of inter-rater agreement in quality of evidence ratings. CONCLUSIONS We present QoE-SPEO as an approach for assessing quality of evidence in prevalence studies of exposure to occupational risk factors. It has been developed to its current version (as presented here), has undergone pilot testing, and was applied in the systematic reviews for the WHO/ILO Joint Estimates. While the approach requires further testing and development, it makes steps towards filling an identified gap, and progress made so far can be used to inform future work in this area.
Collapse
Affiliation(s)
- Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Diana Gagliardi
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Lisa A Bero
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; General Internal Medicine/Public Health/Center for Bioethics and Humanities, University of Colorado-Anschutz Medical Campus, Denver, CO, United States
| | - Fabio Boccuni
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Nicholas Chartres
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, United States
| | - Alexis Descatha
- AP-HP (Paris Hospital "Assistance Publique Hôpitaux de Paris"), Occupational Health Unit, University Hospital of West Suburb of Paris, Poincaré Site, Garches, France /Versailles St-Quentin Univ - Paris Saclay Univ (UVSQ), UMS 011, UMR-S 1168, France; Univ Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, CAPTV CDC, Angers, France
| | - Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium; KIR Department (Knowledge, Information & Research), IDEWE, External Service for Prevention and Protection at Work, Leuven, Belgium
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Henk F van der Molen
- Coronel Institute of Occupational Health, Amsterdam UMC, location AMC, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Ontario, Canada
| | - Subas Neupane
- Faculty of Social Science (Health Sciences), University of Tampere, Tampere, Finland
| | - Daniela Pachito
- Evidence-based Health, Universidade Federal de São Paulo, Sao Paulo, Brazil; Cochrane Brazil, Sao Paulo, Brazil
| | - Marilia S Paulo
- Institute of Public Health, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - K C Prakash
- Faculty of Social Science (Health Sciences), University of Tampere, Tampere, Finland
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Liliane Teixeira
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Thomas Tenkate
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, United States
| | - Susan L Norris
- Oregon Health & Science University, Portland, OR, United States; Department of Quality Assurance, Norms and Standards, World Health Organization, Geneva, Switzerland
| |
Collapse
|
10
|
Teixeira L, Dzhambov AM, Gagliardi D. Response to Letter to the Editor Regarding "The effect of occupational exposure to noise on ischaemic heart disease, stroke and hypertension: A systematic review and meta-analysis From the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury". ENVIRONMENT INTERNATIONAL 2022; 161:107105. [PMID: 35149450 DOI: 10.1016/j.envint.2022.107105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Liliane Teixeira
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Diana Gagliardi
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| |
Collapse
|
11
|
Momen NC, Streicher KN, da Silva DTC, Descatha A, Frings-Dresen MHW, Gagliardi D, Godderis L, Loney T, Mandrioli D, Modenese A, Morgan RL, Pachito D, Scheepers PTJ, Sgargi D, Paulo MS, Schlünssen V, Sembajwe G, Sørensen K, Teixeira LR, Tenkate T, Pega F. Assessor burden, inter-rater agreement and user experience of the RoB-SPEO tool for assessing risk of bias in studies estimating prevalence of exposure to occupational risk factors: An analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2022; 158:107005. [PMID: 34991265 PMCID: PMC8685606 DOI: 10.1016/j.envint.2021.107005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND As part of the development of the World Health Organization (WHO)/International Labour Organization (ILO) Joint Estimates of the Work-related Burden of Disease and Injury, WHO and ILO carried out several systematic reviews to determine the prevalence of exposure to selected occupational risk factors. Risk of bias assessment for individual studies is a critical step of a systematic review. No tool existed for assessing the risk of bias in prevalence studies of exposure to occupational risk factors, so WHO and ILO developed and pilot tested the RoB-SPEO tool for this purpose. Here, we investigate the assessor burden, inter-rater agreement, and user experience of this new instrument, based on the abovementioned WHO/ILO systematic reviews. METHODS Twenty-seven individual experts applied RoB-SPEO to assess risk of bias. Four systematic reviews provided a total of 283 individual assessments, carried out for 137 studies. For each study, two or more assessors independently assessed risk of bias across the eight RoB-SPEO domains selecting one of RoB-SPEO's six ratings (i.e., "low", "probably low", "probably high", "high", "unclear" or "cannot be determined"). Assessors were asked to report time taken (i.e. indicator of assessor burden) to complete each assessment and describe their user experience. To gauge assessor burden, we calculated the median and inter-quartile range of times taken per individual risk of bias assessment. To assess inter-rater reliability, we calculated a raw measure of inter-rater agreement (Pi) for each RoB-SPEO domain, between Pi = 0.00, indicating no agreement and Pi = 1.00, indicating perfect agreement. As subgroup analyses, Pi was also disaggregated by systematic review, assessor experience with RoB-SPEO (≤10 assessments versus > 10 assessments), and assessment time (tertiles: ≤25 min versus 26-66 min versus ≥ 67 min). To describe user experience, we synthesised the assessors' comments and recommendations. RESULTS Assessors reported a median of 40 min to complete one assessment (interquartile range 21-120 min). For all domains, raw inter-rater agreement ranged from 0.54 to 0.82. Agreement varied by systematic review and assessor experience with RoB-SPEO between domains, and increased with increasing assessment time. A small number of users recommended further development of instructions for selected RoB-SPEO domains, especially bias in selection of participants into the study (domain 1) and bias due to differences in numerator and denominator (domain 7). DISCUSSION Overall, our results indicated good agreement across the eight domains of the RoB-SPEO tool. The median assessment time was comparable to that of other risk of bias tools, indicating comparable assessor burden. However, there was considerable variation in time taken to complete assessments. Additional time spent on assessments may improve inter-rater agreement. Further development of the RoB-SPEO tool could focus on refining instructions for selected RoB-SPEO domains and additional testing to assess agreement for different topic areas and with a wider range of assessors from different research backgrounds.
Collapse
Affiliation(s)
- Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Kai N Streicher
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Denise T C da Silva
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Alexis Descatha
- UNIV Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Angers, France; AP-HP (Paris Hospital), Occupational Health Unit, Poincaré University Hospital, Garches, France; Versailles St-Quentin Univ-Paris Saclay Univ (UVSQ), UMS 011, UMR-S 1168, France; Inserm, U1168 UMS 011, Villejuif, France.
| | - Monique H W Frings-Dresen
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health/Coronel Institute of Occupational Health, Amsterdam Research Institute, Amsterdam, the Netherlands.
| | - Diana Gagliardi
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy.
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium; KIR Department (Knowledge, Information & Research), IDEWE, External Service for Prevention and Protection at Work, Leuven, Belgium.
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy.
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
| | - Daniela Pachito
- Núcleo de Avaliação de Tecnologias em Saúde, Hospital Sírio-Libanês, Bela Vista, São Paulo, SP, Brazil; Fundação Getúlio Vargas, Bela Vista, São Paulo, SP, Brazil.
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands.
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Marília Silva Paulo
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Vivi Schlünssen
- Aarhus University, Aarhus, Denmark; National Research Center for the Working Environment, Copenhagen, Denmark.
| | - Grace Sembajwe
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, CUNY Institute for Implementation Science in Population Health, New York, NY, United States.
| | - Kathrine Sørensen
- National Research Center for the Working Environment, Copenhagen, Denmark.
| | - Liliane R Teixeira
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Thomas Tenkate
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
12
|
Rugulies R, Sørensen K, Di Tecco C, Bonafede M, Rondinone BM, Ahn S, Ando E, Ayuso-Mateos JL, Cabello M, Descatha A, Dragano N, Durand-Moreau Q, Eguchi H, Gao J, Godderis L, Kim J, Li J, Madsen IEH, Pachito DV, Sembajwe G, Siegrist J, Tsuno K, Ujita Y, Wang J, Zadow A, Iavicoli S, Pega F. The effect of exposure to long working hours on depression: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2021; 155:106629. [PMID: 34144478 DOI: 10.1016/j.envint.2021.106629] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 03/07/2021] [Accepted: 05/05/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury (WHO/ILO Joint Estimates), supported by a large number of individual experts. Evidence from previous reviews suggests that exposure to long working hours may cause depression. In this article, we present a systematic review and meta-analysis of parameters for estimating (if feasible) the number of deaths and disability-adjusted life years from depression that are attributable to exposure to long working hours, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the effect of exposure to long working hours (three categories: 41-48, 49-54 and ≥55 h/week), compared with exposure to standard working hours (35-40 h/week), on depression (three outcomes: prevalence, incidence and mortality). DATA SOURCES We developed and published a protocol, applying the Navigation Guide as an organizing systematic review framework where feasible. We searched electronic academic databases for potentially relevant records from published and unpublished studies, including the WHO International Clinical Trial Registers Platform, Medline, PubMed, EMBASE, Web of Science, CISDOC and PsycInfo. We also searched grey literature databases, Internet search engines and organizational websites; hand-searched reference lists of previous systematic reviews; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (aged <15 years) and unpaid domestic workers. We included randomized controlled trials, cohort studies, case-control studies and other non-randomized intervention studies with an estimate of the effect of exposure to long working hours (41-48, 49-54 and ≥55 h/week), compared with exposure to standard working hours (35-40 h/week), on depression (prevalence, incidence and/or mortality). STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. Missing data were requested from principal study authors. We combined odds ratios using random-effects meta-analysis. Two or more review authors assessed the risk of bias, quality of evidence and strength of evidence, using Navigation Guide and GRADE tools and approaches adapted to this project. RESULTS Twenty-two studies (all cohort studies) met the inclusion criteria, comprising a total of 109,906 participants (51,324 females) in 32 countries (as one study included multiple countries) in three WHO regions (Americas, Europe and Western Pacific). The exposure was measured using self-reports in all studies, and the outcome was assessed with a clinical diagnostic interview (four studies), interview questions about diagnosis and treatment of depression (three studies) or a validated self-administered rating scale (15 studies). The outcome was defined as incident depression in all 22 studies, with first time incident depression in 21 studies and recurrence of depression in one study. We did not identify any study on prevalence of depression or on mortality from depression. For the body of evidence for the outcome incident depression, we had serious concerns for risk of bias due to selection because of incomplete outcome data (most studies assessed depression only twice, at baseline and at a later follow-up measurement, and likely have missed cases of depression that occurred after baseline but were in remission at the time of the follow-up measurement) and due to missing information on life-time prevalence of depression before baseline measurement. Compared with working 35-40 h/week, we are uncertain about the effect on acquiring (or incidence of) depression of working 41-48 h/week (pooled odds ratio (OR) 1.05, 95% confidence interval (CI) 0.86 to 1.29, 8 studies, 49,392 participants, I2 46%, low quality of evidence); 49-54 h/week (OR 1.06, 95% CI 0.93 to 1.21, 8 studies, 49,392 participants, I2 40%, low quality of evidence); and ≥ 55 h/week (OR 1.08, 95% CI 0.94 to 1.24, 17 studies, 91,142 participants, I2 46%, low quality of evidence). Subgroup analyses found no evidence for statistically significant (P < 0.05) differences by WHO region, sex, age group and socioeconomic status. Sensitivity analyses found no statistically significant differences by outcome measurement (clinical diagnostic interview [gold standard] versus other measures) and risk of bias ("high"/"probably high" ratings in any domain versus "low"/"probably low" in all domains). CONCLUSIONS We judged the existing bodies of evidence from human data as "inadequate evidence for harmfulness" for all three exposure categories, 41-48, 48-54 and ≥55 h/week, for depression prevalence, incidence and mortality; the available evidence is insufficient to assess effects of the exposure. Producing estimates of the burden of depression attributable to exposure to long working appears not evidence-based at this point. Instead, studies examining the association between long working hours and risk of depression are needed that address the limitations of the current evidence.
Collapse
Affiliation(s)
- Reiner Rugulies
- National Research Centre for the Working Environment, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Kathrine Sørensen
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Cristina Di Tecco
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone (Rome), Italy.
| | - Michela Bonafede
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone (Rome), Italy.
| | - Bruna M Rondinone
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone (Rome), Italy.
| | - Seoyeon Ahn
- National Pension Research Institute, Jeonju-si, Republic of Korea.
| | | | - Jose Luis Ayuso-Mateos
- Department of Psychiatry, Universidad Autonoma de Madrid, Madrid, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain.
| | - Maria Cabello
- Department of Psychiatry, Universidad Autonoma de Madrid, Madrid, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Alexis Descatha
- Univ Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-49000 Angers, France; AP-HP (Paris Hospital), Occupational Health Unit, Poincaré University Hospital, Garches, France; Inserm Versailles St-Quentin Univ - Paris Saclay Univ (UVSQ), UMS 011, UMR-S 1168, Villejuif, France.
| | - Nico Dragano
- Institute of Medical Sociology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany.
| | - Quentin Durand-Moreau
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Canada.
| | - Hisashi Eguchi
- Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Public Health, Kitasato University School of Medicine, Sagamihara, Knagawa, Japan.
| | - Junling Gao
- School of Public Health, Fudan University, Shanghai, People's Republic of China.
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium; KIR Department (Knowledge, Information & Research), IDEWE, External Service for Prevention and Protection at Work, Leuven, Belgium.
| | - Jaeyoung Kim
- Department of Preventive Medicine, College of Medicine, Keimyung University, Daegu, Republic of Korea.
| | - Jian Li
- Department of Environmental Health Sciences, Fielding School of Public Health, School of Nursing, University of California, Los Angeles, United States.
| | - Ida E H Madsen
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | | | - Grace Sembajwe
- Department of Occupational Medicine Epidemiology and Prevention, Zucker School of Medicine at Hofstra University, Feinstein Institutes for Medical Research, Northwell Health, New York, United States; Department of Environmental Occupational and Geospatial Sciences, CUNY Institute for Implementation Science in Public Health, CUNY Graduate School of Public Health and Health Policy, New York, United States.
| | | | - Kanami Tsuno
- School of Health Innovation, Kanagawa University of Human Services, Japan.
| | - Yuka Ujita
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland.
| | - JianLi Wang
- Institute of Mental Health Research, University of Ottawa, Canada.
| | - Amy Zadow
- University of South Australia, Adelaide, Australia.
| | - Sergio Iavicoli
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone (Rome), Italy.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
13
|
Pega F, Momen NC, Ujita Y, Driscoll T, Whaley P. Systematic reviews and meta-analyses for the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2021; 155:106605. [PMID: 34051644 PMCID: PMC8287588 DOI: 10.1016/j.envint.2021.106605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Yuka Ujita
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland
| | - Tim Driscoll
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Paul Whaley
- Lancaster Environment Centre, Lancaster University, Lancaster, Great Britain and Northern Ireland, United Kingdom; Editorial Office of Environment International, Great Britain and Northern Ireland, United Kingdom
| |
Collapse
|
14
|
Teixeira LR, Pega F, de Abreu W, de Almeida MS, de Andrade CAF, Azevedo TM, Dzhambov AM, Hu W, Macedo MRV, Martínez-Silveira MS, Sun X, Zhang M, Zhang S, Correa da Silva DT. The prevalence of occupational exposure to noise: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2021; 154:106380. [PMID: 33875242 PMCID: PMC8204275 DOI: 10.1016/j.envint.2021.106380] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large network of individual experts. Evidence from mechanistic and human data suggests that occupational exposure to noise may cause cardiovascular disease. In this paper, we present a systematic review and meta-analysis of the prevalence of occupational exposure to noise for estimating (if feasible) the number of deaths and disability-adjusted life years from cardiovascular disease that are attributable to exposure to this risk factor, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the prevalence of occupational exposure to noise. DATA SOURCES We searched electronic academic databases for potentially relevant records from published and unpublished studies, including Ovid Medline, PubMed, EMBASE, and CISDOC. We also searched electronic grey literature databases, Internet search engines, and organizational websites; hand-searched reference list of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥15 years) workers in the formal and informal economies in any WHO Member and/or ILO member State, but excluded children (<15 years) and unpaid domestic workers. We included all study types with an estimate of the prevalence of occupational exposure to noise, categorized into two levels: no (low) occupational exposure to noise (<85dBA) and any (high) occupational exposure to noise (≥85dBA). STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. We combined prevalence estimates using random-effect meta-analysis. Two or more review authors assessed the risk of bias and the quality of evidence, using the RoB-SPEO tool and QoE-SPEO approach developed specifically for the WHO/ILO Joint Estimates. RESULTS Sixty-five studies (56 cross-sectional studies and nine cohort studies) met the inclusion criteria, comprising 157,370 participants (15,369 females) across 28 countries and all six WHO regions (Africa, Americas, Eastern Mediterranean, Europe, South-East Asia, and Western Pacific). For the main analyses, we prioritized the four included studies that surveyed national probability samples of general populations of workers over the 58 studies of workers in industrial sectors and/or occupations with relatively high occupational exposure to noise. The exposure was generally assessed with dosimetry, sound level meter, or official or company records; in the population-based studies, it was assessed with validated questions. Estimates of the prevalence of occupational exposure to noise are presented for all 65 included studies, by country, sex, 5-year age group, industrial sector, and occupation where feasible. The pooled prevalence of any (high) occupational exposure to noise (≥85dBA) among the general population of workers was 0.17 (95% confidence interval 0.16 to 0.19, 4 studies, 108,256 participants, 38 countries, two WHO regions, I2 98%, low quality of evidence). Subgroup analyses showed that pooled prevalence differed substantially by WHO region, sex, industrial sector, and occupation. CONCLUSIONS Our systematic review and meta-analysis found that occupational exposure to noise is prevalent among general populations of workers. The current body of evidence is, however, of low quality, due to serious concerns for risk of bias and indirectness. Producing estimates of occupational exposure to noise nevertheless appears evidence-based, and the pooled effect estimates presented in this systematic review are suitable as input data for the WHO/ILO Joint Estimates (if feasible). Protocol identifier: 10.1016/j.envint.2018.09.040 PROSPERO registration number: CRD42018092272.
Collapse
Affiliation(s)
- Liliane R Teixeira
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Wagner de Abreu
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Marcia S de Almeida
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Carlos A F de Andrade
- Department of Epidemiology and Quantitative Methods in Health, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; School of Medicine, Universidade de Vassouras, Vassouras, RJ, Brazil.
| | - Tatiana M Azevedo
- Workers' State Secretariat of Health, Rio de Janeiro, RJ, Brazil; State Reference Center in Workers' Health, Rio de Janeiro, RJ, Brazil.
| | - Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria.
| | - Weijiang Hu
- National Institute for Occupational Health and Poison Control, Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Marta R V Macedo
- Workers' Health Coordination, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | | | - Xin Sun
- National Institute for Occupational Health and Poison Control, Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Meibian Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.
| | - Siyu Zhang
- National Institute for Occupational Health and Poison Control, Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Denise T Correa da Silva
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Teixeira LR, Pega F, Dzhambov AM, Bortkiewicz A, da Silva DTC, de Andrade CAF, Gadzicka E, Hadkhale K, Iavicoli S, Martínez-Silveira MS, Pawlaczyk-Łuszczyńska M, Rondinone BM, Siedlecka J, Valenti A, Gagliardi D. The effect of occupational exposure to noise on ischaemic heart disease, stroke and hypertension: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2021; 154:106387. [PMID: 33612311 PMCID: PMC8204276 DOI: 10.1016/j.envint.2021.106387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large number of individual experts. Evidence from mechanistic data suggests that occupational exposure to noise may cause cardiovascular disease (CVD). In this paper, we present a systematic review and meta-analysis of parameters for estimating the number of deaths and disability-adjusted life years from CVD that are attributable to occupational exposure to noise, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the effect of any (high) occupational exposure to noise (≥85 dBA), compared with no (low) occupational exposure to noise (<85 dBA), on the prevalence, incidence and mortality of ischaemic heart disease (IHD), stroke, and hypertension. DATA SOURCES A protocol was developed and published, applying the Navigation Guide as an organizing systematic review framework where feasible. We searched electronic academic databases for potentially relevant records from published and unpublished studies up to 1 April 2019, including International Trials Register, Ovid MEDLINE, PubMed, Embase, Lilacs, Scopus, Web of Science, and CISDOC. The MEDLINE and Pubmed searches were updated on 31 January 2020. We also searched grey literature databases, Internet search engines and organizational websites; hand-searched reference lists of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (<15 years) and unpaid domestic workers. We included randomized controlled trials, cohort studies, case-control studies and other non-randomized intervention studies with an estimate of the effect of any occupational exposure to noise on CVD prevalence, incidence or mortality, compared with the theoretical minimum risk exposure level (<85 dBA). STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. We prioritized evidence from cohort studies and combined relative risk estimates using random-effect meta-analysis. To assess the robustness of findings, we conducted sensitivity analyses (leave-one-out meta-analysis and used as alternative fixed effects and inverse-variance heterogeneity estimators). At least two review authors assessed the risk of bias, quality of evidence and strength of evidence, using Navigation Guide tools and approaches adapted to this project. RESULTS Seventeen studies (11 cohort studies, six case-control studies) met the inclusion criteria, comprising a total of 534,688 participants (39,947 or 7.47% females) in 11 countries in three WHO regions (the Americas, Europe, and the Western Pacific). The exposure was generally assessed with dosimetry, sound level meter and/or official or company records. The outcome was most commonly assessed using health records. We are very uncertain (low quality of evidence) about the effect of occupational exposure to noise (≥85 dBA), compared with no occupational exposure to noise (<85 dBA), on: having IHD (0 studies); acquiring IHD (relative risk (RR) 1.29, 95% confidence interval (95% CI) 1.15 to 1.43, two studies, 11,758 participants, I2 0%); dying from IHD (RR 1.03, 95% CI 0.93-1.14, four studies, 198,926 participants, I2 26%); having stroke (0 studies); acquiring stroke (RR 1.11, 95% CI 0.82-1.65, two studies, 170,000 participants, I2 0%); dying from stroke (RR 1.02, 95% CI 0.93-1.12, three studies, 195,539 participants, I2 0%); having hypertension (0 studies); acquiring hypertension (RR 1.07, 95% CI 0.90-1.28, three studies, four estimates, 147,820 participants, I2 52%); and dying from hypertension (0 studies). Data for subgroup analyses were missing. Sensitivity analyses supported the main analyses. CONCLUSIONS For acquiring IHD, we judged the existing body of evidence from human data to provide "limited evidence of harmfulness"; a positive relationship is observed between exposure and outcome where chance, bias, and confounding cannot be ruled out with reasonable confidence. For all other included outcomes, the bodies of evidence were judged as "inadequate evidence of harmfulness". Producing estimates for the burden of CVD attributable to occupational exposure to noise appears to not be evidence-based at this time. PROTOCOL IDENTIFIER 10.1016/j.envint.2018.09.040. PROSPERO REGISTRATION NUMBER CRD42018092272.
Collapse
Affiliation(s)
- Liliane R Teixeira
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria.
| | - Alicja Bortkiewicz
- Department of Work Physiology and Ergonomics, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Denise T Correa da Silva
- Workers' Health and Human Ecology Research Center, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Carlos A F de Andrade
- Department of Epidemiology and Quantitative Methods in Health, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; School of Medicine, Universidade de Vassouras, Vassouras, RJ, Brazil.
| | - Elzbieta Gadzicka
- Department of Work Physiology and Ergonomics, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Kishor Hadkhale
- Faculty of Social Sciences, University of Tampere, Tampere, Finland.
| | - Sergio Iavicoli
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome, Italy.
| | | | | | - Bruna M Rondinone
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome, Italy.
| | - Jadwiga Siedlecka
- Department of Work Physiology and Ergonomics, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Antonio Valenti
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome, Italy.
| | - Diana Gagliardi
- Inail, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
16
|
Boudjema J, Lima B, Grare C, Alleman LY, Rousset D, Perdrix E, Achour D, Anthérieu S, Platel A, Nesslany F, Leroyer A, Nisse C, Lo Guidice JM, Garçon G. Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NANOIMPACT 2021; 23:100346. [PMID: 35559847 DOI: 10.1016/j.impact.2021.100346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 μm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 μg/cm2, 24 h) or repeatedly (0.25 and 1.5 μg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.
Collapse
Affiliation(s)
- J Boudjema
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Action Santé Travail, Aix-Noulette, France
| | - B Lima
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Y Alleman
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Rousset
- Institut National de Recherche et de Sécurité (INRS), Department of Pollutant Metrology, 54500 Vandœuvre-lès-Nancy, France
| | - E Perdrix
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - S Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - F Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Leroyer
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Nisse
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - J-M Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
17
|
Scott NB, Pocock NS. The Health Impacts of Hazardous Chemical Exposures among Child Labourers in Low- and Middle-Income Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5496. [PMID: 34065553 PMCID: PMC8160821 DOI: 10.3390/ijerph18105496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Of 218 million working children worldwide, many are suspected to be exposed to hazardous chemicals. This review aims to synthesize reported evidence over the last two decades on chemical exposure and adverse health consequences in children labourers in low- and middle-income Countries (LMIC). Included studies investigated health outcomes related to chemical exposures among child labourers aged 5-18 in LMIC. Twenty-three papers were selected for review, focusing on pesticides (n = 5), solvents (n = 3), metals (n = 13) and persistent organic pollutants (POPs) (n = 2). Adverse health effects identified among child labourers included abnormal biomarkers, for example elevated blood and urine chemical concentrations, neurobehavioural deficits and neurological symptoms, mental health issues, oxidative stress and DNA damage, poor growth, asthma, and hypothyroidism. Workplace exposure to chemicals has pernicious health effects on child labourers. Large research gaps exist, in particular for long-term health impacts through chronic conditions and diseases with long latencies. A sizeable disease burden in later life is likely to be directly attributable to chemicals exposures. We urge national and international agencies concerned with child labour and occupational health, to prioritize research and interventions aiming to reduce noxious chemical exposures in workplaces where children are likely to be present.
Collapse
Affiliation(s)
| | - Nicola S. Pocock
- Lumos Foundation, London EC3R 8NB, UK;
- Gender Violence & Health Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
18
|
Hulshof CTJ, Pega F, Neupane S, Colosio C, Daams JG, Kc P, Kuijer PPFM, Mandic-Rajcevic S, Masci F, van der Molen HF, Nygård CH, Oakman J, Proper KI, Frings-Dresen MHW. The effect of occupational exposure to ergonomic risk factors on osteoarthritis of hip or knee and selected other musculoskeletal diseases: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2021; 150:106349. [PMID: 33546919 DOI: 10.1016/j.envint.2020.106349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large network of experts. Evidence from mechanistic data suggests that occupational exposure to ergonomic risk factors may cause selected other musculoskeletal diseases, other than back or neck pain (MSD) or osteoarthritis of hip or knee (OA). In this paper, we present a systematic review and meta-analysis of parameters for estimating the number of disability-adjusted life years from MSD or OA that are attributable to occupational exposure to ergonomic risk factors, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the effect of occupational exposure to ergonomic risk factors (force exertion, demanding posture, repetitiveness, hand-arm vibration, lifting, kneeling and/or squatting, and climbing) on MSD and OA (two outcomes: prevalence and incidence). DATA SOURCES We developed and published a protocol, applying the Navigation Guide as an organizing systematic review framework where feasible. We searched electronic academic databases for potentially relevant records from published and unpublished studies, including the International Trials Register, Ovid Medline, EMBASE, and CISDOC. We also searched electronic grey literature databases, Internet search engines and organizational websites; hand-searched reference list of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (<15 years) and unpaid domestic workers. We included randomized controlled trials, cohort studies, case-control studies and other non-randomized intervention studies with an estimate of the effect of occupational exposure to ergonomic risk factors (any exposure to force exertion, demanding posture, repetitiveness, hand-arm vibration, lifting, kneeling and/or squatting, and climbing ≥ 2 h/day) compared with no or low exposure to the theoretical minimum risk exposure level (<2 h/day) on the prevalence or incidence of MSD or OA. STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. Missing data were requested from principal study authors. We combined odds ratios using random-effect meta-analysis. Two or more review authors assessed the risk of bias and the quality of evidence, using Navigation Guide tools adapted to this project. RESULTS In total eight studies (4 cohort studies and 4 case control studies) met the inclusion criteria, comprising a total of 2,378,729 participants (1,157,943 females and 1,220,786 males) in 6 countries in 3 WHO regions (Europe, Eastern Mediterranean and Western Pacific). The exposure was measured using self-reports in most studies and with a job exposure matrix in one study and outcome was generally assessed with physician diagnostic records or administrative health data. Across included studies, risk of bias was generally moderate. Compared with no or low exposure (<2 h per day), any occupational exposure to ergonomic risk factors increased the risk of acquiring MSD (odds ratio (OR) 1.76, 95% confidence interval [CI] 1.14 to 2.72, 4 studies, 2,376,592 participants, I2 70%); and increased the risk of acquiring OA of knee or hip (OR 2.20, 95% CI 1.42 to 3.40, 3 studies, 1,354 participants, I2 13%); Subgroup analysis for MSD found evidence for differences by sex, but indicated a difference in study type, where OR was higher among study participants in a case control study compared to study participants in cohort studies. CONCLUSIONS Overall, for both outcomes, the main body of evidence was assessed as being of low quality. Occupational exposure to ergonomic risk factors increased the risk of acquiring MSD and of acquiring OA of knee or hip. We judged the body of human evidence on the relationship between exposure to occupational ergonomic factors and MSD as "limited evidence of harmfulness" and the relationship between exposure to occupational ergonomic factors and OA also as "limited evidence of harmfulness". These relative risks might perhaps be suitable as input data for WHO/ILO modelling of work-related burden of disease and injury. Protocol identifier: https://doi.org/10.1016/j.envint.2018.09.053 PROSPERO registration number: CRD42018102631.
Collapse
Affiliation(s)
- Carel T J Hulshof
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Subas Neupane
- Unit of Health Sciences, Faculty of Social Science, Tampere University, Tampere, Finland.
| | - Claudio Colosio
- Department of Health Sciences, University of Milan, Milan, Italy; International Centre for Rural Heath, University Hospital San Paolo, Milan, Italy.
| | - Joost G Daams
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Prakash Kc
- Unit of Health Sciences, Faculty of Social Science, Tampere University, Tampere, Finland.
| | - Paul P F M Kuijer
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Stefan Mandic-Rajcevic
- Department of Health Sciences, University of Milan, Milan, Italy; International Centre for Rural Heath, University Hospital San Paolo, Milan, Italy.
| | - Federica Masci
- Department of Health Sciences, University of Milan, Milan, Italy; International Centre for Rural Heath, University Hospital San Paolo, Milan, Italy.
| | - Henk F van der Molen
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Clas-Håkan Nygård
- Unit of Health Sciences, Faculty of Social Science, Tampere University, Tampere, Finland.
| | - Jodi Oakman
- Centre for Ergonomics and Human Factors, School of Psychology and Public Health, LaTrobe University, Melbourne, Australia.
| | - Karin I Proper
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Amsterdam, the Netherlands.
| | - Monique H W Frings-Dresen
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Hulshof CTJ, Pega F, Neupane S, van der Molen HF, Colosio C, Daams JG, Descatha A, Kc P, Kuijer PPFM, Mandic-Rajcevic S, Masci F, Morgan RL, Nygård CH, Oakman J, Proper KI, Solovieva S, Frings-Dresen MHW. The prevalence of occupational exposure to ergonomic risk factors: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2021; 146:106157. [PMID: 33395953 DOI: 10.1016/j.envint.2020.106157] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing joint estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large network of experts. Evidence from mechanistic and human data suggests that occupational exposure to ergonomic (or physical) risk factors may cause osteoarthritis and other musculoskeletal diseases (excluding rheumatoid arthritis, gout, and back and neck pain). In this paper, we present a systematic review and meta-analysis of the prevalence of occupational exposure to physical ergonomic risk factors for estimating the number of disability-adjusted life years from these diseases that are attributable to exposure to this risk factor, for the development of the WHO/ILO Joint Estimates. OBJECTIVES We aimed to systematically review and meta-analyse estimates of the prevalence of occupational exposure to ergonomic risk factors for osteoarthritis and other musculoskeletal diseases. DATA SOURCES We searched electronic bibliographic databases for potentially relevant records from published and unpublished studies, including Ovid Medline, EMBASE, and CISDOC. We also searched electronic grey literature databases, Internet search engines and organizational websites; hand-searched reference list of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA We included working-age (≥15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (<15 years) and unpaid domestic workers. The exposure was defined as any occupational exposure to one or more of: force exertion, demanding posture, repetitive movement, hand-arm vibration, kneeling or squatting, lifting, and/or climbing. We included all study types with an estimate of the prevalence of occupational exposure to ergonomic risk factors. STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. We combined prevalence estimates using random-effect meta-analysis. Two or more review authors assessed the risk of bias and the quality of evidence, using the ROB-SPEO tool and QoE-SPEO approach developed specifically for the WHO/ILO Joint Estimates. RESULTS Five studies (three cross-sectional studies and two cohort studies) met the inclusion criteria, comprising 150,895 participants (81,613 females) in 36 countries in two WHO regions (Africa, Europe). The exposure was generally assessed with questionnaire data about self-reported exposure. Estimates of the prevalence of occupational exposure to ergonomic risk factors are presented for all five included studies, disaggregated by country, sex, 5-year age group, industrial sector or occupational group where feasible. The pooled prevalence of any occupational exposure to ergonomic risk factors was 0.76 (95% confidence interval 0.69 to 0.84, 3 studies, 148,433 participants, 35 countries in the WHO Europe region, I2 100%, low quality of evidence). Subgroup analyses found no statistically significant differences in exposure by sex but differences by age group, occupation and country. No evidence was found for publication bias. We assessed this body evidence to be of low quality, based on serious concerns for risk of bias due to exposure assessment only being based on self-report and for indirectness due to evidence from two WHO regions only. CONCLUSIONS Our systematic review and meta-analysis found that occupational exposure to ergonomic risk factors is highly prevalent. The current body of evidence is, however, limited, especially by risk of bias and indirectness. Producing estimates for the burden of disease attributable to occupational exposure to ergonomic risk factors appears evidence-based, and the pooled effect estimates presented in this systematic review may perhaps be used as input data for the WHO/ILO Joint Estimates. Protocol identifier:https://doi.org/10.1016/j.envint.2018.09.053. PROSPERO registration number: CRD42018102631.
Collapse
Affiliation(s)
- Carel T J Hulshof
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Subas Neupane
- Unit of Health Sciences, Faculty of Social Science, Tampere University, Tampere, Finland.
| | - Henk F van der Molen
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Claudio Colosio
- Department of Health Sciences, University of Milan, Milan, Italy; International Centre for Rural Heath, University Hospital San Paolo, Milan, Italy.
| | - Joost G Daams
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Alexis Descatha
- AP-HP (Paris Hospital), Occupational Health Unit, Poincaré University Hospital, Garches, France; Inserm Versailles St-Quentin Univ - Paris Saclay Univ (UVSQ), Villejuif, France; Univ Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Angers, France.
| | - Prakash Kc
- Unit of Health Sciences, Faculty of Social Science, Tampere University, Tampere, Finland.
| | - Paul P F M Kuijer
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| | - Stefan Mandic-Rajcevic
- Department of Health Sciences, University of Milan, Milan, Italy; International Centre for Rural Heath, University Hospital San Paolo, Milan, Italy.
| | - Federica Masci
- Department of Health Sciences, University of Milan, Milan, Italy; International Centre for Rural Heath, University Hospital San Paolo, Milan, Italy.
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Ontario, Canada.
| | - Clas-Håkan Nygård
- Unit of Health Sciences, Faculty of Social Science, Tampere University, Tampere, Finland.
| | - Jodi Oakman
- Centre for Ergonomics and Human Factors, School of Psychology and Public Health, LaTrobe University, Melbourne, Australia.
| | - Karin I Proper
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | | | - Monique H W Frings-Dresen
- Amsterdam UMC, University of Amsterdam, Department Public and Occupational Health, Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|