1
|
Íñigo-Catalina L, Linillos-Pradillo B, Schlumpf M, Lichtensteiger W, Paredes SD, Rancan L, Tresguerres JAF. DINCH Exposure Triggers Inflammatory, Oxidative, and Apoptotic Pathways in the Liver of Long-Evans Lactating Rats and Their Offspring. Int J Mol Sci 2024; 25:13017. [PMID: 39684727 DOI: 10.3390/ijms252313017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) is a non-phthalate plasticizer used as a replacement of di(2-ethylhexyl) phthalate (DEHP) in daily usage items. It is not known whether continuous exposure to low doses of DINCH can lead to hepatic alterations, the liver being the organ responsible for its metabolism. The aim of this study was to evaluate the activation of inflammatory and apoptotic pathways in the liver of lactating dams after DINCH exposure, and whether these effects may be observed on postnatal day 6 (PND6) offspring. Two doses of DINCH were tested by oral administration to the following three groups of Long-Evans rats: control, DINCH-lower dose (LDINCH, 30 mg/kg b.w./day), and DINCH-high dose (HDINCH, 300 mg/kg b.w./day). Inflammatory mediators (IL-1β, TNF-α, NF-κB), mitochondrial transcriptional factors (PPARγ and PGC-1α), oxidative stress markers (SOD, CAT, GSSG/GSH), and components of the mitochondrial apoptotic pathway (PUMA, BAX, BAD, Bcl-2, Bcl-xL, Cytochrome c, APAF-1, Caspase-3, AIF) were assessed by the gene and protein expression in the liver of lactating dams and offspring. Exposure to LDINCH promoted the release of pro-inflammatory cytokines such as IL-1β and TNF-α and raised oxidative stress levels (GSSG/GSH), as well as increased Caspase-3 levels and reduced anti-apoptotic proteins (Bcl-2 and Bcl-xL), both in lactating dams and PND6 offspring. Thus, constant exposure to lower doses of DINCH can disrupt inflammatory and oxidant/antioxidant homeostasis, leading to hepatic tissue damage in lactating dams and having a perinatal effect in PND6 offspring.
Collapse
Affiliation(s)
- Lucía Íñigo-Catalina
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Beatriz Linillos-Pradillo
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sergio D Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús A F Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Cao H, Xie Q, Luo P, Chen J, Xia K, Ma L, Chen D, Deng C, Wan Z. Di-(2-ethylhexyl) phthalate exposure induces premature testicular senescence by disrupting mitochondrial respiratory chain through STAT5B-mitoSTAT3 in Leydig cell. GeroScience 2024; 46:4373-4396. [PMID: 38499958 PMCID: PMC11336147 DOI: 10.1007/s11357-024-01119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a prevalent plasticizer, is known to have endocrine-disrupting effects on males and cause reproductive toxicity. There were causal effects of DEHP on testosterone levels in the real world by Mendelian randomization analysis. Exposure to DEHP during the preadult stage might lead to premature testicular senescence, but the mechanisms responsible for this have yet to be determined. In this study, we administered DEHP (300 mg/kg/day) to male C57BL/6 mice from postnatal days 21 to 49. The mice were kept for 6 months without DEHP. RNA sequencing was conducted on testicular tissue at PNM6. The results indicated that DEHP hindered testicular development, lowered serum testosterone levels in male mice, and induced premature testicular senescence. TM3 Leydig cells were exposed to 300 μM of mono(2-ethylhexyl) phthalate (MEHP), the bioactive metabolite of DEHP, for 72 h. The results also found that DEHP/MEHP induced senescence in vivo and in vitro. The mitochondrial respiratory chain was disrupted in Leydig cells. The expression and stability of STAT5B were elevated by MEHP treatment in TM3 cells. Furthermore, p-ERK1/2 was significantly decreased by STAT5B, and mitochondria-STAT3 (p-STAT3 ser727) was significantly decreased due to the decrease of p-ERK1/2. Additionally, the senescence level of TM3 cells was decreased and treated with 5 mM NAC for 1 h after MEHP treatment. In conclusion, these findings provided a novel mechanistic understanding of Leydig cells by disrupting the mitochondrial respiratory chain through STAT5B-mitoSTAT3.
Collapse
Affiliation(s)
- Haiming Cao
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- The Reproductive Andrology Clinic, the Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Road, 518000, Shenzhen, Guangdong, China
| | - Qigen Xie
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- The Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peng Luo
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiaqi Chen
- The Urology Department, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, 365000, Fujian, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Ma
- The Reproductive Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China
| | - Demeng Chen
- Translational Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chunhua Deng
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zi Wan
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Bustamante M, Balagué-Dobón L, Buko Z, Sakhi AK, Casas M, Maitre L, Andrusaityte S, Grazuleviciene R, Gützkow KB, Brantsæter AL, Heude B, Philippat C, Chatzi L, Vafeiadi M, Yang TC, Wright J, Hough A, Ruiz-Arenas C, Nurtdinov RN, Escaramís G, González JR, Thomsen C, Vrijheid M. Common genetic variants associated with urinary phthalate levels in children: A genome-wide study. ENVIRONMENT INTERNATIONAL 2024; 190:108845. [PMID: 38945087 DOI: 10.1016/j.envint.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.
Collapse
Affiliation(s)
- Mariona Bustamante
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | | | - Zsanett Buko
- Department of Oncological Science, Huntsman Cancer Institute, Salt Lake City, United States
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maribel Casas
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne-Lise Brantsæter
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Reproduction and Respiratory Health Team, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Amy Hough
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Carlos Ruiz-Arenas
- Computational Biology Program, CIMA University of Navarra, idiSNA, Pamplona 31008, Spain
| | - Ramil N Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Geòrgia Escaramís
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan R González
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Martine Vrijheid
- Environment and Health Over the Lifecourse, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Teng JM, Qin S, Lu D, Gu Y, Tang SJ, Yan Q, Yao J, Zhang C. Evaluation of CYP2C19 Genetic Variant and Its Lack of Association with Valproic Acid Plasma Concentrations Among Zhuang and Han Schizophrenia Patients in Guangxi. Pharmgenomics Pers Med 2024; 17:225-236. [PMID: 38765788 PMCID: PMC11102100 DOI: 10.2147/pgpm.s457805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To investigate the CYP2C19 genotype distribution and allelic frequency among the Zhuang and Han schizophrenic populations in Guangxi, examine the correlation between CYP2C19 genetic variants and standardized blood levels of Valproic Acid (VPA) in schizophrenic patients, and evaluate the effects of age, gender, and Body Mass Index (BMI) on standardized VPA blood concentrations. Patients and Methods Between February and December 2022, 192 Zhuang and Han schizophrenia patients treated with VPA were studied. Steady-state VPA concentrations were determined using homogeneous enzyme immunoassays, and CYP2C19 *1, *2, and *3 loci via q-PCR. CYP2C19 genotype distributions between Zhuang and Han groups in Nanning were compared using chi-square tests and contrasted with other ethnicities. Non-parametric tests analyzed VPA variations, identifying critical factors through multivariate stepwise regression. Results The study identified five CYP2C19 genotypes at the *2 and *3 loci, with the *3/*3 genotype absent in both cohorts. The CYP2C19 distribution in Guangxi Zhuang and Han mirrors, yet diverges significantly from Hui and Kazakh groups. Among 192 subjects, VPA blood levels remained consistent across metabolic types and ages 18-60 but varied significantly by gender. Multivariate analysis revealed gender and BMI as significant factors, overshadowing CYP2C19 genotype and age. Conclusion In Guangxi, CYP2C19 genetic variants in Zhuang and Han schizophrenia patients demonstrate statistically indistinguishable allelic and metabolic distributions. Gender and BMI can influence standardized VPA blood concentrations in schizophrenia patients. However, in our study cohort, the CYP2C19 genotype and age are not the primary determinants of standardized VPA blood levels.
Collapse
Affiliation(s)
- Jun Mei Teng
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shuiqing Qin
- Department of Science and Education, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Danyu Lu
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yefa Gu
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Jie Tang
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Qiong Yan
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jiawei Yao
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chao Zhang
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
5
|
Cai FS, Tang B, Zheng J, Yan X, Ding XF, Liao QL, Luo XJ, Ren MZ, Yu YJ, Mai BX. First Insight into Fetal Exposure to Legacy and Emerging Plasticizers Revealed by Infant Hair and Meconium: Occurrence, Biotransformation, and Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5739-5749. [PMID: 38456395 DOI: 10.1021/acs.est.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.
Collapse
Affiliation(s)
- Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao-Fan Ding
- Faculty of Health Sciences, University of Macau, Building E12, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Qi-Long Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Li N, Kang H, Liu Z, Li L, Deng Y, Wang M, Li Y, Xu W, Li X, Wang Y, Zhu J, Tao J, Yu P. Association of maternal phthalates exposure and metabolic gene polymorphisms with congenital heart diseases: a multicenter case-control study. BMC Pregnancy Childbirth 2024; 24:167. [PMID: 38408952 PMCID: PMC10895762 DOI: 10.1186/s12884-024-06343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuting Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wenli Xu
- Department of Maternal Healthcare, Pidu Maternal and Child Care Hospital, Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jing Tao
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Jin S, Cui S, Mu X, Liu Z, Han Y, Cui T, Xiong W, Xi W, Zhang X. Exposure to phthalates and their alternatives in relation to biomarkers of inflammation and oxidative stress in adults: evidence from NHANES 2017-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123770-123784. [PMID: 37991617 DOI: 10.1007/s11356-023-30924-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Phthalates and their alternatives are considered significant environmental risk factors that potentially influence inflammation and oxidative stress. However, their impact on biomarkers of inflammation and oxidative stress was inconsistent. This study aimed to explore the associations between phthalates and high-sensitivity C-reactive protein (hsCRP), gamma-glutamyl transferase (GGT), and white blood cell (WBC) counts, employing both univariate exposure and multivariate co-exposure models. For this analysis, a total of 1619 individuals aged 18 years and above, sourced from the National Health and Nutrition Examination Survey (NHANES) conducted between 2017 and 2018, were selected as subjects. We explored the associations between hsCRP, GGT, and WBC counts and eighteen different phthalate metabolites. Multiple linear regression analysis revealed significant associations between both MCNP and MEHP and hsCRP. We observed negative correlations of MCOP, MCPP, MHBP, and MONP with GGT. Conversely, MEHHP and MEHHTP exhibited positive correlations with GGT. Furthermore, MECPTP and MEHHTP showed positive correlations with WBC. Notably, we identified a non-linear relationship between phthalates and inflammation and oxidative stress markers. The Bayesian kernel machine regression (BKMR) analysis demonstrated a negative joint effect of the phthalates mixture on GGT, particularly at lower concentrations. The BKMR model also found that MEOHP and MHiBP were negatively associated with GGT. In contrast, MEHHP showed a significant positive association with GGT. Moderating effect analysis suggested that dietary inflammatory index (DII), income-to-poverty ratio (PIR), age, BMI, and physical activity influenced the association between phthalates and inflammation and oxidative stress. These findings contribute to a deeper understanding of the relationships between phthalates and inflammation and oxidative stress.
Collapse
Affiliation(s)
- Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Shanshan Cui
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaoyu Mu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Zhao Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
8
|
Kuo FC, Tsai ML, Wu ST, Li SS, Wu CF, Wang SL, Chan MWY, Suen JL, Wu MT, Hung CH. Maternal di-(2-ethylhexyl) phthalate exposure elicits offspring IFN-λ upregulation: Insights from birth cohort, murine model, and in vitro mechanistic analysis. Food Chem Toxicol 2023; 179:113993. [PMID: 37611859 DOI: 10.1016/j.fct.2023.113993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Maternal exposure to di-(2-ethylhexyl)-phthalate (DEHP), an environmental endocrine disruptor, may lead to developmental immunotoxicity in offspring. The causal relationship and underlying mechanism require further study. A subset of Taiwan Maternal and Infant Cohort Study data (n = 283) was analyzed and found a significant association between urinary DEHP metabolite levels from the third trimester of pregnancy and plasma levels of IL-28A and IL-29, named IFNλs, in cord blood. A trans-maternal murine model mimicking human DEHP exposure way showed that bone marrow-derived dendritic cells from maternal DEHP-exposed F1 offspring secreted higher IL-28A levels than control cells, indicating a potential causal relationship. Human bronchial epithelial cell lines treated with DEHP or its primary metabolite, mono-(2-ethyl-5-hexyl) phthalate (MEHP), expressed significantly higher levels of IFNλs mRNA or protein than controls. MEHP's effect on IFNλs expression was blocked by peroxisome proliferator-activated receptor α (PPARα) and PPARγ antagonists, and inhibited by a histone acetyltransferase inhibitor or a histone methyltransferase inhibitor. Chromatin immunoprecipitation assay showed that MEHP treatment promoted histone modifications at H3 and H4 proteins at the promoter regions of Il28a and Il29 genes. These results suggest maternal DEHP exposure could result in high IFNλ expression in offspring, and the health risk of early-life exposure requires further investigation.
Collapse
Affiliation(s)
- Fu-Chen Kuo
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan; Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 840, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shin-Ting Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli 360, Taiwan
| | - Shu-Lin Wang
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
| | - Michael W Y Chan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan; Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan
| | - Jau-Ling Suen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; PhD Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
9
|
Ubong D, Stewart L, Sepai O, Knudsen LE, Berman T, Reynders H, Van Campenhout K, Katsonouri A, Van Nieuwenhuyse A, Ingelido AM, Castaño A, Pedraza-Díaz S, Eiríksdóttir ÁV, Thomsen C, Hartmann C, Gjorgjev D, De Felip E, Tolonen H, Santonen T, Klanova J, Norström K, Kononenko L, Silva MJ, Uhl M, Kolossa-Gehring M, Apel P, Jõemaa M, Jajcaj M, Estokova M, Luijten M, Lebret E, von Goetz N, Holcer NJ, Probst-Hensch N, Cavaleiro R, Barouki R, Tarroja E, Balčienė RM, Strumylaite L, Latvala S, Namorado S, Szigeti T, Ingi Halldorsson T, Olafsdottir K, Wasowicz W. Application of human biomonitoring data to support policy development, raise awareness and environmental public health protection among countries within the HBM4EU project. Int J Hyg Environ Health 2023; 251:114170. [PMID: 37207539 DOI: 10.1016/j.ijheh.2023.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Most countries have acknowledged the importance of assessing and quantifying their population's internal exposure from chemicals in air, water, soil, food and other consumer products due to the potential health and economic impact. Human biomonitoring (HBM) is a valuable tool which can be used to quantify such exposures and effects. Results from HBM studies can also contribute to improving public health by providing evidence of individuals' internal chemical exposure as well as data to understand the burden of disease and associated costs thereby stimulating the development and implementation of evidence-based policy. To have a holistic view on HBM data utilisation, a multi-case research approach was used to explore the use of HBM data to support national chemical regulations, protect public health and raise awareness among countries participating in the HBM4EU project. The Human Biomonitoring for Europe (HBM4EU) Initiative (https://www.hbm4eu.eu/) is a collaborative effort involving 30 countries, the European Environment Agency (EEA) and the European Commission (contracting authority) to harmonise procedures across Europe and advance research into the understanding of the health impacts of environmental chemical exposure. One of the aims of the project was to use HBM data to support evidence based chemical policy and make this information timely and directly available for policy makers and all partners. The main data source for this article was the narratives collected from 27 countries within the HBM4EU project. The countries (self-selection) were grouped into 3 categories in terms of HBM data usage either for public awareness, policy support or for the establishment HBM programme. Narratives were analysed/summarised using guidelines and templates that focused on ministries involved in or advocating for HBM; steps required to engage policy makers; barriers, drivers and opportunities in developing a HBM programme. The narratives reported the use of HBM data either for raising awareness or addressing environmental/public health issues and policy development. The ministries of Health and Environment were reported to be the most prominent entities advocating for HBM, the involvement of several authorities/institutions in the national hubs was also cited to create an avenue to interact, discuss and gain the attention of policy makers. Participating in European projects and the general population interest in HBM studies were seen as drivers and opportunities in developing HBM programmes. A key barrier that was cited by countries for establishing and sustaining national HBM programmes was funding which is mainly due to the high costs associated with the collection and chemical analysis of human samples. Although challenges and barriers still exist, most countries within Europe were already conversant with the benefits and opportunities of HBM. This article offers important insights into factors associated with the utilisation of HBM data for policy support and public awareness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dragan Gjorgjev
- Institute of Public Health, Republic of North Macedonia, Macedonia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang Z, Xie Y, Zhang D, Zou Y, Li X, Chen R, Zhang X, Chen S, Bai F. CYP2C19 gene polymorphism in Ningxia. Pharmacol Rep 2023; 75:705-714. [PMID: 36913175 DOI: 10.1007/s43440-023-00473-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Poor metabolizer (PM) status of CYP2C19 can be a predisposing factor for developing gastric cancer in H. pylori-infected patients. It is unclear whether PM status of CYP2C19 can also be a potential factor for H.pylori infection in healthy people. METHODS We used high-throughput sequencing to detect single nucleotide polymorphisms (SNPs) at just three loci, rs4244285 (CYP2C19*2), rs4986893 (CYP2C19*3) and rs12248560 (CYP2C19*17), to identify the exact CYP2C19 alleles corresponding to the mutated sites. We determined CYP2C19 genotypes of 1050 subjects from 5 cities of Ningxia from September 2019 to September 2020 and evaluated the potential correlation between H.pylori and CYP2C19 gene polymorphisms. Clinical data were analyzed using χ2 tests. RESULTS The frequency of CYP2C19*17 in Hui (3.7%) was higher as compared to Han (1.4%) in Ningxia (p = 0.001). The frequency of CYP2C19*1/*17 of Hui (4.7%) was higher as compared to Han (1.6%) in Ningxia (p = 0.004). The frequency of CYP2C19*3/*17 of Hui (1%) was higher as compared to Han (0%) in Ningxia (p = 0.023). The frequencies of alleles (p = 0.142) and genotypes (p = 0.928) were not found to be significantly different among the different BMI groups. The frequencies of four alleles between H. pylori positive and negative groups were not found to be statistically different (p = 0.794). The frequencies of the different genotypes between H. pylori positive and negative groups were not statistically different (p = 0.974), and no statistical difference was observed between the different metabolic phenotypes (p = 0.494). CONCLUSION There were regional differences observed in CYP2C19*17 distribution in Ningxia. The frequency of CYP2C19*17 in Hui was higher than in Han of Ningxia. No significant relationship was found between CYP2C19 gene polymorphism and susceptibility to H. pylori infection.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Infectious Disease, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yunqian Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Hai Nan Medical University, Yuhai Avenue, #368, Longhua District, Haikou, Hainan Province, China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| | - Daya Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Yan Zou
- The Third School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ximei Li
- The Third School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runxiang Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Xiaodong Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Shiju Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hai Nan Medical University, Yuhai Avenue, #368, Longhua District, Haikou, Hainan Province, China.
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China.
| |
Collapse
|
11
|
Zhao D, Zhu Y, Huang F, Chen M. Phthalate metabolite concentrations and effects on albuminuria in the US population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114453. [PMID: 38321672 DOI: 10.1016/j.ecoenv.2022.114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND The usage pattern of phthalates has changed with the introduction of new alternatives such as 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) and di-isodecyl phthalate (DiDP). However, the concentrations of these alternatives at the population level and their effects on endothelial function are under-studied. OBJECTIVES We examined the concentrations of the new alternatives and their previous counterparts, as well as the associations between phthalate exposure and albuminuria in the general US population. METHODS In total, 2672 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 were enrolled in this study, and we obtained data on 19 urinary phthalate metabolites, albumin, and creatinine. The distributions of urinary phthalates were studied by age and sex. Linear and logistic regressions were used to estimate the association between urinary phthalate metabolites and albumin. RESULTS The geometric mean of the total phthalate concentrations in males and females was 124.97 and 113.09 ng/mL respectively. The detection rates of most urinary phthalate metabolites were greater than 95 %. The major phthalate metabolites found in the US population were MEP (24.20 %) and MECPTP (23.76 %). More positive relationships between phthalate and micro- plus albuminuria were found in females aged ≥ 60 years group(1.49 (95 % CI: 1.08-1.90), 1.44 (95 % CI: 1.06-1.81), 1.52 (95 % CI: 1.14-1.90), 1.41(95 % CI: 1.04-1.78), 1.29(95 % CI: 1.01-1.58), 1.60(95 % CI: 1.20-2.01), 1.45(95 % CI:1.14-1.77), and 1.55(95 % CI: 1.22-1.87) in MECPP, MEHHP, MEOHP, MEHP, MCPP, MHBP, MHNCH and MCOCH respectively). In total population, logistic regression showed that all traditional phthalate metabolites were associated with an increased proportion of albuminuria (OR range from 1.19 to 1.40, all p < 0.05). However, three new alternatives were not associated with albuminuria (OR range from 1.01 to 1.05, all p > 0.05), and six new alternatives were associated with an increased proportion of albuminuria (OR range from 1.14 to 1.30, all p < 0.05). CONCLUSIONS Children have higher metabolite concentrations than adults. Exposure to certain phthalates may disrupt albuminuria homeostasis, especially in older females. Alternative phthalates may have a lower impact on albuminuria than conventional phthalates. The safety of the new alternatives should be interpreted with caution, as more research is still required.
Collapse
Affiliation(s)
- Dongdong Zhao
- Department of Medical Administration, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fang Huang
- Department of Medical Administration, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
12
|
Liu H, Wang Y, Kannan K, Liu M, Zhu H, Chen Y, Kahn LG, Jacobson MH, Gu B, Mehta-Lee S, Brubaker SG, Ghassabian A, Trasande L. Determinants of phthalate exposures in pregnant women in New York City. ENVIRONMENTAL RESEARCH 2022; 212:113203. [PMID: 35358547 PMCID: PMC9232940 DOI: 10.1016/j.envres.2022.113203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 05/17/2023]
Abstract
Previous studies have provided data on determinants of phthalates in pregnant women, but results were disparate across regions. We aimed to identify the food groups and demographic factors that predict phthalate exposure in an urban contemporary pregnancy cohort in the US. The study included 450 pregnant women from the New York University Children's Health and Environment Study in New York City. Urinary concentrations of 22 phthalate metabolites, including metabolites of di-2-ethylhexylphthalate (DEHP), were determined at three time points across pregnancy by liquid chromatography coupled with tandem mass spectrometry. The Diet History Questionnaire II was completed by pregnant women at mid-pregnancy to assess dietary information. Linear mixed models were fitted to examine determinants of urinary phthalate metabolite concentrations. Using partial-linear single-index (PLSI) models, we assessed the major contributors, among ten food groups, to phthalate exposure. Metabolites of DEHP and its ortho-phthalate replacement, diisononyl phthalate (DiNP), were found in >90% of the samples. The sum of creatinine-adjusted DiNP metabolite concentrations was higher in older and single women and in samples collected in summer. Hispanic and non-Hispanic Black women had lower urinary concentrations of summed metabolites of di-n-octyl phthalate (DnOP), but higher concentrations of low molecular weight phthalates compared with non-Hispanic White women. Each doubling of grain products consumed was associated with a 20.9% increase in ∑DiNP concentrations (95%CI: 4.5, 39.9). PLSI models revealed that intake of dried beans and peas was the main dietary factor contributing to urinary ∑DEHP, ∑DiNP, and ∑DnOP levels, with contribution proportions of 76.3%, 35.8%, and 27.4%, respectively. Urinary metabolite levels of phthalates in pregnant women in NYC varied by age, marital status, seasonality, race/ethnicity, and diet. These results lend insight into the major determinants of phthalates levels, and may be used to identify exposure sources and guide interventions to reduce exposures in susceptible populations.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Shilpi Mehta-Lee
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|