1
|
Wang R, Cheng X, Long T, Jia C, Xu Y, Wei Y, Zhang Y, He X, He M. Plasma metals, genetic risk, and rapid kidney function decline among type 2 diabetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174069. [PMID: 38908586 DOI: 10.1016/j.scitotenv.2024.174069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Rapid kidney function decline (RKFD) is a main clinical feature of early chronic kidney disease (CKD) in type 2 diabetes (T2D). Environmental and genetic factors influencing RKFD remain inadequately elucidated. OBJECTIVES This study aimed to examine the associations of metals with RKFD among T2D and to further investigate the effect of metal mixtures on RKFD with the modifying effect of genetic susceptibility. METHODS This study included 2209 people with T2D (1942 had genotyping data) free of CKD at baseline from the Dongfeng-Tongji cohort. We used inductively coupled plasma-mass spectrometry (ICP-MS) to measure 23 metals in baseline plasma. Using elastic net (ENET), multivariate logistic regression, and Bayesian kernel machine regression (BKMR) model, we examined independent associations of multiple metals with RKFD. We calculated the environmental risk score (ERS) to assess the effects of metal mixtures on RKFD and the genetic risk score (GRS) to assess genetic susceptibility. RKFD was defined as estimated glomerular filtration rate (eGFR) loss > 3 mL/min/1.73 m2/year. RESULTS During a median of 9.8 years follow-up, 262 participants developed RKFD. Aluminum, vanadium, zinc, selenium, rubidium, tin, barium, and tungsten were screened from ENET. In multivariate logistic models, vanadium, selenium, and tungsten were negatively associated with RKFD, while zinc, tin, and rubidium were positively associated. The BKMR showed a nonlinear association of vanadium and rubidium with RKFD and interactions between metals (barium‑vanadium, barium‑rubidium). The ERS was positive associated with RKFD (per SD increase in ERS, OR = 1.94, 95% CI: 1.66, 2.27). No significant interaction between ERS and GRS was observed on RKFD, however, participants in the highest ERS and GRS group had the highest RKFD risk. CONCLUSION Vanadium and rubidium were associated with RKFD in T2D. Metal mixtures was associated with an increased risk of RKFD in T2D, particularly in those at high genetic risk.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiangjing He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Fang Y, Yin W, He C, Shen Q, Xu Y, Liu C, Zhou Y, Liu G, Zhao Y, Zhang H, Zhao K. Adverse impact of phthalate and polycyclic aromatic hydrocarbon mixtures on birth outcomes: A metabolome Exposome-Wide association study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124460. [PMID: 38945193 DOI: 10.1016/j.envpol.2024.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
It has been well-investigating that individual phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affect public health. However, there is still a gap that the mixture of PAEs and PAHs impacts birth outcomes. Through innovative methods for mixtures in epidemiology, we used a metabolome Exposome-Wide Association Study (mExWAS) to evaluate and explain the association between exposure to PAEs and PAHs mixtures and birth outcomes. Exposure to a higher level of PAEs and PAHs mixture was associated with lower birth weight (maximum cumulative effect: 143.5 g) rather than gestational age. Mono(2-ethlyhexyl) phthalate (MEHP) (posterior inclusion probability, PIP = 0.51), 9-hydroxyphenanthrene (9-OHPHE) (PIP = 0.53), and 1-hydroxypyrene (1-OHPYR) (PIP = 0.28) were identified as the most important compounds in the mixture. In mExWAS, we successfully annotated four overlapping metabolites associated with both MEHP/9-OHPHE/1-OHPYR and birth weight, including arginine, stearamide, Arg-Gln, and valine. Moreover, several lipid-related metabolism pathways, including fatty acid biosynthesis and degradation, alpha-linolenic acid, and linoleic acid metabolism, were disturbed. In summary, these findings may provide new insights into the underlying mechanisms by which PAE and PAHs affect fetal growth.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian district, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, China
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guotao Liu
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Kuzukiran O, Yurdakok-Dikmen B, Uyar R, Turgut-Birer Y, Çelik HT, Simsek I, Karakas-Alkan K, Boztepe UG, Ozyuncu O, Kanca H, Ozdag H, Filazi A. Transcriptomic evaluation of metals detected in placenta. CHEMOSPHERE 2024; 363:142929. [PMID: 39048050 DOI: 10.1016/j.chemosphere.2024.142929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This research aims to assess the concentration of metals in human and canine placentas from the same geographic area and to investigate how these metal levels influence gene expression within the placenta. Placentas of 25 dogs and 60 women who had recently given birth residing in Ankara, Turkey were collected and subjected to metal analysis using ICP-OES. Placentas with detectable metal levels underwent further examination including Next Generation Sequencing, transcriptional analysis, single nucleotide polymorphism investigation, and extensive scrutiny across various groups. For women, placentas with concurrent detection of aluminum (Al), lead (Pb), and cadmium (Cd) underwent transcriptomic analysis based on metal analysis results. However, the metal load in dog placentas was insufficient for comparison. Paired-end sequencing with 100-base pair read lengths was conducted using the DNBseq platform. Sequencing quality control was evaluated using FastQC, fastq screen, and MultiQC. RNA-sequencing data is publicly available via PRJNA936158. Comparative analyses were performed between samples with detected metals and "golden" samples devoid of these metals, revealing significant gene lists and read counts. Normalization of read counts was based on estimated size factors. Principal Component Analysis (PCA) was applied to all genes using rlog-transformed count data. Results indicate that metal exposure significantly influences placental gene expression, impacting various biological processes and pathways, notably those related to protein synthesis, immune responses, and cellular structure. Upregulation of immune-related pathways and alterations in protein synthesis machinery suggest potential defense mechanisms against metal toxicity. Nonetheless, these changes may adversely affect placental function and fetal health, emphasizing the importance of monitoring and mitigating environmental exposure to metals during pregnancy.
Collapse
Affiliation(s)
- Ozgur Kuzukiran
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Cankiri, Turkey.
| | - Begum Yurdakok-Dikmen
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| | - Recep Uyar
- Ankara University, The Stem Cell Institute, Ankara, Turkey; Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Yagmur Turgut-Birer
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Hasan Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, 06230, Altindag, Ankara, Turkey.
| | - Ilker Simsek
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Cankiri, Turkey.
| | - Kubra Karakas-Alkan
- Selcuk University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Konya, Turkey.
| | - Ummu Gulsum Boztepe
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Ozgur Ozyuncu
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, 06230, Altindag, Ankara, Turkey.
| | - Halit Kanca
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Ankara, Turkey.
| | - Hilal Ozdag
- Ankara University Biotechnology Institute, 06135, Ankara, Turkey.
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| |
Collapse
|
4
|
Soomro MH, England-Mason G, Reardon AJF, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Maternal exposure to bisphenols, phthalates, perfluoroalkyl acids, and trace elements and their associations with gestational diabetes mellitus in the APrON cohort. Reprod Toxicol 2024; 127:108612. [PMID: 38782143 DOI: 10.1016/j.reprotox.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Wang Y, Wu W, Zhang P, Chen X, Feng Y, Yang H, Jin L, Huang H, Shi X, Wang S, Zhang Y. Vitamin C Alleviates the Risk of Gestational Diabetes Mellitus Associated With Exposure to Metals. J Diabetes Res 2024; 2024:1298122. [PMID: 39035682 PMCID: PMC11260216 DOI: 10.1155/2024/1298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background: Exposure to heavy metals has been suggested to increase the risk of gestational diabetes mellitus (GDM) through the oxidative stress pathway. The study is aimed at examining whether vitamin C could modify the association between exposure to heavy metals and risk of GDM. Methods: We conducted a case-control study in Taiyuan, China, with 776 GDM cases and 776 controls. Data on vitamin C intake from diet and supplements were collected through questionnaires. Concentrations of metals in participants' blood were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Unconditional logistic regression models were applied to estimate effect modification of vitamin C on the association between heavy metals and GDM. Results: Women with higher blood levels of mercury (Hg) (odds ratio (OR) = 2.36, 95% confidence interval (CI): 1.43, 3.92 and 2.04, 95% CI: 1.20, 3.46 for the second and third vs. the first tertile) and arsenic (As) (OR = 2.46, 95% CI: 1.37, 4.43 and 2.16, 95% CI: 1.12, 4.17 for the second and third vs. the first tertile) exposure were associated with increased risk of GDM among women without vitamin C supplement use and having dietary vitamin C intake < 85 mg/day. We found no significant association with metals among women who took vitamin C supplements and/or dietary vitamin C ≥ 85 mg/day. Significant interactions were observed between vitamin C and exposures to metals (i.e., Hg and As) on the risk of GDM (P interaction = 0.048 and 0.045, respectively). Conclusions: Our study, for the first time, suggests that vitamin C supplement use or higher dietary vitamin C intake during preconception and early pregnancy could alleviate the risk of GDM associated with exposure to As and Hg. The results warrant further investigation.
Collapse
Affiliation(s)
- Ying Wang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Weiwei Wu
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Ping Zhang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
| | - Xi Chen
- National Institute of Environmental HealthChinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Feng
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Hailan Yang
- Department of ObstetricsThe First Affiliated HospitalShanxi Medical University, Taiyuan, China
| | - Lan Jin
- Department of SurgeryYale School of Medicine, New Haven, Connecticut, USA
| | - Huang Huang
- Department of Cancer Prevention and ControlNational Cancer Center/National Clinical Research Center for Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoming Shi
- National Institute of Environmental HealthChinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Wang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Yawei Zhang
- Department of Cancer Prevention and ControlNational Cancer Center/National Clinical Research Center for Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Song J, Wu Y, Ma Y, He J, Zhu S, Tang Y, Tang J, Hu M, Hu L, Zhang L, Wu Q, Liu J, Liang Z. A prospective cohort study of multimetal exposure and risk of gestational diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174568. [PMID: 38977093 DOI: 10.1016/j.scitotenv.2024.174568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The relationship between co-exposure to multiple metals and gestational diabetes mellitus (GDM) and the mechanisms involved are poorly understood. In this nested case-control study, 228 GDM cases and 456 matched controls were recruited, and biological samples were collected at 12-14 gestational weeks. The urinary concentrations of 10 metals and 8-hydroxydeoxyguanosine (8-OHdG) as well as the serum levels of malondialdehyde (MDA) and advanced glycation end products (AGEs) were determined to assess the association of metals with GDM risk and the mediating effects of oxidative stress. Urinary Ti concentration was significantly and positively associated with the risk of GDM (odds ratio [OR]:1.45, 95 % confidence interval [CI]: 1.12, 1.88), while Mn and Fe were negatively associated with GDM risk (OR: 0.67, 95 % CI: 0.50, 0.91 or OR: 0.61, 95 % CI: 0.47, 0.80, respectively). A significant negative association was observed between Mo and GDM risk, specifically in overweight and obese pregnant women. Bayesian kernel machine regression showed a significant negative joint effect of the mixture of 10 metals on GDM risk. The adjusted restricted cubic spline showed a protective role of Mn and Fe in GDM risk (P < 0.05). A significant negative association was observed between essential metals and GDM risk in quantile g-computation analysis (P < 0.05). Mediation analyses showed a mediating effect of MDA on the association between Ti and GDM risk, with a proportion of 8.7 % (P < 0.05), and significant direct and total effects on Ti, Mn, and Fe. This study identified Ti as a potential risk factor and Mn, Fe, and Mo as potential protective factors against GDM, as well as the mediating effect of lipid oxidation.
Collapse
Affiliation(s)
- Jiajia Song
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yihui Wu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yubing Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juhui He
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shuqi Zhu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yibo Tang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jiayue Tang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mengjia Hu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Luyao Hu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lixia Zhang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qi Wu
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxia Liang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
7
|
Liu M, Guo W, Li M, Yang H, Lai X, Yang L, Zhang X. Physical activity modified association of urinary metals mixture and fasting blood glucose in children: From two panel studies. ENVIRONMENTAL RESEARCH 2024; 252:118767. [PMID: 38527725 DOI: 10.1016/j.envres.2024.118767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
There is unclear evidence available on the associations between multiple metals and fasting blood glucose (FBG) in children, and whether they could be beneficial from physical activity. We included 283 children aged 4-12 years from two panel studies with 4-consecutive morning urinary 13 essential metals and 10 non-essential metals repeated across 3 seasons. We employed multiple informant model, linear mixed-effect model, and quantile g-computation to evaluate associations of single metal and their mixture with FBG and interactions with extra-school activity. The results showed that positive relations of multiple essential metals (aluminum, chromium, copper, iron, molybdenum (Mo), nickel, selenium (Se), strontium, zinc) and non-essential metals (arsenic (As), cadmium (Cd), rubidium, titanium (Ti), thallium) with FBG were the strongest at lag 0 (the health examination day), especially in overweight & obesity children (FDR <0.05). The strongest effect presented 1-fold increment in As was related to FBG increased 1.66% (95%CI: 0.84%, 2.48%) in overweight & obesity children. Notably, modification of extra-school activity showed significant, and the effects of multiple metals on FBG were attenuated in children taking total extra-school activity ≥1 h/day, and only one type of which, low or moderate & high intensity extra-school activity reached 20 min/day (Pint <0.05). For instance, each 1-fold increased As was associated with 1.41% increased FBG in overall children taking total extra-school activity <1 h/day, while that of 0.13% in those ≥1 h/day. Meanwhile, mixture of all, essential and non-essential metals were associated with increased FBG, a trend that decreased and became nonsignificant in children having certain extra-school activity, which were dominated by Mo, Se, Ti, Cd. And such relations were substantially beneficial from extra-school activity in overweight & obesity children. Accordingly, multiple essential and non-essential metals, both individual and in mixture, were positively related to FBG in children, which might be attenuated by regular physical activity.
Collapse
Affiliation(s)
- Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China; Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Zhang Y, Ye J, Zhou L, Xuan X, Xu L, Cao X, Lv T, Yan J, Zhang S, Wang Y, Huang Q, Tian M. Association of barium deficiency with Type 2 diabetes mellitus incident risk was mediated by mitochondrial DNA copy number (mtDNA-CN): a follow-up study. Metallomics 2024; 16:mfae027. [PMID: 38772737 DOI: 10.1093/mtomcs/mfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Accumulating evidence indicates that plasma metal levels may be associated with Type 2 diabetes mellitus (T2DM) incident risk. Mitochondrial function such as mitochondrial DNA copy number (mtDNA-CN) might be linked to metal exposure and physiological metabolism. Mediation analysis was conducted to determine the mediating roles of mtDNA-CN in the association between plasma metals and diabetes risk. In the present study, we investigated associations between plasma metals levels, mtDNA-CN, and T2DM incident in the elderly population with a 6-year follow-up (two times) study. Ten plasma metals [i.e. manganese, aluminum, calcium, iron, barium (Ba), arsenic, copper, selenium, titanium, and strontium] were measured using inductively coupled plasma mass spectrometry. mtDNA-CN was measured by real-time polymerase chain reaction. Multivariable linear regression and logistic regression analyses were carried out to estimate the relationship between plasma metal concentrations, mtDNA-CN, and T2DM incident risk in the current work. Plasma Ba deficiency and mtDNA-CN decline were associated with T2DM incident risk during the aging process. Meanwhile, plasma Ba was found to be positively associated with mtDNA-CN. Mitochondrial function mtDNA-CN demonstrated mediating effects in the association between plasma Ba deficiency and T2DM incident risk, and 49.8% of the association was mediated by mtDNA-CN. These findings extend the knowledge of T2DM incident risk factors and highlight the point that mtDNA-CN may be linked to plasma metal elements and T2DM incident risk.
Collapse
Affiliation(s)
- Yiqin Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Jing Ye
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Lina Zhou
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Xianfa Xuan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Liping Xu
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Xia Cao
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Tianyu Lv
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Jianhua Yan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Siyu Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Yuxin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
9
|
He S, Jiang T, Zhang D, Li M, Yu T, Zhai M, He B, Yin T, Wang X, Tao F, Yao Y, Ji D, Yang Y, Liang C. Association of exposure to multiple heavy metals during pregnancy with the risk of gestational diabetes mellitus and insulin secretion phase after glucose stimulation. ENVIRONMENTAL RESEARCH 2024; 248:118237. [PMID: 38244971 DOI: 10.1016/j.envres.2024.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Epidemiological evidence for the association between heavy metals exposure during pregnancy and gestational diabetes mellitus (GDM) is still inconsistent. Additionally, that is poorly understood about the potential cause behind the association, for instance, whether heavy metal exposure is related to the change of insulin secretion phase is unknown. OBJECTIVES We aimed to explore the relationships of blood levels of arsenic (As), lead (Pb), thallium (Tl), nickel (Ni), cadmium (Cd), cobalt (Co), barium (Ba), chromium (Cr), mercury (Hg) and copper (Cu) during early pregnancy with the odds of GDM, either as an individual or a mixture, as well as the association of the metals with insulin secretion phase after glucose stimulation. METHODS We performed a nested case-control study consisting of 302 pregnant women with GDM and 302 controls at the First Affiliated Hospital of Anhui Medical University in Hefei, China. Around the 12th week of pregnancy, blood samples of pregnant women were collected and levels of As, Pb, Tl, Ni, Cd, Co, Ba, Cr, Hg and Cu in blood were measured. An oral glucose tolerance test (OGTT) was done in each pregnant woman during the 24-28th week of pregnancy to diagnose GDM and C-peptide (CP) levels during OGTT were measured simultaneously. The four metals (As, Pb, Tl and Ni) with the highest effect on odds of GDM were selected for the subsequent analyses via the random forest model. Conditional logistic regression models were performed to analyze the relationships of blood As, Pb, Tl and Ni levels with the odds of GDM. The weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR) were used to assess the joint effects of levels of As, Pb, Tl and Ni on the odds of GDM as well as to evaluate which metal level contributed most to the association. Latent profile analysis (LPA) was conducted to identify profiles of glycemic and C-peptide levels at different time points. Multiple linear regression models were employed to explore the relationships of metals with glycaemia-related indices (fasting blood glucose (FBG), 1-hour blood glucose (1h BG), 2-hour blood glucose (2h BG), fasting C-peptide (FCP), 1-hour C-peptide (1h CP), 2-hour C-peptide (2h CP), FCP/FBG, 1h CP/1h BG, 2h CP/2h BG, area under the curve of C-peptide (AUCP), area under the curve of glucose (AUCG), AUCP/AUCG and profiles of BGs and CPs, respectively. Mixed-effects models with repeated measures data were used to explore the relationship between As (the ultimately selected metal) level and glucose-stimulated insulin secretion phase. The mediation effects of AUCP and AUCG on the association of As exposure with odds of GDM were investigated using mediation models. RESULTS The odds of GDM in pregnant women increased with every ln unit increase in blood As concentration (odds ratio (OR) = 1.46, 95% confidence interval (CI) = 1.04-2.05). The joint effects of As, Pb, Tl and Ni levels on the odds of GDM was statistically significant when blood levels of four metals were exceeded their 50th percentile, with As level being a major contributor. Blood As level was positively associated with AUCG and the category of glucose latent profile, the values of AUCG were much higher in GDM group than those in non-GDM group, which suggested that As exposure associated with the odds of GDM may be due to that As exposure was related to the impairment of glucose tolerance among pregnant women. The significant and positive relationships of As level with AUCP, CP latent profile category, 2h CP and 2h CP/2h BG were observed, respectively; and the values of 1h CP/1h BG and AUCP/AUCG were much lower in GDM group than those in non-GDM group, which suggested that As exposure may not relate to the impairment of insulin secretion (pancreatic β-cell function) among pregnant women. The relationships between As level and 2h CP as well as 2h CP/2h BG were positive and significant; additionally, the values of 2h CP/2h BG in GDM group were comparable with those in non-GDM group; the peak value of CP occurred at 2h in GDM group, as well as the values of 2h CP/2h BG in high As exposure group were much higher than those in low As exposure group, which suggested that As exposure associated with the increased odds of GDM may be due to that As exposure was related to the change of insulin secretion phase (delayment of the peak of insulin secretion) among pregnant women. In addition, AUCP mediated 11% (p < 0.05) and AUCG mediated 43% (p < 0.05) of the association between As exposure and the odds of GDM. CONCLUSION Our results suggested that joint exposure to As, Pb, Tl and Ni during early pregnancy was positively associated with the odds of GDM, As was a major contributor; and the association of environmental As exposure with the increased odds of GDM may be due to that As exposure was related to the impairment of glucose tolerance and change of insulin secretion phase after glucose stimulation (delayment of the peak of insulin secretion) among pregnant women.
Collapse
Affiliation(s)
- Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bingxia He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Li L, Xu J, Zhang W, Wang Z, Liu S, Jin L, Wang Q, Wu S, Shang X, Guo X, Huang Q, Deng F. Associations between multiple metals during early pregnancy and gestational diabetes mellitus under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96689-96700. [PMID: 37578585 DOI: 10.1007/s11356-023-29121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jialin Xu
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
11
|
Mervish N, Valle C, Teitelbaum SL. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. CURR EPIDEMIOL REP 2023; 10:148-157. [PMID: 38318392 PMCID: PMC10840994 DOI: 10.1007/s40471-023-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
12
|
Rokoff LB, Cardenas A, Lin PID, Rifas-Shiman SL, Wright RO, Bosquet Enlow M, Coull BA, Oken E, Korrick SA. Early pregnancy essential and non-essential metal mixtures and maternal antepartum and postpartum depressive symptoms. Neurotoxicology 2023; 94:206-216. [PMID: 36526156 PMCID: PMC9839522 DOI: 10.1016/j.neuro.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mood disorders are common during and after pregnancy, and environmental metals may contribute to increased risk. Antepartum metal exposures have not been well characterized in relation to maternal depression. We evaluated the extent to which early pregnancy erythrocyte concentrations of essential and non-essential metals were prospectively associated with antepartum and postpartum depressive symptoms. METHODS Participants were 1226 women in Project Viva, a longitudinal cohort recruited during pregnancy (1999-2002). We measured concentrations of 11 metals in maternal first trimester erythrocytes (arsenic, barium, cadmium, cesium, copper, mercury, magnesium, manganese, lead, selenium, zinc). Using the Edinburgh Postnatal Depression Scale (EPDS), we assessed elevated depressive symptoms (≥13; 0-30 scale) at mid-pregnancy and at 6 and 12 months postpartum. We applied latent class mixed modeling to identify symptom trajectories. Adjusting for maternal sociodemographics and co-exposures, we examined associations between the metal mixture and depressive symptoms using logistic (for EPDS≥13)/multinomial (for symptom trajectories) regression and quantile g-computation. RESULTS In this cohort of moderately high socioeconomic status participants (e.g., 72 % college graduate), low-level metal concentrations were weakly to moderately correlated (Spearman: -0.24 to 0.59); the prevalence of depressive symptoms ranged from 9 % (mid-pregnancy) to 6 % (12 months postpartum); and three trajectories (stable low; elevated mid-pregnancy, then decreasing; moderate mid-pregnancy, then increasing) best fit the EPDS data. The early pregnancy erythrocyte metal mixture was not associated with maternal depressive symptoms in logistic, multinomial, or mixture models. For individual metals, most confidence intervals (CI) included the null. There was weak evidence that arsenic, lead, and selenium were moderately associated with elevated odds of depressive symptoms and/or trajectories. However, the odds ratios (95 % CI) per doubling of these three metals were imprecise [e.g., arsenic: 1.13 (0.94, 1.40) for EPDS≥13 at six months postpartum; lead: 1.19 (0.80, 1.77) for EPDS≥13 at mid-pregnancy; selenium: 2.35 (0.84, 6.57) for elevated mid-pregnancy, then decreasing versus stable low trajectory]. DISCUSSION We did not observe strong, consistent evidence of associations between early pregnancy erythrocyte metal concentrations and subsequent maternal antepartum and postpartum depressive symptoms.
Collapse
Affiliation(s)
- Lisa B Rokoff
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Population Health Sciences Program, Harvard University, Cambridge, MA, USA.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan A Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Lin PID, Cardenas A, Rifas-Shiman SL, Zota AR, Hivert MF, Aris IM, Sanders AP. Non-essential and essential trace element mixtures and kidney function in early pregnancy - A cross-sectional analysis in project viva. ENVIRONMENTAL RESEARCH 2023; 216:114846. [PMID: 36402181 PMCID: PMC9732973 DOI: 10.1016/j.envres.2022.114846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Some trace elements are established nephrotoxicants, yet their associations with kidney function remain understudied in the context of pregnancy, a time of substantial change in kidney physiology and function. We aimed to estimate the individual and joint associations of trace element mixtures with maternal kidney function during the 1st trimester of pregnancy (mean 9.7 gestational weeks). 1040 women from Project Viva contributed blood samples which were assessed for erythrocyte non-essential [arsenic (As), cadmium (Cd), cesium (Cs), mercury (Hg), lead (Pb)] and essential [barium (Ba), magnesium (Mg), manganese (Mn), selenium (Se), and Zinc (Zn)] trace elements, and plasma creatinine for kidney function. We estimated glomerular filtration rate using the Chronic Kidney Disease Epidemiology Collaboration (eGFRCKD-EPI) equation without race-adjustment factors. We examined associations of eGFRCKD-EPI with individual trace elements using multivariable linear regression and their mixtures using quantile-based g-computation, adjusting for sociodemographics, pregnancy characteristics, and diet. Participants in our study were predominantly White (75%), college graduates (72%), and had household income >$70,000/year (63%). After adjusting for covariates, higher Pb (β -3.51 ml/min/1.73 m2; 95% CI -5.83, -1.18) concentrations were associated with lower eGFRCKD-EPI, while higher Mg (β 10.53 ml/min/1.73 m2; 95% CI 5.35, 15.71), Se (β 5.56 ml/min/1.73 m2; 95% CI 0.82, 10.31), and Zn (β 5.88 ml/min/1.73 m2; 95% CI 0.51, 11.26) concentrations were associated with higher eGFRCKD-EPI. In mixture analyses, higher non-essential trace elements mixture concentration was associated with reduced eGFRCKD-EPI (Ψ -1.03 ml/min/1.73 m2; 95% CI: 1.92, -0.14). Conversely, higher essential trace elements mixture concentration was associated with higher eGFR (Ψ 1.42; 95% CI: 0.48, 2.37). Exposure to trace elements in early pregnancy may influence women's kidney function although reverse causation cannot be eliminated in this cross-sectional analysis. These findings have important implications for long-term cardiovascular and postpartum kidney health that warrant additional studies.
Collapse
Affiliation(s)
- Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| | - Ami R Zota
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| | - Alison P Sanders
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Ye Z, Liang R, Wang B, Yu L, Liu W, Wang X, Xiao L, Ma J, Zhou M, Chen W. Cross-sectional and longitudinal associations of urinary zinc with glucose-insulin homeostasis traits and type 2 diabetes: Exploring the potential roles of systemic inflammation and oxidative damage in Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120331. [PMID: 36195192 DOI: 10.1016/j.envpol.2022.120331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The link between zinc exposure and glucose metabolism or the development of type 2 diabetes (T2D) is controversial, and underlying mechanisms are unclear. This study aimed to explore the associations of zinc exposure with glucose-insulin homeostasis traits and the long-term effects of zinc on the development of T2D, and further to estimate the potential roles of inflammation and oxidative damage in such relationships. We investigated 3890 urban adults from the Wuhan-Zhuhai cohort, and followed up every three years. Mixed linear model was applied to estimate dose-response associations between urinary zinc and glycemia traits [fasting plasma insulin (FPI), fasting plasma glucose (FPG), insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR), and β-cell dysfunction (homeostasis model assessment of β-cell function, HOMA-B)], as well as zinc and biomarkers for systemic inflammation (C-reactive protein) and oxidative damage (8-isoprostane and 8-hydroxy-2'-deoxyguanosine). Logistic regression model and Cox regression model were conducted to evaluate the relationships between urinary zinc and prevalence and incidence of T2D, respectively. We further performed mediation analysis to assess the roles of inflammation and oxidative damage biomarkers in above associations. At baseline, we observed significant dose-response relationships of elevated urinary zinc with increased FPI, FPG, HOMA-IR, and T2D prevalence and decreased HOMA-B, and such associations could be strengthened by increased C-reactive protein, 8-isoprostane, and 8-hydroxy-2'-deoxyguanosine. Elevated C-reactive protein significantly mediated 9.09% and 17.67% of the zinc-related FPG and HOMA-IR increments, respectively. In longitudinal analysis, a significantly positive association between urinary zinc and T2D incidence was observed among subjects with persistent high urinary zinc levels when compared with those with persistent low zinc levels. Our results suggested that high levels of zinc exposure adversely affected on glucose-insulin homeostasis and further contributed to increased risk of T2D cross-sectionally and longitudinally. Moreover, inflammatory response might play an important role in zinc-related glucose metabolic disorder.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Lu Y, Zhang Y, Guan Q, Xu L, Zhao S, Duan J, Wang Y, Xia Y, Xu Q. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach. ENVIRONMENT INTERNATIONAL 2022; 162:107161. [PMID: 35219936 DOI: 10.1016/j.envint.2022.107161] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to some conventional trace elements has been found to be associated with miscarriage; however, evidence for combined exposure is inconclusive. Therefore, it is important to explore the joint associations between toxic and essential trace elements and miscarriage. METHODS This cross-sectional study measured a wide range of element levels in the whole blood of pregnant women by using inductively coupled plasma mass spectrometry. The associations between individual elements and miscarriage were appraised using logistic regression model. Multi-exposure models, including Bayesian kernel machine regression (BKMR) and weighted quantile sum regression (WQS), were used to explore the mixed exposure to elements. Furthermore, grouped weighted quantile sum (GWQS) considered multiple elements with different magnitudes and directions of associations. RESULTS In logistic regression, the odds ratios (ORs) with a 95% confidence interval (CI) in the highest quartiles were 5.45 (2.00, 15.91) for barium, 0.28 (0.09, 0.76) for copper, and 0.32 (0.12, 0.83) for rubidium. These exposure-outcome associations were confirmed and supplemented by BKMR, which indicated a positive association for barium and negative associations for copper and rubidium. In WQS, a positive association was found between mixed elements and miscarriage (OR: 1.71; 95% CI: 1.07, 2.78), in which barium (75.7%) was the highest weighted element. The results of GWQS showed that the toxic trace element group dominated by barium was significantly associated with increased ORs (OR: 2.71; 95% CI: 1.74, 4.38). Additionally, a negative association was observed between the essential trace element group and miscarriage (OR: 0.32; 95% CI: 0.18, 0.54), with rubidium contributing the most to the result. CONCLUSIONS As a toxic trace element, barium was positively associated with miscarriage both by individual and multiple evaluations, while essential trace elements, particularly rubidium and copper, exhibited negative associations. Our findings provide significant evidence for exploring the effects of trace elements on miscarriage.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lu Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shuangshuang Zhao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Smith AR, Lin PID, Rifas-Shiman SL, Rahman ML, Gold DR, Baccarelli AA, Claus Henn B, Amarasiriwardena C, Wright RO, Coull B, Hivert MF, Oken E, Cardenas A. Prospective Associations of Early Pregnancy Metal Mixtures with Mitochondria DNA Copy Number and Telomere Length in Maternal and Cord Blood. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117007. [PMID: 34797165 PMCID: PMC8604047 DOI: 10.1289/ehp9294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Metal exposure during pregnancy influences maternal and child health. Oxidative stress and inflammation may mediate adverse effects of heavy metals, whereas essential metals may act as antioxidants. Mitochondrial DNA is a prime target for metal-induced oxidative damage. Telomere dysfunction is attributed to imbalances between reactive oxidant species and antioxidants. OBJECTIVES We evaluated individual and joint associations of prenatal metals with mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) in maternal and cord blood as biomarkers of inflammation and oxidative stress. METHODS We measured six nonessential metals (arsenic, barium, cadmium, cesium, lead, mercury) and four essential metals (magnesium, manganese, selenium, zinc) in first-trimester maternal red blood cells in Project Viva, a U.S. prebirth cohort. We measured relative mtDNAcn (n=898) and TL (n=893) in second-trimester maternal blood and mtDNAcn (n=419) and TL (n=408) in cord blood. We used multivariable linear regression and quantile g-computation to estimate associations between prenatal metals and the biomarkers. We used generalized additive models and Bayesian kernel machine regression to examine nonlinearity and interactions. RESULTS A 2-fold increase in maternal magnesium was associated with lower maternal [β=-0.07, 95% confidence interval (CI): -0.10, -0.01] and cord blood (β=-0.08, 95% CI: -0.20, -0.01) mtDNAcn. Lead was associated with higher maternal mtDNAcn (β=0.04, 95% CI: 0.01, 0.06). Selenium was associated with longer cord blood TL (β=0.30, 95% CI: 0.01 0.50). An association was observed between the nonessential metal mixture and higher maternal mtDNAcn (β=0.04, 95% CI: 0.01, 0.07). There was a nonlinear relationship between cord blood mtDNAcn and magnesium; maternal mtDNAcn and barium, lead, and mercury; and maternal TL and barium. DISCUSSION Maternal exposure to metals such as lead, magnesium, and selenium was associated with mtDNAcn and TL in maternal second trimester and cord blood. Future work will evaluate whether these biomarkers are associated with child health. https://doi.org/10.1289/EHP9294.
Collapse
Affiliation(s)
- Anna R. Smith
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Mohammad L. Rahman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|