1
|
Qi W, Zhang H, Han Y, Chen W, Teng Y, Chatzidiakou L, Barratt B, Jones R, Kelly F, Zhu T, Zhang J, Ji JS. Short-term air pollution and greenness exposures on oxidative stress in urban and peri-urban residents in Beijing: A part of AIRLESS study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175148. [PMID: 39089388 DOI: 10.1016/j.scitotenv.2024.175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Exposure to air pollution has been associated with increased risks of cardiopulmonary diseases, cancer, and mortality, whereas residing near green spaces may reduce the risks. However, limited research explores their combined effect on oxidative stress. METHODS A total of 251 participants with multi-time measurements were included in the longitudinal-designed study. Personal gaseous air pollutants (CO, NO, NO2, and O3,) and particulate pollution (PM1, PM2.5, and PM10) were measured and followed in two 7-day windows while ambient exposure levels and urine samples were collected simultaneously. Participants' Normalized Difference Vegetation Index (NDVI) was estimated and used to represent greenness exposure. Urinary oxidative stress biomarkers include free malondialdehyde (MDA), total MDA, and 8-hydroxydeoxyguanosine (8-OHdG). Linear mixed-effects models were used to independently and jointly estimate the associations of greenness and air pollution with oxidative stress biomarkers. RESULTS We found consistent positive associations of personal ozone (O3) exposure with 8-OHdG percent changes, and this association was modified by gender and outdoor activity frequency. Consistent positive associations of personal lag 2-day carbon monoxide (CO) exposure with the percent changes of the three oxidative stress biomarkers were significant. We additionally observed that individuals who lived in greener areas had lower levels of urinary-free and total MDA. Participants in the highest NDVI tertile had 0.38 and 0.46 lower free and total MDA levels, [95 % CI: (-0.70, -0.05) and (-0.78, -0.13)], compared to the lowest NDVI tertile. There was also evidence indicating the modification effects by area, education, and outdoor activity frequency on associations between NDVI exposure and creatinine adjusted free MDA (all Pfor interaction < 0.05). Additional greenness modification effects on personal O3 exposure with urinary 8-OHdG was observed. CONCLUSION Our study provides biological evidence of the modification effect of the built environment on the impact of air pollution.
Collapse
Affiliation(s)
- Wenhao Qi
- Global Health Research Center, Duke Kunshan University, Duke University, Kunshan, China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK; European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, UK
| | - Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK; BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yanbo Teng
- Global Health Research Center, Duke Kunshan University, Duke University, Kunshan, China
| | - Lia Chatzidiakou
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benjamin Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Rod Jones
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Frank Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Junfeng Zhang
- Global Health Research Center, Duke Kunshan University, Duke University, Kunshan, China; Nicholas School of the Environment, Duke University, Durham, NC, United States; Duke Global Health Institute, Duke University, Durham, NC, United States
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Chen W, Han Y, Xu Y, Wang T, Wang Y, Chen X, Qiu X, Li W, Li H, Fan Y, Yao Y, Zhu T. Fine particulate matter exposure and systemic inflammation: A potential mediating role of bioactive lipids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172993. [PMID: 38719056 DOI: 10.1016/j.scitotenv.2024.172993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, Hebei, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; China National Environmental Monitoring Centre, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
3
|
Hua L, Gao Y, Guo S, Zhu H, Yao Y, Wang B, Fang J, Sun H, Xu F, Zhao H. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons of Rural Population in Northwestern China: Oxidative Stress and Health Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7758-7769. [PMID: 38669205 DOI: 10.1021/acs.est.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure is suspected to be linked to oxidative damage. Herein, ten PAH human exposure biomarkers [hydroxylated PAH metabolites (OH-PAHs)] and five oxidative stress biomarkers (OSBs) were detected in urine samples collected from participants living in a rural area (n = 181) in Northwestern China. The median molar concentration of ΣOH-PAHs in urine was 47.0 pmol mL-1. The 2-hydroxynaphthalene (2-OHNap; median: 2.21 ng mL-1) was the dominant OH-PAH. The risk assessment of PAH exposure found that hazard index (HI) values were <1, indicating that the PAH exposure of rural people in Jingyuan would not generate significant cumulative risks. Smokers (median: 0.033) obtained higher HI values than nonsmokers (median: 0.015, p < 0.01), suggesting that smokers face a higher health risk from PAH exposure than nonsmokers. Pearson correlation and multivariate linear regression analysis revealed that ΣOH-PAH concentrations were significant factors in increasing the oxidative damage to deoxyribonucleic acid (DNA) (8-hydroxy-2'-deoxyguanosine, 8-OHdG), ribonucleic acid (RNA) (8-oxo-7,8-dihydroguanine, 8-oxoGua), and protein (o, o'-dityrosine, diY) (p < 0.05). Among all PAH metabolites, only 1-hydroxypyrene (1-OHPyr) could positively affect the expression of all five OSBs (p < 0.05), suggesting that urinary 1-OHPyr might be a reliable biomarker for PAH exposure and a useful indicator for assessing the impacts of PAH exposure on oxidative stress. This study is focused on the relation between PAH exposure and oxidative damage and lays a foundation for the study of the health effect mechanism of PAHs.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Yafei Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fuliu Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Lin Y, Wang X, Chen R, Weil T, Ge Y, Stapleton HM, Bergin MH, Zhang J(J. Arachidonic Acid Metabolites in Self-collected Biospecimens Following Campfire Exposure: Exploring Non-invasive Biomarkers of Wildfire Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:201-207. [PMID: 38828437 PMCID: PMC11144521 DOI: 10.1021/acs.estlett.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Climate change has contributed to increased frequency and intensity of wildfire. Studying its acute effects is limited due to unpredictable nature of wildfire occurrence, which necessitates readily deployable techniques to collect biospecimens. To identify biomarkers of wildfire's acute effects, we conducted this exploratory study in eight healthy campers (four men and four women) who self-collected nasal fluid, urine, saliva, and skin wipes at different time points before, during, and after 4-hour exposure to wood smoke in a camping event. Concentrations of black carbon in the air and polycyclic aromatic hydrocarbons in participants' silicone wristbands were significantly elevated during the exposure session. Among 30 arachidonic acid metabolites measured, lipoxygenase metabolites were more abundant in nasal fluid and saliva, whereas cyclooxygenase and non-enzymatic metabolites were more abundant in urine. We observed drastic increases, at 8 hours following the exposure, in urinary levels of PGE2 (398%) and 15-keto-PGF2α (191%) (FDR<10%), with greater increases in men (FDR < 0.01%) than in women. No significant changes were observed for other metabolites in urine or the other biospecimens. Our results suggest urinary PGE2 and 15-keto-PGF2α as promising biomarkers reflecting pathophysiologic (likely sex-dependent) changes induced by short-term exposure to wildfire.
Collapse
Affiliation(s)
- Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Ruoxue Chen
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Tenley Weil
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Yihui Ge
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| | - Michael H. Bergin
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, United States
| | - Junfeng (Jim) Zhang
- Duke Global Health Institute, Duke University, Durham, NC, 27710, United States
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, United States
| |
Collapse
|
5
|
Liang S, Lu Z, Cai L, Zhu M, Zhou H, Zhang J. Multi-Omics analysis reveals molecular insights into the effects of acute ozone exposure on lung tissues of normal and obese male mice. ENVIRONMENT INTERNATIONAL 2024; 183:108436. [PMID: 38219541 DOI: 10.1016/j.envint.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Certain sub-groups, including men and obese individuals, are more susceptible to ozone (O3) exposure, but the underlying molecular mechanisms remain unclear. In this study, the male mice were divided into two dietary groups: one fed a high-fat diet (HFD), mimicking obesity conditions, and the other fed a normal diet (ND), then exposed to 0.5 ppm and 2 ppm O3 for 4 h per day over two days. The HFD mice exhibited significantly higher body weight and serum lipid biochemical indicators compared to the ND mice. Obese mice also exhibited more severe pulmonary inflammation and oxidative stress. Using a multi-omics approach including proteomics, metabolomics, and lipidomics, we observed that O3 exposure induced significant pulmonary molecular changes in both obese and normal mice, primarily arachidonic acid metabolism and lipid metabolism. Different molecular biomarker responses to acute O3 exposure were also observed between two dietary groups, with immune-related proteins impacted in obese mice and PPAR pathway-related proteins affected in normal mice. Furthermore, although not statistically significant, O3 exposure tended to aggravate HFD-induced disturbances in lung glycerophospholipid metabolism. Overall, this study provides valuable molecular insights into the responses of lung to O3 exposure and highlights the potential impact of O3 on obesity-induced metabolic changes.
Collapse
Affiliation(s)
- Shijia Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Lijing Cai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Miao Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Haixia Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Liao J, Goodrich J, Walker DI, Lin Y, Lurmann F, Qiu C, Jones DP, Gilliland F, Chazi L, Chen Z. Metabolic pathways altered by air pollutant exposure in association with lipid profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121522. [PMID: 37019258 PMCID: PMC10243191 DOI: 10.1016/j.envpol.2023.121522] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 06/08/2023]
Abstract
Mounting evidence suggests that air pollution influences lipid metabolism and dyslipidemia. However, the metabolic mechanisms linking air pollutant exposure and altered lipid metabolism is not established. In year 2014-2018, we conducted a cross-sectional study on 136 young adults in southern California, and assessed lipid profiles (triglycerides, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, very-low-density lipoprotein (VLDL)-cholesterol), and untargeted serum metabolomics using liquid chromatography-high-resolution mass spectrometry, and one-month and one-year averaged exposures to NO2, O3, PM2.5 and PM10 air pollutants at residential addresses. A metabolome-wide association analysis was conducted to identify metabolomic features associated with each air pollutant. Mummichog pathway enrichment analysis was used to assess altered metabolic pathways. Principal component analysis (PCA) was further conducted to summarize 35 metabolites with confirmed chemical identity. Lastly, linear regression models were used to analyze the associations of metabolomic PC scores with each air pollutant exposure and lipid profile outcome. In total, 9309 metabolomic features were extracted, with 3275 features significantly associated with exposure to one-month or one-year averaged NO2, O3, PM2.5 and PM10 (p < 0.05). Metabolic pathways associated with air pollutants included fatty acid, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism. PCA of 35 metabolites identified three main PCs which together explained 44.4% of the variance, representing free fatty acids and oxidative byproducts, amino acids and organic acids. Linear regression indicated that the free fatty acids and oxidative byproducts-related PC score was associated with air pollutant exposure and outcomes of total cholesterol and LDL-cholesterol (p < 0.05). This study suggests that exposure to NO2, O3, PM2.5 and PM10 contributes to increased level of circulating free fatty acids, likely through increased adipose lipolysis, stress hormone and response to oxidative stress pathways. These alterations were associated with dysregulation of lipid profiles and potentially could contribute to dyslipidemia and other cardiometabolic disorders.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Fred Lurmann
- Sonoma Technology Inc., Petaluma, CA, United States
| | - Chenyu Qiu
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Dean P Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Lida Chazi
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
7
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
8
|
Munnia A, Bollati V, Russo V, Ferrari L, Ceppi M, Bruzzone M, Dugheri S, Arcangeli G, Merlo F, Peluso M. Traffic-Related Air Pollution and Ground-Level Ozone Associated Global DNA Hypomethylation and Bulky DNA Adduct Formation. Int J Mol Sci 2023; 24:ijms24032041. [PMID: 36768368 PMCID: PMC9916664 DOI: 10.3390/ijms24032041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Studies have indicated that air pollution, including surface-level ozone (O3), can significantly influence the risk of chronic diseases. To better understand the carcinogenic mechanisms of air pollutants and identify predictive disease biomarkers, we examined the association between traffic-related pollutants with DNA methylation alterations and bulky DNA adducts, two biomarkers of carcinogen exposure and cancer risk, in the peripheral blood of 140 volunteers-95 traffic police officers, and 45 unexposed subjects. The DNA methylation and adduct measurements were performed by bisulfite-PCR and pyrosequencing and 32P-postlabeling assay. Airborne levels of benzo(a)pyrene [B(a)P], carbon monoxide, and tropospheric O3 were determined by personal exposure biomonitoring or by fixed monitoring stations. Overall, air pollution exposure was associated with a significant reduction (1.41 units) in global DNA methylation (95% C.I. -2.65-0.04, p = 0.026). The decrement in ALU repetitive elements was greatest in the policemen working downtown (95% C.I. -3.23--0.49, p = 0.008). The DNA adducts were found to be significantly increased (0.45 units) in the municipal officers with respect to unexposed subjects (95% C.I. 0.02-0.88, p = 0.039), mainly in those who were controlling traffic in downtown areas (95% C.I. 0.39-1.29, p < 0.001). Regression models indicated an increment of ALU methylation at higher B(a)P concentrations (95% C.I. 0.03-0.60, p = 0.032). Moreover, statistical models showed a decrement in ALU methylation and an increment of DNA damage only above the cut-off value of 30 µg/m3 O3. A significant increment of 0.73 units of IL-6 gene methylation was also found in smokers with respect to non-smokers. Our results highlighted the role of air pollution on epigenetic alterations and genotoxic effects, especially above the target value of 30 µg/m3 surface-level O3, supporting the necessity for developing public health strategies aimed to reduce traffic-related air pollution molecular alterations.
Collapse
Affiliation(s)
- Armelle Munnia
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Valentina Bollati
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Russo
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Ferrari
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Stefano Dugheri
- Laboratorio di Igiene e Tossicologia Industriale, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Giulio Arcangeli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, 50121 Florence, Italy
| | - Franco Merlo
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale, IRCCS, 42121 Reggio Emilie, Italy
| | - Marco Peluso
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
- Correspondence:
| |
Collapse
|
9
|
Annevelink CE, Walker RE, Shearer GC. Esterified Oxylipins: Do They Matter? Metabolites 2022; 12:1007. [PMID: 36355090 PMCID: PMC9697791 DOI: 10.3390/metabo12111007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 10/25/2023] Open
Abstract
Oxylipins are oxygenated metabolites of fatty acids that share several similar biochemical characteristics and functions to fatty acids including transport and trafficking. Oxylipins are most commonly measured in the non-esterified form which can be found in plasma, free or bound to albumin. The non-esterified form, however, reflects only one of the possible pools of oxylipins and is by far the least abundant circulating form of oxylipins. Further, this fraction cannot reliably be extrapolated to the other, more abundant, esterified pool. In cells too, esterified oxylipins are the most abundant form, but are seldom measured and their potential roles in signaling are not well established. In this review, we examine the current literature on experimental oxylipin measurements to describe the lack in reporting the esterified oxylipin pool. We outline the metabolic and experimental importance of esterified oxylipins using well established roles of fatty acid trafficking in non-esterified fatty acids and in esterified form as components of circulating lipoproteins. Finally, we use mathematical modeling to simulate how exchange between cellular esterified and unesterified pools would affect intracellular signaling.. The explicit inclusion of esterified oxylipins along with the non-esterified pool has the potential to convey a more complete assessment of the metabolic consequences of oxylipin trafficking.
Collapse
Affiliation(s)
| | | | - Gregory C. Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Lin Y, Lu X, Qiu X, Yin F, Faull KF, Tseng CH, Zhang JJ, Fiehn O, Zhu T, Araujo JA, Zhu Y. Arachidonic acid metabolism and inflammatory biomarkers associated with exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2022; 212:113498. [PMID: 35613629 DOI: 10.1016/j.envres.2022.113498] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with systemic inflammation, yet what mechanisms regulate PAHs' inflammatory effects are less understood. This study evaluated the change of arachidonic acid (ARA) metabolites and inflammatory biomarkers in response to increased exposure to PAHs among 26 non-smoking healthy travelers from Los Angeles to Beijing. Traveling from Los Angeles to Beijing significantly increased urinary metabolites of dibenzofuran (800%), fluorene (568%), phenanthrene (277%), and pyrene (176%), accompanied with increased C-reactive protein, fibrinogen, IL-8, and IL-10, and decreased MCP-1, sCD40L, and sCD62P levels in the blood. Meanwhile, the travel increased the levels of ARA lipoxygenase metabolites that were positively associated with a panel of pro-inflammatory biomarkers. Concentrations of cytochrome P450 metabolite were also increased in Beijing and were negatively associated with sCD62P levels. In contrast, concentrations of ARA cyclooxygenase metabolites were decreased in Beijing and were negatively associated with anti-inflammatory IL-10 levels. Changes in both inflammatory biomarkers and ARA metabolites were reversed 4-7 weeks after participants returned to Los Angeles and were associated with urinary PAH metabolites, but not with other exposures such as secondhand smoke, stress, or diet. These results suggested possible roles of ARA metabolic alteration in PAHs-associated inflammatory effects.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Fen Yin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry & Behavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Junfeng Jim Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27705, USA
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Wang T, Han Y, Li H, Fang Y, Liang P, Wang Y, Chen X, Qiu X, Gong J, Li W, Zhu T. Fine particulate matter and vasoactive 20-hydroxyeicosatetraenoic acid: Insights into the mechanisms of the prohypertensive effects of particulate air pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151298. [PMID: 34749965 DOI: 10.1016/j.scitotenv.2021.151298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Emerging evidence suggests that biological intermediates play an important role in initiating fine particulate matter (PM2.5)-associated prohypertensive pathways, but sensitive biomarkers for this pathway are lacking. AIM To explore whether short-term exposure to PM2.5 is associated with the concentration of 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoactive lipid relevant to the pathophysiology of hypertension. METHODS In this longitudinal panel study, we repeatedly (up to seven times) measured the blood concentrations of 20-HETE in 120 adults living in Beijing, China. Ambient exposure metrics included the concentrations of hourly PM2.5 mass and daily PM2.5 constituents, including three carbonaceous components, eight water-soluble ions, and 16 trace elements. Linear mixed-effects models were used to examine the associations between the change in the 20-HETE concentration and short-term exposure to ambient PM2.5 metrics after adjustment for age, sex, body mass index, behavioral exposure, socioeconomic characteristics, and meteorological factors. RESULTS The interquartile range (IQR) increase in the 7-15-hour-lag exposure to PM2.5 (80 μg/m3) was associated significantly with a 5.3% (95% confidence interval [CI], 0.1-10.7%) to 6.5% (95% CI, 1.7-11.6%) increase in the blood concentration of 20-HETE. The magnitude of the association differed by age, sex, prediabetic status, obesity, and hypertensive status, with a significantly greater increase in 20-HETE observed among those with fasting plasma glucose concentrations ≥ 6.1 mmol/L. In addition to the PM2.5 mass, the 20-HETE concentration was associated consistently with IQR increases in the 1-day lag exposure to organic carbon (5.7%), black carbon (9.5%), nitrate (3.9%), chloride (2.9%), copper (5.5%), zinc (4.7%), barium (4.1%), and lead (6.2%). The organic carbon estimate was robust in the two-pollutant models. Furthermore, increased 20-HETE correlated with elevated blood pressure (BP), although no mediation of 20-HETE on PM2.5-associated BP change was found. CONCLUSIONS The 20-HETE blood concentration increased significantly in response to short-term exposure to ambient PM2.5, which may be partly responsible for the prohypertensive effects of PM2.5.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yanhua Fang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Pengfei Liang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
12
|
Wang T, Han Y, Li H, Wang Y, Chen X, Chen W, Qiu X, Gong J, Li W, Zhu T. Proinflammatory lipid signals trigger the health effects of air pollution in individuals with prediabetes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118008. [PMID: 34479157 DOI: 10.1016/j.envpol.2021.118008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Individuals with metabolic disorders exhibit enhanced susceptibility to the cardiovascular health effects of particulate air pollution, but the underlying mechanisms are not yet understood. We aim to assess whether changes in proinflammatory lipid signals are associated with fine particulate matter (PM2.5) exposure in individuals with and without prediabetes. A longitudinal panel study was conducted in Beijing, China, and included 120 participants followed up over 589 clinical visits from August 2013 to February 2015. We measured 12 lipids derived from arachidonic acid pathways in blood samples of the participants via targeted lipidomic analyses. Ambient PM2.5 concentrations were continuously monitored at a station for associations with the lipids. Among the 120 participants, 110 (mean [SD] age at recruitment, 56.5 [4.2] years; 31 prediabetics) who visited the clinic at least twice over the follow-up period were assigned exposure values of the outdoor residential PM2.5 concentrations during the 1-14 days preceding each clinical visit. With an interquartile range increase in the 1-day-lag PM2.5 exposure (64.0 μg/m3), the prediabetic group had consistently greater increases in the concentration of arachidonate metabolites derived from the cytochrome P450 (CYP450) pathway (5,6-DHET, 15.8% [95% CI, 3.5-29.7%]; 8,9-DHET, 9.7% [95% CI, 0.6-19.6%]; 11,12-DHET, 8.3% [95% CI, 1.9-15.1%]; 14,15-DHET, 7.4% [95% CI, 0.9-14.4%]; and 20-HETE, 8.9% [95% CI, 1.0-17.5%]), compared with the healthy group. Among CYP450-derived lipids, 14,15-DHET and 20-HETE significantly mediated 8% and 8% of the PM2.5-associated increase in white blood cells, 10% and 13% of that in neutrophils, and 20% and 23% of that in monocytes, respectively, in the prediabetic group. In conclusion, proinflammatory lipid signals from CYP450 pathways triggered the health effects of particulate air pollution in individuals with prediabetes, suggesting that targeting lipid metabolism has therapeutic potential to attenuate or prevent the cardiovascular effects of air pollution in susceptible populations.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
13
|
He L, Hu X, Day DB, Yan M, Teng Y, Liu XL, Yan E, Xiang J, Qiu X, Mo J, Zhang Y, Zhang JJ, Gong J. The associations of nitrated polycyclic aromatic hydrocarbon exposures with plasma glucose and amino acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117945. [PMID: 34426189 DOI: 10.1016/j.envpol.2021.117945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely studied for their mutagenic and carcinogenic effects. This study aims to investigate whether exposure to nitro-PAHs is associated with biomarkers of carbohydrate metabolism, an underlying risk factor for metabolic disorder. Early morning urine and blood samples were longitudinally collected two times with a four-week interval from 43 healthy adults. Five urinary amino-PAHs (1-aminonaphthalene, 2-aminonaphthalene, 9-aminophenanthrene, 2-aminofluorene, and 1-aminopyrene) were measured as biomarkers of nitro-PAH exposures. We measured plasma concentrations of glucose and six amino acids that can regulate insulin secretion, including aspartate (Asp), glutamate (Glu), glutamine (Gln), alanine (Ala), Arginine (Arg), and ornithine (Orn). We found that increasing concentrations of 9-aminophenanthrene were significantly associated with increasing glucose levels and with decreasing Asp, Glu, Ala, and Orn levels. We estimated that 26.4 %-43.8 % of the 9-aminophenanthrene-associated increase in glucose level was mediated by Asp, Glu, and Orn. These results suggest that exposure to certain nitro-PAHs affects glucose homeostasis, partly resulting from the depletion of insulin-stimulating amino acids (Asp, Glu, and Orn).
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA; Global Health Institute, Duke University, Durham, NC, 27708, USA; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, 98145, United States
| | - Meilin Yan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Yanbo Teng
- Duke Kunshan University, Kunshan City, Jiangsu Province, 215316, China
| | - Xing Lucy Liu
- Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Erik Yan
- Global Health Institute, Duke University, Durham, NC, 27708, USA; Duke Kunshan University, Kunshan City, Jiangsu Province, 215316, China
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA; Global Health Institute, Duke University, Durham, NC, 27708, USA; Duke Kunshan University, Kunshan City, Jiangsu Province, 215316, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Hu X, Yan M, He L, Qiu X, Zhang J, Zhang Y, Mo J, Day DB, Xiang J, Gong J. Associations between time-weighted personal air pollution exposure and amino acid metabolism in healthy adults. ENVIRONMENT INTERNATIONAL 2021; 156:106623. [PMID: 33993003 DOI: 10.1016/j.envint.2021.106623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms underlying the associations between air pollution exposure and adverse cardiopulmonary effects remain to be better understood. Altered amino acid metabolism may plays an important role in the development of cardiopulmonary diseases and may be perturbed by air pollution exposure. To test this hypothesized molecular mechanism, we conducted an association analysis from an existing intervention study to examine the relations of air pollution exposures with amino acids in 43 Chinese healthy adults. Plasma levels of amino acids were measured using a UPLC-QqQ-MS system. Time-weighted personal exposure to O3, PM2.5, NO2, and SO2 over four time windows, i.e., 12 h, 24 h, 1 week, and 2 weeks, were calculated using the measured indoor and outdoor concentrations coupled with the time-activity data for each participant. Linear mixed-effects models were used to estimate the associations between air pollutants at each exposure window and amino acids by controlling for potential confounders. We observed significant associations between exposures and plasma concentrations of amino acids, with the direction of associations varying by amino acid and air pollutant. While there is little evidence of associations for NO2 and SO2, the associations with amino acids were fairly pronounced for exposure to PM2.5 and O3. In particular, independent O3 (12- and 24-hour) associations were observed with changes in the amino acids that were related to the urea cycle, including aspartate, asparagine, glutamate, arginine, citrulline, and ornithine. Our findings indicated that air pollution may cause acute perturbation of amino acid metabolism, and that O3 and PM2.5 may affect the metabolism of amino acids in different pathways. Main finding: Acute air pollution exposure might affect the perturbation of amino acid metabolism, and in particular, was associated with amino acids in relation to the urea cycle.
Collapse
Affiliation(s)
- Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Meilin Yan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Linchen He
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, United States
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Junfeng Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, United States; Global Health Research Center, Duke Kunshan University, Jiangsu 215316, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Transcriptomics Underlying Pulmonary Ozone Pathogenesis Regulated by Inflammatory Mediators in Mice. Antioxidants (Basel) 2021; 10:antiox10091489. [PMID: 34573120 PMCID: PMC8466999 DOI: 10.3390/antiox10091489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ozone (O3) is the predominant oxidant air pollutant associated with airway inflammation, lung dysfunction, and the worsening of preexisting respiratory diseases. We previously demonstrated the injurious roles of pulmonary immune receptors, tumor necrosis factor receptor (TNFR), and toll-like receptor 4, as well as a transcription factor NF-κB, in response to O3 in mice. In the current study, we profiled time-dependent and TNFR- and NF-κB-regulated lung transcriptome changes by subacute O3 to illuminate the underlying molecular events and downstream targets. Mice lacking Tnfr1/Tnfr2 (Tnfr-/-) or Nfkb1 (Nfkb1-/-) were exposed to air or O3. Lung RNAs were prepared for cDNA microarray analyses, and downstream and upstream mechanisms were predicted by pathway analyses of the enriched genes. O3 significantly altered the genes involved in inflammation and redox (24 h), cholesterol biosynthesis and vaso-occlusion (48 h), and cell cycle and DNA repair (48–72 h). Transforming growth factor-β1 was a predicted upstream regulator. Lack of Tnfr suppressed the immune cell proliferation and lipid-related processes and heightened epithelial cell integrity, and Nfkb1 deficiency markedly suppressed lung cell cycle progress during O3 exposure. Common differentially regulated genes by TNFR and NF-κB1 (e.g., Casp8, Il6, and Edn1) were predicted to protect the lungs from cell death, connective tissue injury, and inflammation. Il6-deficient mice were susceptible to O3-induced protein hyperpermeability, indicating its defensive role, while Tnf-deficient mice were resistant to overall lung injury caused by O3. The results elucidated transcriptome dynamics and provided new insights into the molecular mechanisms regulated by TNFR and NF-κB1 in pulmonary subacute O3 pathogenesis.
Collapse
|
16
|
He L, Norris C, Cui X, Li Z, Barkjohn KK, Teng Y, Fang L, Lin L, Wang Q, Zhou X, Hong J, Li F, Zhang Y, Schauer JJ, Black M, Bergin MH, Zhang JJ. Role of endogenous melatonin in pathophysiologic and oxidative stress responses to personal air pollutant exposures in asthmatic children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145709. [PMID: 33940766 DOI: 10.1016/j.scitotenv.2021.145709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Heightening oxidative stress and inflammation is an important pathophysiological mechanism underlying air pollution health effects in people with asthma. Melatonin can suppress oxidative stress and inflammation in pulmonary and circulatory systems. However, the role of melatonin in the oxidative stress and physiological responses to air pollution exposure has not been examined in children with asthma. METHODS In this panel study of 43 asthmatic children (5-13 years old), each child had 4 clinic visits with a 2-week interval between two consecutive visits. At each visit, urine samples were collected and subsequently analyzed for 6-sulfatoxymelatonin (aMT6s) as a surrogate of circulating melatonin and for malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as two biomarkers of systemic oxidative stress. At each clinic visit, children were measured for pulmonary function and fractional exhaled nitric oxide (FeNO, a marker of pulmonary inflammation). None of the children reported to have taking melatonin supplementation. Concentrations of indoor and ambient PM2.5 and ozone (O3) were combined with individual time-activity data to calculate personal air pollutant exposures. RESULTS We found that interquartile range increases in urinary MDA and 8-OHdG concentrations were associated with significantly increased urinary aMT6s concentrations by 73.4% (95% CI: 52.6% to 97.0%) and 41.7% (22.8% to 63.4%), respectively. Increases in daily personal exposure to O3 and to PM2.5 were each associated with increased urinary aMT6s concentrations. Increasing urinary aMT6s concentrations were associated with decreased FeNO and resonant frequency, indicating improved airway inflammation and lung elasticity, respectively. CONCLUSION The results suggest that systemic oxidative stress heightened by air pollution exposure may stimulate melatonin excretion as a defense mechanism to alleviate the adverse effects.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Christina Norris
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Karoline K Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Yanbo Teng
- Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Lin Fang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Lili Lin
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - James J Schauer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, Jiangsu Province, China.
| |
Collapse
|
17
|
He L, Lin Y, Day D, Teng Y, Wang X, Liu XL, Yan E, Gong J, Qin J, Wang X, Xiang J, Mo J, Zhang Y, Zhang JJ. Nitrated Polycyclic Aromatic Hydrocarbons and Arachidonic Acid Metabolisms Relevant to Cardiovascular Pathophysiology: Findings from a Panel Study in Healthy Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3867-3875. [PMID: 33621071 DOI: 10.1021/acs.est.0c08150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Concerns on nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment have mainly arisen from their mutagenic and carcinogenic effects. The objective of this study is to investigate whether nitro-PAH exposures are associated with biomarkers of cardiovascular pathophysiology. In a panel study design, urines and blood samples were collected up to four times with a 2-week interval from 89 healthy adults. We measured 1-naphthylamine, 2-naphthylamine, 9-aminophenanthrene, 2-aminofluorene, and 1-aminopyrene as biomarkers of nitro-PAH exposures. We measured three urinary metabolites of arachidonic acid (AA) including 20-hydroxyeicosatetraenoic acid (20-HETE) from the cytochrome P450 (CYP) pathway, 8-isoprostane from the nonenzymatic pathway, and 11-dehydro-thromboxane B2 (11-dhTXB2) from the cyclooxygenase (COX) pathway. Urinary malondialdehyde, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 6-sulfatoxymelatonin (aMT6s) were measured to reflect systemic oxidative stress. Plasma concentrations of the soluble P-selectin and von Willebrand factor (vWF) were measured as biomarkers of platelet activation and endothelial dysfunction. We found that increased urinary concentrations of amino-PAHs were significantly associated with increased 20-HETE, 11-dhTXB2, and 8-OHdG and with decreased 8-isoprostane and aMT6s. Increased amino-PAHs were positively associated with P-selectin and vWF, respectively. These results suggest that exposure to nitro-PAHs increases systemic oxidative stress and alters AA metabolism toward CYP and COX pathways, leading to an increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yan Lin
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Drew Day
- Seattle Children's Research Institute, Seattle, Washington 98121, United States
| | - Yanbo Teng
- Duke Kunshan University, Kunshan City, Jiangsu Province 215316, China
| | - Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Xing Lucy Liu
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Erik Yan
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
- Duke Kunshan University, Kunshan City, Jiangsu Province 215316, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jian Qin
- Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Xiaoli Wang
- Tianjin University of Technology, Tianjin 300384, China
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
- Duke Kunshan University, Kunshan City, Jiangsu Province 215316, China
| |
Collapse
|
18
|
He L, Norris C, Cui X, Li Z, Barkjohn KK, Brehmer C, Teng Y, Fang L, Lin L, Wang Q, Zhou X, Hong J, Li F, Zhang Y, Schauer JJ, Black M, Bergin MH, Zhang JJ. Personal Exposure to PM 2.5 Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3101-3111. [PMID: 33555874 DOI: 10.1021/acs.est.0c06114] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) with a higher oxidative potential has been thought to be more detrimental to pulmonary health. We aim to investigate the associations between personal exposure to PM2.5 oxidative potential and pulmonary outcomes in asthmatic children. We measured each of the 43 asthmatic children 4 times for airway mechanics, lung function, airway inflammation, and asthma symptom scores. Coupling measured indoor and outdoor concentrations of PM2.5 mass, constituents, and oxidative potential with individual time-activity data, we calculated 24 h average personal exposures 0-3 days prior to a health outcome measurement. We found that increases in daily personal exposure to PM2.5 oxidative potential were significantly associated with increased small, large, and total airway resistance, increased airway impedance, decreased lung function, and worsened scores of individual asthma symptoms and the total symptom score. Among the PM2.5 constituents, organic matters largely of indoor origin contributed the greatest to PM2.5 oxidative potential. Given that the variability in PM2.5 oxidative potential was a stronger driver than PM2.5 mass for the variability in the respiratory health outcomes, it is suggested to reduce PM2.5 oxidative potential, particularly by reducing the organic matter constituent of indoor PM2.5, as a targeted source control strategy in asthma management.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Christina Norris
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Karoline K Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Collin Brehmer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States
| | - Yanbo Teng
- Duke Kunshan University, Kunshan, Jiangsu Province 215316, People's Republic of China
| | - Lin Fang
- Department of Building Science, Tsinghua University, Beijing, People's Republic of China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, People's Republic of China
| | - Lili Lin
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, People's Republic of China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, People's Republic of China
| | - James J Schauer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States
| | - Marilyn Black
- Underwriters Laboratories, Inc, Marietta, Georgia 30067, United States
| | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
- Duke Kunshan University, Kunshan, Jiangsu Province 215316, People's Republic of China
| |
Collapse
|
19
|
Wagner JR, Madugundu GS, Cadet J. Ozone-Induced DNA Damage: A Pandora's Box of Oxidatively Modified DNA Bases. Chem Res Toxicol 2021; 34:80-90. [PMID: 33417438 DOI: 10.1021/acs.chemrestox.0c00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ozone is a major component of air pollution and carries potentially mutagenic and harmful affects to health. The oxidation of isolated calf thymus DNA (CT-DNA) led to the nearly quantitative loss of normal DNA 2'-deoxyribonucleosides in the following order: T > G > C ≫ A. The major modification of pyrimidines (T, C, and 5-methylcytosine (5mC)) was the corresponding 5-hydroxyhydantoin derivative after complete digestion of DNA to its component 2'-deoxyribonucleosides. The oxidation of 5mC was 2.5-fold more susceptible than C considering the relative mole fraction of 5mC to C in CT-DNA. Other common oxidation products of pyrimidines (e.g., 5,6-dihydroxy-5,6-dihydropyrimidines, the so-called pyrimidine 5,6-glycols) were formed with a lower yield than 5-hydroxyhydantoin derivatives. In addition, several common oxidation products of G were observed (e.g., 8-oxo-7,8-dihydroguanine (8oxoG)) albeit with relatively minor yields. The sum of individual products was notably less than the loss of 2'-deoxyribonucleosides from which they were derived. In a search for additional products, we discovered the formation of pyrimidine ring fragments, predominantly N-formamide and N-urea, which were measured as a dinucleotide next to a nonmodified nucleotide upon partial digestion of oxidized DNA. Interestingly, the latter fragments were also observed in dinucleotides containing 8oxoG, indicating the formation of tandem lesions during ozonolysis of DNA. The oxidation of DNA upon exposure to ozone can be explained by reactions of an intermediate ozonide. These studies underline the complexity of ozone-induced DNA damage and provide valuable information to assess the formation of this damage in cellular DNA.
Collapse
Affiliation(s)
- J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Guru S Madugundu
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|