1
|
Stevenson LM, Muller EB, Nacci D, Clark BW, Whitehead A, Nisbet RM. Connecting Suborganismal Data to Bioenergetic Processes: Killifish Embryos Exposed to a Dioxin-Like Compound. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2040-2053. [PMID: 37232404 DOI: 10.1002/etc.5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 05/24/2023] [Indexed: 05/27/2023]
Abstract
A core challenge for ecological risk assessment is to integrate molecular responses into a chain of causality to organismal or population-level outcomes. Bioenergetic theory may be a useful approach for integrating suborganismal responses to predict organismal responses that influence population dynamics. We describe a novel application of dynamic energy budget (DEB) theory in the context of a toxicity framework (adverse outcome pathways [AOPs]) to make quantitative predictions of chemical exposures to individuals, starting from suborganismal data. We use early-life stage exposure of Fundulus heteroclitus to dioxin-like chemicals (DLCs) and connect AOP key events to DEB processes through "damage" that is produced at a rate proportional to the internal toxicant concentration. We use transcriptomic data of fish embryos exposed to DLCs to translate molecular indicators of damage into changes in DEB parameters (damage increases somatic maintenance costs) and DEB models to predict sublethal and lethal effects on young fish. By changing a small subset of model parameters, we predict the evolved tolerance to DLCs in some wild F. heteroclitus populations, a data set not used in model parameterization. The differences in model parameters point to reduced sensitivity and altered damage repair dynamics as contributing to this evolved resistance. Our methodology has potential extrapolation to untested chemicals of ecological concern. Environ Toxicol Chem 2023;42:2040-2053. © 2023 Oak Ridge National Laboratory and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Louise M Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California, USA
- Institut für Biologische Analytik und Consulting IBACON, Rossdorf, Germany
| | - Diane Nacci
- Atlantic Coastal Environmental Sciences Division, Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Bryan W Clark
- Atlantic Coastal Environmental Sciences Division, Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Roger M Nisbet
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
2
|
Ngoubeyou PSK, Wolkersdorfer C, Ndibewu PP, Augustyn W. Toxicity of polychlorinated biphenyls in aquatic environments - A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106284. [PMID: 36087490 DOI: 10.1016/j.aquatox.2022.106284] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The assessment of polychlorinated biphenyls (PCBs) and their congeners resulting from the pollution of all environmental media is inherently related to its persistence and ubiquitous nature. In principle, determination of this class of contaminants are limited to the determination of their concentrations in the various environmental matrices. For solving many problems in this context, knowledge of the emission sources of PCBs, transport pathways, and sites of contamination and biomagnification is of great benefit to scientists and researchers, as well as many regulatory organizations. By far the largest amounts of PCBs, regardless of their discharged points, end up in the soil, sediment and finally in different aquatic environments. By reviewing relevant published materials, the source of origin of PCBs in the environment particularly from different pollution point sources, it is possible to obtain useful information on the nature of different materials that are sources of PCBs, or their concentrations and their toxicity or health effects and how they can be removed from contaminated media. This review focuses on the sources of PCBs in aquatic environments and critically reviews the toxicity of PCBs in aquatic animals and plants. The review also assesses the toxicity equivalency factors (TEFs) of PCBs providing valuable knowledge to other scientists and researchers that enables regulatory laws to be formulated based on selective determination of concentrations regarding their maximum permissible limits (MPLs) allowed. This review also supplies a pool of valuable information useful for designing decontamination technologies for PCBs in media like soil, sediment, and wastewaters.
Collapse
Affiliation(s)
| | - Christian Wolkersdorfer
- Tshwane University of Technology, SARChI Chair for Mine Water Treatment, Department of Environmental, Water and Earth Sciences, Private Bag X680, Pretoria, 0001, South Africa
| | - Peter Papoh Ndibewu
- Tshwane University of Technology, Department of Chemistry, Pretoria 0001, South Africa.
| | - Wilma Augustyn
- Tshwane University of Technology, Department of Chemistry, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Bozinovic G, Feng Z, Shea D, Oleksiak MF. Cardiac physiology and metabolic gene expression during late organogenesis among F. heteroclitus embryo families from crosses between pollution-sensitive and -resistant parents. BMC Ecol Evol 2022; 22:3. [PMID: 34996355 PMCID: PMC8739662 DOI: 10.1186/s12862-022-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. RESULTS Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. CONCLUSION Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.
Collapse
Affiliation(s)
- Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA.
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Marjorie F Oleksiak
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
5
|
Zhou Z, Jian X, Zhou B, Lu K, Wang Y. Changes in the immune function of rainbow trout (Oncorhynchus mykiss) provide insights into strategies against BDE-47 stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122212. [PMID: 32078968 DOI: 10.1016/j.jhazmat.2020.122212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous in marine ecosystems and have been suggested to bioaccumulate in aquatic food webs, with potentially negative impacts on marine organism. In this study, a 21-day experiment was performed under controlled laboratory conditions, in which 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), the most biotoxic PBDE in the marine environment, was fed to rainbow trout (Oncorhynchus mykiss) at concentrations of 50 and 500 ng g-1 in the diet. BDE-47 significantly decreased the specific growth rate of O. mykiss and was highly concentrated in the liver and head kidney, as evidenced by increased bioaccumulation factor (BAF) values. Tissue observation revealed impairment of the microstructure of the head kidney. Important immune factors in the skin, blood and head kidney were significantly inhibited by BDE-47 treatment (p < 0.05), whereas the respiratory burst activity of macrophages was enhanced. Additionally, immune-related genes were strongly downregulated following BDE-47 exposure (p < 0.05). In a bacterial challenge, the treatment groups had much higher mortality than did the control group (p < 0.05). BDE-47 accumulated and impaired immune organs, and the hierarchy of immune responses was impaired, consequently reducing O. mykiss resistance to pathogen invasion.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Centre, State Oceanic Administration, Fushun Road 22, Qingdao, 266003, China
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Keyu Lu
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
6
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Evolutionary Toxicogenomics of the Striped Killifish ( Fundulus majalis) in the New Bedford Harbor (Massachusetts, USA). Int J Mol Sci 2019; 20:ijms20051129. [PMID: 30841640 PMCID: PMC6429206 DOI: 10.3390/ijms20051129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/27/2022] Open
Abstract
In this paper, we used a Genotyping-by-Sequencing (GBS) approach to find and genotype more than 4000 genome-wide SNPs (Single Nucleotide Polymorphisms) from striped killifish exposed to a variety of polychlorinated biphenyls (PCBs) and other aromatic pollutants in New Bedford Harbor (NBH, Massachusetts, USA). The aims of this study were to identify the genetic consequences of exposure to aquatic pollutants and detect genes that may be under selection. Low genetic diversity (HE and π) was found in the site exposed to the highest pollution level, but the pattern of genetic diversity did not match the pollution levels. Extensive connectivity was detected among sampling sites, which suggests that balanced gene flow may explain the lack of genetic variation in response to pollution levels. Tests for selection identified 539 candidate outliers, but many of the candidate outliers were not shared among tests. Differences among test results likely reflect different test assumptions and the complex pollutant mixture. Potentially, selectively important loci are associated with 151 SNPs, and enrichment analysis suggests a likely involvement of these genes with pollutants that occur in NBH. This result suggests that selective processes at genes targeted by pollutants may be occurring, even at a small geographical scale, and may allow the local striped killifish to resist the high pollution levels.
Collapse
|
8
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
9
|
Crispo E, Tunna HR, Hussain N, Rodriguez SS, Pavey SA, Jackson LJ, Rogers SM. The evolution of the major histocompatibility complex in upstream versus downstream river populations of the longnose dace. Ecol Evol 2017; 7:3297-3311. [PMID: 28515867 PMCID: PMC5433983 DOI: 10.1002/ece3.2839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/28/2017] [Indexed: 11/10/2022] Open
Abstract
Populations in upstream versus downstream river locations can be exposed to vastly different environmental and ecological conditions and can thus harbor different genetic resources due to selection and neutral processes. An interesting question is how upstream–downstream directionality in rivers affects the evolution of immune response genes. We used next‐generation amplicon sequencing to identify eight alleles of the major histocompatibility complex (MHC) class II β exon 2 in the cyprinid longnose dace (Rhinichthys cataractae) from three rivers in Alberta, upstream and downstream of municipal and agricultural areas along contaminant gradients. We used these data to test for directional and balancing selection on the MHC. We also genotyped microsatellite loci to examine neutral population processes in this system. We found evidence for balancing selection on the MHC in the form of increased nonsynonymous variation relative to neutral expectations, and selection occurred at more amino acid residues upstream than downstream in two rivers. We found this pattern despite no population structure or isolation by distance, based on microsatellite data, at these sites. Overall, our results suggest that MHC evolution is driven by upstream–downstream directionality in fish inhabiting this system.
Collapse
Affiliation(s)
- Erika Crispo
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Haley R Tunna
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Noreen Hussain
- Department of Biology Pace University New York NY USA.,Present address: Touro College of Pharmacy New York NY USA
| | - Silvia S Rodriguez
- Department of Biology Pace University New York NY USA.,Present address: Developmental Biology Sloan-Kettering Institute New York NY USA
| | - Scott A Pavey
- University of New Brunswick Saint John & Canadian Rivers Institute Saint John NB Canada
| | - Leland J Jackson
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Sean M Rogers
- Department of Biological Sciences University of Calgary Calgary AB Canada
| |
Collapse
|
10
|
Lindberg CD, Jayasundara N, Kozal JS, Leuthner TC, Di Giulio RT. Resistance to polycyclic aromatic hydrocarbon toxicity and associated bioenergetic consequences in a population of Fundulus heteroclitus. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:435-448. [PMID: 28213827 PMCID: PMC5398948 DOI: 10.1007/s10646-017-1775-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 05/20/2023]
Abstract
Several locations in the Elizabeth River, VA, USA are highly contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the release of creosote mixtures from wood treatment facilities. Interestingly, some populations of Atlantic killifish (Fundulus heteroclitus) inhabiting the Elizabeth River (ER) are resistant to PAH-induced teratogenesis. However, evolutionary resistance to PAHs due to chronic PAH exposure is associated with reduced fitness and increased susceptibility to other environmental stressors in at least one PAH-resistant ER killifish population. More specifically, wild-caught and first generation PAH-resistant juvenile killifish have altered metabolic demands when compared to non-resistant fish. Herein, we investigated this association further by examining a previously under-studied population captured from the creosote-contaminated site Republic Creosoting (Rep). We assessed PAH toxicity and effects on energy metabolism in Rep killifish in comparison with killifish from the reference site Kings Creek (KC). Following exposures to simple and complex PAH mixtures, Rep killifish exhibited several phenotypes associated with PAH resistance including decreased incidences of developmental cardiovascular deformities and recalcitrant cytochrome P450 1A (CYP1A) activity. We evaluated bioenergetics in killifish embryos throughout development and found elevated basal oxygen consumption rates in Rep embryos relative to KC embryos. Furthermore, juvenile F1 Rep fish had significantly lower maximal metabolic rates and aerobic scopes than KC juveniles. These results suggest that populations of killifish that have adapted or evolved to withstand the toxicity associated with PAHs consequently have altered energetic metabolism or demands. Such consequences could result in an enhanced vulnerability to other environmental and anthropogenic stressors in PAH-resistant killifish.
Collapse
Affiliation(s)
- C D Lindberg
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA.
| | - N Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - J S Kozal
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA
| | - T C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA
| | - R T Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
11
|
Pedrosa JAM, Cocchiararo B, Bordalo MD, Rodrigues ACM, Soares AMVM, Barata C, Nowak C, Pestana JLT. The role of genetic diversity and past-history selection pressures in the susceptibility of Chironomus riparius populations to environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:807-816. [PMID: 27810765 DOI: 10.1016/j.scitotenv.2016.10.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Natural populations experiencing intense selection and genetic drift may exhibit limited potential to adapt to environmental change. The present study addresses the following aspects of the "genetic erosion" hypothesis in the midge Chironomus riparius: does long-term mercury (Hg) contamination affect the Hg tolerance of midge populations inhabiting such impacted areas? If so, is there any fitness cost under changing environmental conditions? And does genetic impoverishment influence the susceptibility of C. riparius to cope with environmental stressful conditions? For this end, we tested the acute and chronic tolerance to Hg and salinity in four C. riparius populations differing in their levels of genetic diversity (assessed through microsatellite markers) and past-histories of Hg exposure. Results showed that the midge population collected from a heavily Hg-contaminated site had higher Hg tolerance compared to the population collected from a closely-located reference site suggesting directional selection for Hg-tolerant traits in its native environment despite no genetic erosion in the field. No increased susceptibility under changing environmental conditions of salinity stress was observed. Moreover, results also showed that populations with higher genetic diversity performed better in the partial life-cycle assays providing evidence on the key role that genetic diversity plays as mediator of populations' susceptibility to environmental stress. Our findings are discussed in terms of the suitability of C. riparius as a model organism in evolutionary toxicology studies as well as the validity of ecotoxicological assessments using genetically eroded laboratory populations.
Collapse
Affiliation(s)
- João A M Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Maria D Bordalo
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Bado-Nilles A, Jolly S, Lamand F, Geffard A, Gagnaire B, Turies C, Porcher JM, Sanchez W, Betoulle S. Involvement of fish immunomarkers in environmental biomonitoring approach: Urban and agri-viticultural context. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:35-40. [PMID: 26024812 DOI: 10.1016/j.ecoenv.2015.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
The Champagne region (France) is characterized by various chemical environmental pressures which could interfere with the immune status of natural populations of European bullhead, Cottus sp. Some adult fish were caught by electrofishing in spring, summer and autumn to determined immune effect of urban (Muizon), intensive agricultural (Bouy; Prunay) or viticultural (Serzy; Prunay) influences. The major results demonstrated an increase of cellular mortality and a decrease of phagocytosis activity in the stations impacted by agri-viticultural chemicals. These immunomodulations followed the temporal variability due to different treatments (agricultural impacts on spring; viticultural effects on autumn). At the present time, not enough data was provided to confirm the impact of agri-viticultural chemicals on fish immune system without interaction with other environmental factors. For example, in summer, the immunomarkers seems to be not only correlated with water contamination but also with other environmental factors (pathogens, physical field degradation, nutrients, temperature …). Nevertheless, immune parameters give a global view of organism and ecosystem health explaining growing interest for these biomarkers in environmental risk assessment.
Collapse
Affiliation(s)
- Anne Bado-Nilles
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France; UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Sabrina Jolly
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France; UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Florent Lamand
- Office National de l'Eau et des Milieux Aquatiques (ONEMA), Délégation Inter-Régionale Nord-Est, 57155 Marly, France.
| | - Alain Geffard
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France.
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Centre de Cadarache, Bât 186, B.P. 3, 13115 Saint-Paul-lez-Durance, France.
| | - Cyril Turies
- UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Jean-Marc Porcher
- UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Wilfried Sanchez
- UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), B.P. 2, 60550 Verneuil-en-Halatte, France.
| | - Stéphane Betoulle
- UMR-I 02 (INERIS, URCA, ULH) SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, B.P. 1039, 51687 Reims, France.
| |
Collapse
|
13
|
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent anthropogenic contaminants that can accumulate in tissues of fish. The toxicity of PCBs and their transformation products has been investigated for nearly 50 years, but there is a lack of consensus regarding the effects of these environmental contaminants on wild fish populations. The objective of this review is to critically examine these investigations and evaluate publicly available databases for evidence of effects of PCBs in wild fish. Biological activity of PCBs is limited to a small proportion of PCB congeners [e.g., dioxin-like PCBs (DL-PCBs)] and occurs at concentrations that are typically orders of magnitude higher than PCB levels detected in wild fish. Induction of biomarkers consistent with PCB exposure (e.g., induction of cytochrome P450 monooxygenase system) has been evaluated frequently and shown to be induced in fish from some environments, but there does not appear to be consistent reports of damage (i.e., biomarkers of effect) to biomolecules (i.e., oxidative injury) in these fish. Numerous investigations of endocrine system dysfunction or effects on other organ systems have been conducted in wild fish, but collectively there is no consistent evidence of PCB effects on these systems in wild fish. Early life stage toxicity of DL-PCBs does not appear to occur at concentrations reported in wild fish embryos, and results do not support an association between PCBs and decreased survival of early life stages of wild fish. Overall, there appears to be little evidence that PCBs have had any widespread effect on the health or survival of wild fish.
Collapse
Affiliation(s)
- T B Henry
- a School of Life Sciences, John Muir Building, Heriot-Watt University , Edinburgh, EH14 4AS , UK.,b The University of Tennessee Center for Environmental Biotechnology , 676 Dabney Hall, Knoxville , Tennessee 37996, USA.,c Department of Forestry , Wildlife and Fisheries, The University of Tennessee , 274 Ellington Plant Sciences Building, Knoxville , Tennessee , 37996, USA
| |
Collapse
|
14
|
Bach L, Dahllöf I. Local contamination in relation to population genetic diversity and resilience of an arctic marine amphipod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:58-66. [PMID: 22421731 DOI: 10.1016/j.aquatox.2012.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
The objective of this study was to investigate whether populations inhabiting a contaminated environment are affected in terms of decreased genetic diversity due to selection of tolerant genotypes and if such effect carries a cost. Marine arctic amphipod populations (Orchomenella pinguis) were collected from sites within a contaminated fjord, as well as from sites outside the fjord on the west-coast of Greenland over three years (2006-2008). Impacts on genetic diversity, effects on resilience such as development of tolerance and cost were determined. AFLP-analysis was used to explore within and between population genetic diversity, and exposure studies were performed where the populations were subjected to known and unknown stressors to assess resilience. Populations collected at three contaminated sites all had reduced genetic diversity in 2007 compared to populations outside the fjord. This pattern was different in 2008 as all contaminated site populations increased in diversity, whereas a decrease in diversity occurred at the outer sites. However, tolerance, but even more so, cost, was related to contamination exposure in 2008, in spite of the shift in genetic diversity. We suggest that contamination rapidly induces effects that can be captured as tolerance and associated cost, whereas effects on genetic diversity can be difficult to separate from recent migration events that dilute eventual decreases in diversity due to contamination pressure. As long as impacted populations can be influenced by migration events that increase the genetic diversity and add health to an affected population, populations in contaminated areas may have enhanced probability of survival.
Collapse
Affiliation(s)
- Lis Bach
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | |
Collapse
|
15
|
Ellesat KS, Yazdani M, Holth TF, Hylland K. Species-dependent sensitivity to contaminants: an approach using primary hepatocyte cultures with three marine fish species. MARINE ENVIRONMENTAL RESEARCH 2011; 72:216-224. [PMID: 21963059 DOI: 10.1016/j.marenvres.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
There is limited knowledge about the sensitivity of different fish species to environmental pollutants. Such information is pivotal in risk assessment and to understand why some species appear to be more tolerant to contaminants than others. The aim of the current study was to evaluate whether primary hepatocyte cultures of three marine fish species could be established in the field and whether their sensitivity to selected contaminants would differ. Primary hepatocyte cultures of three marine fish species (plaice, long rough dab, Atlantic cod) were established and exposed for 24 h to copper (20-2500 mg L⁻¹) and statins (1-200 mg L⁻¹). Endpoints were esterase activity, metabolic activity and reduced glutathione (GSH) content, all using fluorescent probes. Flatfish hepatocytes were more susceptible to copper and statin exposure than hepatocytes from cod. This study has shown that species-dependent differences in contaminant sensitivity can be investigated using primary hepatocyte cultures.
Collapse
|
16
|
Colombo JC, Cappelletti N, Williamson M, Migoya MC, Speranza E, Sericano J, Muir DCG. Risk ranking of multiple-POPs in detritivorous fish from the Río de la Plata. CHEMOSPHERE 2011; 83:882-889. [PMID: 21435687 DOI: 10.1016/j.chemosphere.2011.02.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 02/14/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
To evaluate the bioaccumulation and the risk associated to consumption of lipid-rich detritivorous fish, a comprehensive set of organic pollutants (n=213) including polychlorinated biphenyls (PCBs), dioxin like PCBs (dlPCBs), chlorinated pesticides (CHLPs), chlorobenzenes (CBzs), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo dioxins and furans (PCDD/F), resolved (ALI) and unresolved aliphatic hydrocarbons (UCM) and linear alkyl benzenes (LABs) were analyzed in Sábalo fish (Prochilodus lineatus) collected in the polluted Metropolitan Buenos Aires coast and in migrating specimens. Fatty fish muscles (lipids: 74±9.3% dry weight) contained homogeneous (24-51% variability) and very high-concentrations of organic pollutants ranging from 60 to 1,300 μg g(-1) fresh weight (fw) ALI+UCM; 10-40 μg g(-1) fw LABs and PCBs; 0.1-1 μg g(-1) fw dlPCBs, DDTs, chlordanes, CBzs and PBDEs; 0.01-0.1 μg g(-1) fw mirex, endosulfans, aldrin, dieldrin, endrin and 0.07-0.2 ng g(-1) PCDD/F. Total toxicity equivalents (TEQs) ranged from 60 to 395 pg g(-1) fw (34±17 and 213±124 pg g(-1) TEQs for PCDD/F and dlPCBs respectively). These are among the highest concentrations reported for fish and point out the remarkable ability of Sábalo to feed on anthropogenic organic-enriched particles and tolerate a high pollutant load. Contaminant signatures show partial alteration with still abundant lower molecular weight components indicating that fish feeds directly in the outfalls. Consumption limits based on reference doses ranged from 0.1 (PCBs) to >1,2000 g d(-1) (endosulfan) allowing a comprehensive risk-based ranking of contaminants in this long-range migrating, detritivorous fish.
Collapse
Affiliation(s)
- J C Colombo
- Laboratorio de Química Ambiental y Biogeoquímica (LAQAB), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Av. Calchaqui y Av. del Trabajo, 1888 Florencio Varela, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
17
|
Berthet B, Leung K, Amiard-Triquet C. Inter- and Intraspecific Variability of Tolerance. ENVIRONMENTAL AND ECOLOGICAL RISK ASSESSMENT 2011. [DOI: 10.1201/b10519-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Nichols JW, Breen M, Denver RJ, Distefano JJ, Edwards JS, Hoke RA, Volz DC, Zhang X. Predicting chemical impacts on vertebrate endocrine systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:39-51. [PMID: 20963851 DOI: 10.1002/etc.376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Animals have evolved diverse protective mechanisms for responding to toxic chemicals of both natural and anthropogenic origin. From a governmental regulatory perspective, these protective responses complicate efforts to establish acceptable levels of chemical exposure. To explore this issue, we considered vertebrate endocrine systems as potential targets for environmental contaminants. Using the hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-gonad (HPG), and hypothalamic-pituitary-adrenal (HPA) axes as case examples, we identified features of these systems that allow them to accommodate and recover from chemical insults. In doing so, a distinction was made between effects on adults and those on developing organisms. This distinction was required because endocrine system disruption in early life stages may alter development of organs and organ systems, resulting in permanent changes in phenotypic expression later in life. Risk assessments of chemicals that impact highly regulated systems must consider the dynamics of these systems in relation to complex environmental exposures. A largely unanswered question is whether successful accommodation to a toxic insult exerts a fitness cost on individual animals, resulting in adverse consequences for populations. Mechanistically based mathematical models of endocrine systems provide a means for better understanding accommodation and recovery. In the short term, these models can be used to design experiments and interpret study findings. Over the long term, a set of validated models could be used to extrapolate limited in vitro and in vivo testing data to a broader range of untested chemicals, species, and exposure scenarios. With appropriate modification, Tier 2 assays developed in support of the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program could be used to assess the potential for accommodation and recovery and inform the development of mechanistically based models.
Collapse
Affiliation(s)
- John W Nichols
- U.S. Environmental Protection Agency, Duluth, Minnesota, USA.
| | | | | | | | | | | | | | | |
Collapse
|