1
|
Wang J, Huang H, Yang H, Wang S, Li M, Zhu Z, Trumble JT, Di N, Zang L. Heavy metal exposure reduces larval gut microbiota diversity of the rice striped stem borer, Chilo suppressalis. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:973-983. [PMID: 39066991 DOI: 10.1007/s10646-024-02792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Cadmium (Cd), a widely distributed environmental pollutant in agroecosystems, causes negative effects on crops and herbivores through bottom-up processes. The gut microbial community of an insect can play a critical role in response to metal stress. To understand how microbiota affect the stress responses of organisms to heavy metals in agroecosystems, we initially used 16S rRNA sequencing to characterize the larval gut microbiota of Chilo suppressalis, an important agricultural pest, exposed to a diet containing Cd. The species richness, diversity, and composition of the gut microbial community was then analyzed. Results revealed that while the richness (Chao1 and ACE) of gut microbiota in larvae exposed to Cd was not significantly affected, diversity (Shannon and Simpson) was reduced due to changes in species distribution and relative abundance. Overall, the most abundant genus was Enterococcus, while the abundance of the genera Micrococcaceae and Faecalibaculum in the control significantly superior to that in Cd-exposed pests. Phylogenetic investigation of microbial communities by the reconstruction of unobserved states (PICRUSt) showed that the intestinal microorganisms appear to participate in 34 pathways, especially those used in environmental information processing and the metabolism of the organism. This study suggests that the gut microbiota of C. suppressalis are significantly impacted by Cd exposure and highlights the importance of the gut microbiome in host stress responses and negative effects of Cd pollution in agroecosystems.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hexi Huang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hailin Yang
- Yunnan Tobacco Company, Yuxi Branch, Yuxi, 653100, China
| | - Su Wang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Mengnan Li
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Zhengyang Zhu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - John T Trumble
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Ning Di
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China.
| | - Liansheng Zang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhu Z, Wang J, Trumble JT, Liu J, Wang S, Yang H, Di N. Transfer and biological effects of cadmium along a tomato - thrip - predatory bug food chain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117218. [PMID: 39426108 DOI: 10.1016/j.ecoenv.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The heavy metal, cadmium (Cd) is an increasingly serious issue in agricultural ecosystems, mediating bottom-up effects on plants, herbivores and natural enemies. We measured how Cd modifies interactions between tomato Solanum lycopersicum, western flower thrips Frankliniella occidentalis, and the predatory bug Orius sauteri by examining Cd effects on the growth of tomato, the fitness of western flower thrips, and the survival and behavior of predators. The photosynthetic parameters of Pn (net photosynthetic rate), Gs (stomatal conductance), Ci (intercellular CO2 concentration), and Tr (transpiration rate) of tomato plants significantly decreased with the increase of Cd concentration. The total survival number of western flower thrips fed on tomato plants treated with different concentrations of Cd was significantly lower than that of the control, and sex ratios (female/male) gradually increased with the increase of Cd concentration. The numbers of thrips predated by O. sauteri on tomato plants treated with high concentrations of Cd (2.0 or 4.0 mg/L) were significantly reduced by the second day. Cadmium was accumulated and bioconcentrated in the roots, stems, leaves of tomato plants, and transferred to F. occidentalis, and O. sauteri. Cadmium translocated in significant quantities from roots to the stems and leaves of tomato plants, and from the tomato leaf to F. occidentalis. However, there was minimal (non-significant) transfer of Cd from F. occidentalis to O. sauteri. The presence of Cd significantly reduced the growth of tomato plants, the fitness of F. occidentalis, and the predation efficiency of O. sauteri. Collectively, Cd can mediate bottom-up effects on tomato, thrip, and predatory bug along food chain, potentially interrupting pest biological control in tomato in heavy metal-contaminated ecosystems.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - John T Trumble
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Junxiu Liu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Su Wang
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hailin Yang
- Yunnan Tobacco Company, Yuxi Branch, Yuxi 653100, China.
| | - Ning Di
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Liu H, Shi Y, Zou Y, Song Z, Tian H, Yang X, Li X. The effects of lead (Pb) and pest damage on soil enzyme activities, pakchoi and Spodoptera litura performance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:473-481. [PMID: 39295446 DOI: 10.1017/s0007485324000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.
Collapse
Affiliation(s)
- Huiyang Liu
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Yimeng Shi
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Yuxuan Zou
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Zaiya Song
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Huai Tian
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xianjun Yang
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xiaohong Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| |
Collapse
|
4
|
Karavin M. Bioaccumulation of Metals in Some Auchenorrhyncha (Insecta: Hemiptera) Species in Cherry Orchards Near Motorway and Their Usage as Biomonitor for Metal Pollution. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:26. [PMID: 38281209 DOI: 10.1007/s00128-023-03843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
Traffic borne pollutants negatively affect organisms. This study aimed to determine the impact of traffic pollution on Auchenorrhyncha species and their usage as biomonitor for metal pollution. The study was carried out in the cherry orchard near the Amasya-Samsun D100/E80 motorway in Amasya, Türkiye. Metal concentrations in specimens tended to decrease with the increasing distance from the motorway. Significant variations were determined in some metal concentrations based on distance from the motorway. The maximum and minimum metal concentrations were obtained from 0 to 100 m, respectively. Negative relationships were determined between distance from the motorway and Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb concentrations in Arboridia versuta (Melichar, 1897), and Cd, Co, Cr, Cu, Ni and Pb concentrations in Psammotettix provincialis (Ribaut, 1925). Metals were accumulated in the body of specimens. Therefore, it is thought that Auchenorrhyncha species may be used as a biomonitor for metal pollution due to their high metal concentrations.
Collapse
Affiliation(s)
- Murat Karavin
- Suluova Vocational School, Amasya University, Amasya, Türkiye.
| |
Collapse
|
5
|
Mrdaković M, Filipović A, Ilijin L, Grčić A, Matić D, Vlahović M, Todorović D, Perić-Mataruga V. Effects of dietary fluoranthene on tissue-specific responses of carboxylesterases, acetylcholinesterase and heat shock protein 70 in two forest lepidopteran species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114937. [PMID: 37094482 DOI: 10.1016/j.ecoenv.2023.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
In this study, responses of carboxylesterases, acetylcholinesterase, and stress protein Hsp70 were examined in the midgut and midgut tissue, and brain of fifth instar larvae of Lymantria dispar L. and Euproctis chrysorrhoea L. following chronic exposure to dietary fluoranthene. Specific carboxylesterase activity increased significantly in the midgut tissue of E. chrysorrhoea larvae treated with a lower fluoranthene concentration. The specific patterns of isoforms expression, recorded in larvae of both species, enable efficient carboxylesterase activity as a significant part of defense mechanisms. Increased Hsp70 concentration in the brain of L. dispar larvae points to a response to the proteotoxic effects of a lower fluoranthene concentration. Decreased Hsp70 in the brain of E. chrysorrhoea larvae in both treated groups can suggest induction of other mechanisms of defense. The results indicate the importance of the examined parameters in larvae of both species exposed to the pollutant, as well as their potential as biomarkers.
Collapse
Affiliation(s)
- Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
6
|
Rivkin LR, de Andrade AC. Increased herbivory but not cyanogenesis is associated with urbanization in a tropical wildflower. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- L. Ruth Rivkin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
- Department of Biology University of Toronto Mississauga Toronto Ontario Canada
- Centre for Urban Environments University of Toronto Mississauga Toronto Ontario Canada
| | - Antonio C. de Andrade
- Universidade Federal da Paraiba Departamento de Engenharia e Meio Ambiente Rio Tinto PB Brazil
| |
Collapse
|
7
|
Morales-Silva T, Silva BC, Faria LDB. Soil contamination with permissible levels of lead negatively affects the community of plant-associated insects: A case of study with kale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119143. [PMID: 35301032 DOI: 10.1016/j.envpol.2022.119143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study investigated whether lead (Pb), at concentrations allowed for soil, affects the community of insects that live in the aerial part of plants. We evaluated the effect of Pb concentrations on accumulated species richness, composition, and abundance of different functional groups of insects. Kale plants were grown in soil experimentally contaminated with four concentrations of lead nitrate: 0 (control), 144 (T1), 360 (T2), and 600 (T3) mg/kg of soil. The experiment was conducted in an open greenhouse for the natural colonization of insects. Insects were collected twice using trap bags attached to the plant leaf and by direct removal. The concentration of Pb in the stem and leaf samples increased with the increased soil contamination, even showing values above the limit allowed by the legislation for this plant species. Control plants showed a higher richness of accumulated insect species. In addition, the treatments had an effect on the community composition, in which Diaeretiella rapae (primary parasitoid) was found as an indicator of the control + T1 treatments and the top species Pachyneuron sp. (parasitoid of predators) was associated with the control. The abundance of chewing and sucking herbivores, their respective parasitoids, predators, and parasitoids of predators were negatively affected. Hyperparasitoid abundance was not affected, but their accumulated species richness was. This study was innovative in demonstrating that soil contamination by different concentrations of a heavy metal (Pb) can negatively affect the community of plant-associated insects, even at concentrations allowed for soil, reflecting possible damage to the ecosystem.
Collapse
Affiliation(s)
- Tiago Morales-Silva
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil.
| | - Bruna C Silva
- Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil
| | - Lucas D B Faria
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Mailbox 3037, Lavras, MG, 37200-900, Brazil
| |
Collapse
|
8
|
Han P, Lavoir AV, Rodriguez-Saona C, Desneux N. Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:239-259. [PMID: 34606362 DOI: 10.1146/annurev-ento-060121-060505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bottom-up effects are major ecological forces in crop-arthropod pest-natural enemy multitrophic interactions. Over the past two decades, bottom-up effects have been considered key levers for optimizing integrated pest management (IPM). Irrigation, fertilization, crop resistance, habitat manipulation, organic management practices, and landscape characteristics have all been shown to trigger marked bottom-up effects and thus impact pest management. In this review, we summarize current knowledge on the role of bottom-up effects in pest management and the associated mechanisms, and discuss several key study cases showing how bottom-up effects practically promote natural pest control. Bottom-up effects on IPM also contribute to sustainable intensification of agriculture in the context of agricultural transition and climate change. Finally, we highlight new research priorities in this important area. Together with top-down forces (biological control), future advances in understanding ecological mechanisms underlying key bottom-up forces could pave the way for developing novel pest management strategies and new optimized IPM programs.
Collapse
Affiliation(s)
- Peng Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China;
| | | | | | - Nicolas Desneux
- Université Cote d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| |
Collapse
|
9
|
Nadat YT, Kylin H, Sithole R, Lesch V, Bouwman H. The Wasp as a Terrestrial Indicator of Environmental Metal Composition: Evidence from Zimbabwe. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1726-1739. [PMID: 33646628 DOI: 10.1002/etc.5029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We explored metal concentrations in wasps from 4 sites near Harare, Zimbabwe, on a 106 km west-east transect. We found elevated concentrations at 2 presumed-polluted sites (a platinum [Pt] mine and a known polluted lake) located near a metal-enriched geological feature (the Great Dyke). A site in urban Harare and a nature reserve served as reference. Only wasps from the 2 presumed-polluted sites had quantifiable Pt. For Cr, Ni, Mg, Se, Fe, Mn, and V, we report the highest concentrations in wasps yet published. Wasps from the presumed-polluted sites had significantly higher concentrations of most metals when compared with wasps from the reference sites, suggesting pollution as a source. Geology, however, differs between the sites. It is probable, therefore, that both geology and pollution contributed to the differences in metal concentrations. Because of its long and narrow dimensions (550 km long and 4-11 km wide), the Great Dyke offers opportunities for comparative studies. Because wasps form a complex part of the food web and ecology, studies on the transfer of metals to wasps' predators are needed, especially given that some birds specialize in feeding on hymenopterans. The rich diversity of wasps (>145 000 species worldwide) occupying multiple different trophic levels is a good indicator, and wasps have a rich potential to join other invertebrates as terrestrial indicators. Environ Toxicol Chem 2021;40:1726-1739. © 2021 SETAC.
Collapse
Affiliation(s)
- Yasfir Tarif Nadat
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Henrik Kylin
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden
| | - Rudo Sithole
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Velesia Lesch
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Wang Z, Zhu W, Xu Y, Yu S, Zhang L, Zhou Z, Diao J. Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116139. [PMID: 33307394 DOI: 10.1016/j.envpol.2020.116139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The residue of simazine herbicide in the environment is known as one of pollutant stress for lizards by crippling its fitness on direct toxic effects and indirect food shortage via the food chain effects. Both stressors were considered in our experiment in the simazine exposure and food availability to lizards (Eremias argus). The results revealed that starvation significantly reduced the lizard's energy reserve and native immune function, while the accumulation of simazine in the liver was significantly increased. Simazine caused oxidative stress in the liver of lizards, but oxidative damage only occurred in the starved lizards. Simazine also changed the energy reserves, native immune function and detoxification of well-fed lizards, while the starved lizards showed different sensitivity to simazine. Simazine or starvation treatment independently activated the lizard HPA axis, but co-treatment caused the HPA axis inhibition. Besides, according to the variations on amino acid neurotransmitters, corticosterone hormone and thermoregulatory behavior, we inferred that lizards in threatens take the appropriate strategy on energy investment and allocation through neural, endocrine and behavioral pathways to maximize benefits in dilemma. Energy allocation was necessary, while suppression on any physiological process comes at a cost that is detrimental to long-term individual fitness.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenning Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | | | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
11
|
Urbanization alters the abundance and composition of predator communities and leads to aphid outbreaks on urban trees. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01061-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractUrbanization can affect arthropod abundance in different ways. While species with narrow habitat range and low dispersal ability often respond negatively to urban environments, many habitat generalist species with good dispersal ability reach high densities in city centers. This filtering effect of urban habitats can strongly influence predator-prey-mutualist interactions and may therefore affect the abundance of predatory and phytophagous species both directly and indirectly. Here, we assessed the effect of urbanization on aphids, predatory arthropods, and ants on field maple (Acer campestre) trees in and around the city of Budapest, Hungary. We used the percentage of impervious surfaces within a 500 m radius of each site as an index of the degree of urbanization. We found that the abundance of aphids increased with increasing level of urbanization. However, abundance of predatory arthropods and occurrence of poorly dispersing species within the predator community were negatively related to urbanization, and we identified these two independent factors as significant predictors of aphid abundances. The abundance of ants decreased with urbanization, and contrary to our expectations, did not affect the abundance pattern of aphids. Our results suggest that urbanization, by altering the abundance and composition of predator communities, can disrupt biological control of aphid populations, and thus may contribute to the aphid outbreaks on urban trees.
Collapse
|
12
|
Filipović A, Mrdaković M, Ilijin L, Vlahović M, Todorović D, Grčić A, Perić-Mataruga V. Effect of fluoranthene on antioxidative defense in different tissues of Lymantria dispar and Euproctis chrysorrhoea larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108565. [PMID: 31276812 DOI: 10.1016/j.cbpc.2019.108565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
This study examined the effect of long-term exposure to environmentally relevant concentrations of dietary fluoranthene (6.7 and 67 ng / g dry food weight) on defense mechanisms of the polyphagous forest insects Lymantria dispar L. and Euproctis chrysorrhoea L. The activities and expression of isoforms of superoxide dismutase (SOD) and catalase (CAT), the activities of glutathione S-transferase (GST) and glutathione reductase (GR), and total glutathione content (GSH) were determined in the whole midgut and midgut tissue, while SOD and CAT activities were assessed in hemolymph of the larvae. The results showed significant changes of enzyme activities, with more pronounced responses in larval midgut tissues, and between-species differences in patterns of response. Significantly increased activity of SOD was recorded in the whole midgut and midgut tissue of L. dispar larvae, as well as in midgut tissue of E. chrysorrhoea larvae. Fluoranthene increased CAT activity in midgut tissue of L. dispar larvae, and in the whole midgut and midgut tissue of E. chrysorrhoea larvae. Different expression patterns were detected for enzyme isoforms in tissues of larvae exposed to dietary fluoranthene. Total GSH content and GST activity increased in E. chrysorrhoea larval midgut tissue. Significantly decreased SOD activity in hemolymph of L. dispar larvae, and opposite changes in CAT activity were recorded in the hemolymph of larvae of two insect species. The tissue-specific responses of enzymes to dietary fluoranthene, recorded in each species, enabled the larvae to overcome the pollutant induced oxidative stress, and suggest further assessment of their possible use as early-warning signals of environmental pollution.
Collapse
Affiliation(s)
- Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
13
|
Dar MI, Green ID, Khan FA. Trace metal contamination: Transfer and fate in food chains of terrestrial invertebrates. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Villette C, Maurer L, Delecolle J, Zumsteg J, Erhardt M, Heintz D. In situ localization of micropollutants and associated stress response in Populus nigra leaves. ENVIRONMENT INTERNATIONAL 2019; 126:523-532. [PMID: 30851483 DOI: 10.1016/j.envint.2019.02.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Micropollutants and emerging organic contaminants (EOCs) have been widely studied in terms of persistance, removal, human risk assessment, toxicology, etc. Mass spectrometry imaging (MSI) offers the possibility of following the fate of a single pesticide in a plant leaf or a drug in the whole body of an animal, organ by organ. However, the admissibility of chronic low doses of complex mixtures for the ecosystem has not been assessed. How do micropollutants diffuse in the environment? How do living organisms cope with chronic exposure to a low dose of diverse micropollutants? Is there a cocktail effect or a chance for hormesis? Combining mass spectrometry imaging (MSI) and targeted and nontargeted liquid chromatography coupled to mass spectrometry (LC-MS), we attempt to answer these questions. We investigate the diversity of micropollutants at the exit of a water treatment facility, their diffusion in sludge and black poplar (Populus nigra), and their impact on a living organism. We reveal a specific tissue localization of micropollutants in peripheral leaf tissues, and an associated stress response from the plant, with stress hormones and tissue degradation markers induced in the plant growing near the water efflux.
Collapse
Affiliation(s)
- C Villette
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - L Maurer
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Département mécanique, ICube Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie, UNISTRA/CNRS/ENGEES/INSA, 2 rue Boussingault, 67000 Strasbourg, France
| | - J Delecolle
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - J Zumsteg
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - M Erhardt
- Microscopie et imagerie cellulaire, Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - D Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
15
|
Hunter MD, Kozlov MV. The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient. J Anim Ecol 2018; 88:665-676. [PMID: 30471097 DOI: 10.1111/1365-2656.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022]
Abstract
Animal populations vary in response to a combination of density-dependent and density-independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density-dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world. Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal-fired power plant near Apatity, north-western Russia. Populations were monitored at 14 sites over 26 years. The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant. In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible. Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly changing world, effects of anthropogenic pollution may be as, or more, important than are effects of climate change on the future dynamics of animal populations.
Collapse
Affiliation(s)
- Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Mikhail V Kozlov
- Section of Ecology and Evolutionary Biology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Myriam G, Lilian M, Marie F, Michel M, Bastien C. Trace element transfer from two contaminated soil series to Medicago sativa and one of its herbivores, Spodoptera exigua. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:650-657. [PMID: 28949765 DOI: 10.1080/15226514.2017.1374342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alfalfa was cultivated in two potted soil series obtained from two sandy soils contaminated by Cu (SM) and metal(loids)/PAH (CD). Shoot production was monitored for 8 weeks. Then, larvae of Spodoptera exigua were reared on alfalfa of both soil series for eight days. A biotest (using Phaseolus vulgaris) was used to assess the soil phytotoxicity. Increasing soil contamination reduced P. vulgaris growth, but alfalfa growth was only reduced on the SM soil series. Exposure to the SM soil was mirrored by shoot Cu and Cr concentrations of alfalfa (respectively, in mg kg -1 DW, Cu and Cr ranged from 11.9 and 0.4 in the CTRL soil to 98.5 and 1.2 in the SM one). Exposure to the CD soil series was mirrored by shoot Zn concentrations (i.e., 48-91.6 mg kg-1 DW). Internal metal(loid) concentrations of S. exigua remained generally steady across both soil series (respectively Cd 0.05-0.16, Cr 0.5-3.3, Cu 5.8-98.5, Ni 0.6-1.6, Pb 0.4-1.3, and Zn 57-337 mg kg-1 DW), and most of the associated transfer factors were lower than 1. Here, due to the excluder phenotype of alfalfa across our TE contamination gradients, S. exigua could cope with high total metal(loid) concentration in both contaminated soils.
Collapse
Affiliation(s)
| | - Marchand Lilian
- a BIOGECO, INRA, Univ. Bordeaux , Cestas , France
- b Department of Biodiversity Conservation and Ecosystem Restoration , Pyrenean Institute of Ecology (IPE), Spanish National Research Council (CSIC) , Jaca (Huesca) , Spain
| | | | - Mench Michel
- a BIOGECO, INRA, Univ. Bordeaux , Cestas , France
| | | |
Collapse
|
17
|
Attempting to predict the plant-mediated trophic effects of soil salinity: A mechanistic approach to supplementing insufficient information. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Gardiner MM, Harwood JD. Influence of heavy metal contamination on urban natural enemies and biological control. CURRENT OPINION IN INSECT SCIENCE 2017; 20:45-53. [PMID: 28602235 DOI: 10.1016/j.cois.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Urban agriculture is increasing worldwide. A history of contamination within urban landscapes may negatively impact the biota necessary for sustainable crop production, including arthropod natural enemies. This investigation revealed that heavy metal contamination can influence the composition of natural enemy communities and exposure can have reproductive, developmental, immunological and behavioral impacts on predators and parasitoids. Natural enemies exposed to heavy metals typically live shorter lives, take longer to develop and exhibit a reduced reproductive potential. Further, they may incur significant energy costs though the production of detoxification enzymes. This is a new and relatively unexplored area for biological control research, with important implications for our understanding of urban agricultural food web interactions.
Collapse
Affiliation(s)
- Mary M Gardiner
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| | - James D Harwood
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
19
|
Wang X, Zhang C, Qiu B, Ashraf U, Azad R, Wu J, Ali S. Biotransfer of Cd along a soil-plant- mealybug-ladybird food chain: A comparison with host plants. CHEMOSPHERE 2017; 168:699-706. [PMID: 27863794 DOI: 10.1016/j.chemosphere.2016.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Agro-ecosystem contamination by the heavy metals present in different agricultural products is a serious challenge faced by the living organisms. This study explains the cadmium (Cd) transfer from soils contaminated with different cadmium concentrations through a plant (eggplant and tomato) - mealybug (Dysmicoccus neobrevipes) - predator (Cryptolaemus-montrouzieri) food chain. The soils were amended with Cd at the rates of 0, 12.5, 25 and 50 mg/kg (w/w). Our findings showed that considerably higher Cd transfer through tomato plant. Cadmium was biomagnified during soil-root transfer while bio-minimization of Cd was observed for shoot-mealybug - ladybird transfer. Our results further showed sequestration of Cd during the metamorphosis of ladybird beetle whilst transfer of Cd through soil-plant-mealybug-ladybird multi-trophic food chain increased in a dose dependent manner. Our results emphasize the need of further studies to elaborate possible mechanisms of Cd bio-minimization by plants, mealybugs and ladybirds observed during this study.
Collapse
Affiliation(s)
- Xingmin Wang
- Key Laboratory of Biopesticide Innovation and Application, Engineering & Technology Research Centre of Agricultural Pest Biocontrol Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Can Zhang
- Key Laboratory of Biopesticide Innovation and Application, Engineering & Technology Research Centre of Agricultural Pest Biocontrol Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Baoli Qiu
- Key Laboratory of Biopesticide Innovation and Application, Engineering & Technology Research Centre of Agricultural Pest Biocontrol Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Umair Ashraf
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, PR China, Guangzhou 510642, PR China
| | - Rashid Azad
- Key Laboratory of Biopesticide Innovation and Application, Engineering & Technology Research Centre of Agricultural Pest Biocontrol Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianhui Wu
- Key Laboratory of Biopesticide Innovation and Application, Engineering & Technology Research Centre of Agricultural Pest Biocontrol Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaukat Ali
- Key Laboratory of Biopesticide Innovation and Application, Engineering & Technology Research Centre of Agricultural Pest Biocontrol Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Centre of Microbial Pesticides, Guangdong New Scene Biological Engineering Co. Ltd, Yangjiang, 529932, PR China.
| |
Collapse
|
20
|
Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton. PLoS One 2017; 12:e0170379. [PMID: 28099508 PMCID: PMC5242435 DOI: 10.1371/journal.pone.0170379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.
Collapse
|
21
|
Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2016.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Tabea T, Dirk S, Eva K. Effects of urbanization on direct and indirect interactions in a tri-trophic system. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:664-675. [PMID: 27411241 DOI: 10.1890/14-1787] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While effects of urbanization on species assemblages are receiving increasing attention, effects on ecological interactions remain largely unexplored. We investigated how urbanization influences the strength of direct and indirect trophic interactions in a tri- trophic system. In a field experiment including five cities and nearby farmed areas, we used potted Vicia faba plants and manipulated the presence of Megoura viciae aphids and that of naturally occurring aphid predators. When predators could access aphids, they reduced their abundance less in the urban than in the agricultural ecosystem. Compared to aphid abundance on plants without predator access, abundance on plants with predator access was 2.58 times lower in urban and 5.27 times lower in agricultural areas. This indicates that urbanization limited top-down control of aphids by predators. In both ecosystems, plant biomass was negatively affected by herbivores and positively affected by predators, but the positive indirect predator effect was weaker in cities. Compared to aphid-infested plants without predator access, plants with predator access were 1.89 times heavier in urban and 2.12 times heavier in agricultural areas. Surprisingly, differences between ecosystems regarding the indirect predator effect on plants were not explained by the differentially strong herbivore suppression. Instead, the urban environment limited plant biomass per se, thereby mitigating the scope of a positive predator effect. Our results show that urbanization can influence direct and indirect trophic interactions through effects on biotic top-down forces and on plant growth. In order to understand how urbanization affects biodiversity and ecosystem functioning, it is fundamental to not only consider species assemblages, but also species interactions.
Collapse
|
23
|
Hladun KR, Parker DR, Trumble JT. Cadmium, Copper, and Lead Accumulation and Bioconcentration in the Vegetative and Reproductive Organs of Raphanus sativus: Implications for Plant Performance and Pollination. J Chem Ecol 2015; 41:386-95. [DOI: 10.1007/s10886-015-0569-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 11/24/2022]
|
24
|
Turrini T, Knop E. A landscape ecology approach identifies important drivers of urban biodiversity. GLOBAL CHANGE BIOLOGY 2015; 21:1652-1667. [PMID: 25620599 DOI: 10.1111/gcb.12825] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500-m scale and patch isolation at the 100-m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro-ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss.
Collapse
Affiliation(s)
- Tabea Turrini
- Department of Community Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | | |
Collapse
|
25
|
Khaling E, Papazian S, Poelman EH, Holopainen JK, Albrectsen BR, Blande JD. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:119-29. [PMID: 25645061 DOI: 10.1016/j.envpol.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 05/07/2023]
Abstract
When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools.
Collapse
Affiliation(s)
- Eliezer Khaling
- Department of Environmental Science, University of Eastern Finland, P.O.Box 1627, FIN-70211, Kuopio, Finland.
| | - Stefano Papazian
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700, EH, Wageningen, The Netherlands
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, P.O.Box 1627, FIN-70211, Kuopio, Finland
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871, Frederiksberg C, Denmark
| | - James D Blande
- Department of Environmental Science, University of Eastern Finland, P.O.Box 1627, FIN-70211, Kuopio, Finland
| |
Collapse
|
26
|
Green ID, Walmsley K. Time-response relationships for the accumulation of Cu, Ni and Zn by seven-spotted ladybirds (Coccinella septempunctata L.) under conditions of single and combined metal exposure. CHEMOSPHERE 2013; 93:184-189. [PMID: 23810517 DOI: 10.1016/j.chemosphere.2013.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
Accumulation, and therefore toxicity, of trace metals in invertebrates may be affected by potential interactive effects that can occur amongst different metallic elements. However, there is little data on the nature and effects of such interactions in terrestrial systems. This work reports the interactions among Cu, Ni and Zn during accumulation by the beetle Coccinella septempunctata. Test animals were treated with 500mgkg(-1) of each metal singularly and in combination for 15d. The effects of treatment with a single metal had no effect on the baseline concentrations of the other two. Time-response relationships for Cu and Ni after treatment with one metal were curvilinear, demonstrating that the metals were initially accumulated, but after ∼8d regulatory mechanisms became effective. This resulted in decreasing concentrations in test animals despite continued treatment. In contrast, the time-response relationship for Zn was linear. Treatment with metals in combination markedly altered the time-response relationships with all three metals showing a linear trend and the slope of the Zn relationship increasing significantly. After 15d of exposure this had the effect of increasing the metal concentration in animals exposed in combination compared to those exposed singularly by 144% to 38.3mgkg(-1) for Cu, 141% to 27.5mgkg(-1) for Ni and 55% to 311mgkg(-1) for Zn. For all metals, differences amongst treatments were significant, indicating that inter-element interactions can enhance the concentration of trace metals in C. septempunctata.
Collapse
Affiliation(s)
- I D Green
- The School of Applied Sciences, Bournemouth University, Talbot Campus, Poole, Dorset BH12 5BB, UK.
| | | |
Collapse
|
27
|
Konopka JK, Hanyu K, Macfie SM, McNeil JN. Does the Response of Insect Herbivores to Cadmium Depend on Their Feeding Strategy? J Chem Ecol 2013; 39:546-54. [DOI: 10.1007/s10886-013-0273-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/25/2013] [Accepted: 03/08/2013] [Indexed: 11/24/2022]
|
28
|
Belskaya EA, Vorobeichik EL. Responses of leaf-eating insects feeding on aspen to emissions from the Middle Ural copper smelter. RUSS J ECOL+ 2013. [DOI: 10.1134/s1067413613020045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Hladun KR, Parker DR, Tran KD, Trumble JT. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:70-75. [PMID: 23000967 DOI: 10.1016/j.envpol.2012.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/02/2012] [Accepted: 08/17/2012] [Indexed: 05/28/2023]
Abstract
Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se.
Collapse
Affiliation(s)
- Kristen R Hladun
- Department of Entomology, University of California, 900 University Ave., Riverside, CA 92521, United States.
| | | | | | | |
Collapse
|
30
|
VERHOEVEN MIRELLAPC, KELAHER BRENDANP, BISHOP MELANIEJ, RALPH PETERJ. Epiphyte grazing enhances productivity of remnant seagrass patches. AUSTRAL ECOL 2012. [DOI: 10.1111/j.1442-9993.2011.02332.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Holopainen JK. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? TREE PHYSIOLOGY 2011; 31:1356-77. [PMID: 22112623 DOI: 10.1093/treephys/tpr111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.
Collapse
Affiliation(s)
- Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
32
|
Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies. PLoS One 2011; 6:e27448. [PMID: 22110654 PMCID: PMC3217983 DOI: 10.1371/journal.pone.0027448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an additional tool for research on CCD.
Collapse
|
33
|
Mumm R, Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defenseThe present review is one in the special series of reviews on animal–plant interactions. CAN J ZOOL 2010. [DOI: 10.1139/z10-032] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants can respond to feeding or egg deposition by herbivorous arthropods by changing the volatile blend that they emit. These herbivore-induced plant volatiles (HIPVs) can attract carnivorous natural enemies of the herbivores, such as parasitoids and predators, a phenomenon that is called indirect plant defense. The volatile blends of infested plants can be very complex, sometimes consisting of hundreds of compounds. Most HIPVs can be classified as terpenoids (e.g., (E)-β-ocimene, (E,E)-α-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene), green leaf volatiles (e.g., hexanal, (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate), phenylpropanoids (e.g., methyl salicylate, indole), and sulphur- or nitrogen-containing compounds (e.g., isothiocyanates or nitriles, respectively). One highly intriguing question has been which volatiles out of the complex blend are the most important ones for the carnivorous natural enemies to locate "suitable host plants. Here, we review the methods and techniques that have been used to elucidate the carnivore-attracting compounds. Electrophysiological methods such as electroantennography have been used with parasitoids to elucidate which compounds can be perceived by the antennae. Different types of elicitors and inhibitors have widely been applied to manipulate plant volatile blends. Furthermore, transgenic plants that were genetically modified in specific steps in one of the signal transduction pathways or biosynthetic routes have been used to find steps in HIPV emission crucial for indirect plant defense. Furthermore, we provide an overview on biotic and abiotic factors that influence the emission of HIPVs and how this can affect the interactions between members of different trophic levels. Consequently, we review the progress that has been made in this exciting research field during the past 30 years since the first studies on HIPVs emerged and we highlight important issues to be addressed in the future.
Collapse
Affiliation(s)
- Roland Mumm
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
- Plant Research International, Wageningen UR, 6700 PB Wageningen, the Netherlands
- Centre of BioSystems Genomics, 6700AB Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
- Plant Research International, Wageningen UR, 6700 PB Wageningen, the Netherlands
- Centre of BioSystems Genomics, 6700AB Wageningen, the Netherlands
| |
Collapse
|
34
|
Zvereva EL, Kozlov MV. Responses of terrestrial arthropods to air pollution: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:297-311. [PMID: 19319587 DOI: 10.1007/s11356-009-0138-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/09/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Arthropods, with over a million species described, are ubiquitous throughout different environments. Knowledge of their responses to human impact is crucial for understanding and predicting changes in ecosystem structure and functions. Our aim was to investigate the general patterns and to identify sources of variation in changes of the diversity, abundance and fitness of terrestrial arthropods (including Arachnida, Collembola and Insecta) in habitats affected by point polluters. MAIN FEATURES We found 134 suitable studies which were published between 1965 and 2007. These data came from impact zones of 74 polluters in 20 countries with the largest representation from Russia (28 polluters), Poland (12 polluters) and the USA (six polluters). The database allowed calculation of 448 effect sizes (i.e. relative differences between measurements taken from polluted and control sites) on the effects of various point polluters like non-ferrous industries, aluminium plants, cement, magnezite, fertilising and chemical plants, power plants, iron- and steel-producing factories. We used meta-analysis to search for general effects and to compare between polluter types and arthropod groups, and linear regression to describe the latitudinal gradient and to quantify relationships between pollution and arthropod responses. RESULTS The overall effect of pollution on arthropod diversity did not differ from zero. However, species richness of soil arthropods (both living on the soil surface and within the soil) tended to decrease, and species richness of herbivores to increase, near point polluters. Abundance of terrestrial arthropods near point polluters decreased in general. This decrease resulted from strong adverse effects on soil arthropods, especially on decomposers and predators. Densities of herbivores increased, but a number of research biases that we discovered in published data may have led to overestimation of the latter effect. The dome-shaped density pattern along pollution gradients was discovered only in 5% of data sets. Among herbivores, only free-living defoliators and sap-feeders demonstrated higher densities in polluted sites; the effects of pollution on other guilds were not significant. Near the polluters, conifers suffered higher increase in damage from herbivores than deciduous woody plants and herbs. Overall effect of pollution on arthropod performance was negative; in particular, individuals from polluted sites were generally smaller than individuals from control sites. This negative effect weakened with increase in duration of the pollution impact, hinting evolution of pollution resistance in populations inhabiting polluted sites. Stepwise regression analysis demonstrated that pollution-induced changes in both the density and performance of arthropods depended on climate of the locality. Negative effects on soil fauna increased with increase in annual precipitation; positive effects on herbivore population density increased with increases in both mean July temperature and annual precipitation. DISCUSSION We detected effects of research methodology on the outcome of published studies. Many of them suffer from research bias-the tendency to collect data on organisms or under conditions in which one has an expectation of detecting significant effects. Pseudoreplicated studies (one polluted site contrasted to one control site) frequently reported larger effects than replicated studies (several polluted sites contrasted with several control sites). These methodological flaws especially influenced herbivory studies; we conclude that increase in herbivory in both heavily and moderately polluted habitats is not as frequent as it was earlier suggested. In contrast, the decrease in abundance of predators is likely to be a widespread phenomenon. Thus, our analysis supports the hypothesis that pollution may favour herbivore populations by creating an enemy-free space. Consistent declines in abundance of soil arthropods in impact zones of different polluters suggest that this group can potentially be used in bioindication of pollution-induced changes in terrestrial ecosystems. CONCLUSIONS Main effects of pollution on arthropod communities (decreased abundance of decomposers and predators and increased herbivory) may have negative consequences for structure and services of entire ecosystems. Responses of arthropods to pollution depend on both temperature and precipitation in such a way that ecosystem-wide adverse effects are likely to increase under predicted climate change. RECOMMENDATIONS AND PERSPECTIVES Our analysis confirmed that local severe impacts of industrial enterprises on biota are well-suited to reveal the direction and magnitude of the biotic effects of aerial pollution, as well as to explore the sources of variation in responses of organisms and communities. Although we analysed the effects of point polluters, our conclusions can be applied to predict consequences of pollution impacts on regional and even global scales. We argue that possible interactions between pollution and climate should be accounted for in the analyses of global change impacts on biota.
Collapse
Affiliation(s)
- Elena L Zvereva
- Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland.
| | | |
Collapse
|
35
|
Sorensen MA, Parker DR, Trumble JT. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:384-391. [PMID: 19008025 DOI: 10.1016/j.envpol.2008.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/13/2008] [Accepted: 10/02/2008] [Indexed: 05/27/2023]
Abstract
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.
Collapse
Affiliation(s)
- Mary A Sorensen
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|