1
|
Sui S, Zhao Y, Hai L, Fan G. Laboratory investigation on the bioremediation technology for soilization of iron ore tailings. Sci Rep 2024; 14:27966. [PMID: 39543220 PMCID: PMC11564898 DOI: 10.1038/s41598-024-79053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
The study's objective was to improve the physicochemical properties of iron ore tailings to restore iron ore tailings areas. The physicochemical properties of substrates with different ratios of organic matter and tailings were investigated, and plant growth on these substrates was observed to determine the effects of the mixing ratio on the physicochemical properties of iron ore tailings and identify the optimal mixing ratio. The addition of organic fertilizer and rice husk reduced the density of the substrate, increased the total porosity, and neutralized the alkalinity in the ore tailings. The water-holding capacity of the substrate was positively correlated with the content of rice husk. With increasing rice husk content, the water-holding capacity of the substrates greatly increased, as did the pore structure of the iron ore tailings. The shear strength of the substrates was optimal in Groups I and II, with cohesion peaking in Group II. However, the cohesion sharply decreased as the rice husk content increased, and the internal friction angle decreased. The optimal mixture was 100 g of iron ore tailings, 8 g of organic fertilizer, and 0.8 g of rice husk.
Collapse
Affiliation(s)
- Shumei Sui
- School of Mechanical and Engineering, Liaoning Technical University, Fuxin Liaoning, 123000, China
| | - Yabo Zhao
- School of Mechanical and Engineering, Liaoning Technical University, Fuxin Liaoning, 123000, China.
| | - Long Hai
- School of Mechanical and Engineering, Liaoning Technical University, Fuxin Liaoning, 123000, China
| | - Guoli Fan
- School of Mechanical and Engineering, Liaoning Technical University, Fuxin Liaoning, 123000, China
| |
Collapse
|
2
|
Svriz M, Torres CD, Mongiat L, Aranda E, Spinedi N, Fracchia S, Scervino JM. Anthracene-Induced Alterations in Liverwort Architecture In Vitro: Potential for Bioindication of Environmental Pollution. PLANTS (BASEL, SWITZERLAND) 2024; 13:2060. [PMID: 39124178 PMCID: PMC11314002 DOI: 10.3390/plants13152060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread globally, primarily due to long-term anthropogenic pollution sources. Since PAHs tend to accumulate in soil sediments, liverwort plants, such as Lunularia cruciata, are susceptible to their adverse effects, making them good models for bioindicators. The aim of this study was to probe the impact of anthracene, a three-ring linear PAH, on the growth parameters of L. cruciata and the relationship established with the internalization of the pollutant throughout the phenology of the plant. Intrinsic plant responses, isolated from external factors, were assessed in vitro. L. cruciata absorbed anthracene from the culture medium, and its bioaccumulation was monitored throughout the entire process, from the gemma germination stage to the development of the adult plant, over a total period of 60 days. Consequently, plants exposed to concentrations higher than 50 μM anthracene, decreased the growth area of the thallus, the biomass and number of tips. Moreover, anthracene also impinged on plant symmetry. This concentration represented the maximum limit of bioaccumulation in the tissues. This study provides the first evidence that architectural variables in liverwort plants are suitable parameters for their use as bioindicators of PAHs.
Collapse
Affiliation(s)
- Maya Svriz
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Cristian D. Torres
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Lucas Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche 8400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Elisabet Aranda
- Department of Microbiology, Farmacy Faculty and Institute of Water Research, University of Granada, Ramón y Cajal, Bldg. Fray Luis 4, 18071 Granada, Spain;
| | - Nahuel Spinedi
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Sebastian Fracchia
- Instituto de Micología y Botánica (INMIBO), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina;
| | - José Martín Scervino
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| |
Collapse
|
3
|
Hernández-Álvarez C, Peimbert M, Rodríguez-Martin P, Trejo-Aguilar D, Alcaraz LD. A study of microbial diversity in a biofertilizer consortium. PLoS One 2023; 18:e0286285. [PMID: 37616263 PMCID: PMC10449135 DOI: 10.1371/journal.pone.0286285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Biofertilizers supply living microorganisms to help plants grow and keep their health. This study examines the microbiome composition of a commercial biofertilizer known for its plant growth-promoting activity. Using ITS and 16S rRNA gene sequence analyses, we describe the microbial communities of a biofertilizer, with 163 fungal species and 485 bacterial genera found. The biofertilizer contains a variety of microorganisms previously reported to enhance nutrient uptake, phytohormone production, stress tolerance, and pathogen resistance in plants. Plant roots created a microenvironment that boosted bacterial diversity but filtered fungal communities. Notably, preserving the fungal-inoculated substrate proves critical for keeping fungal diversity in the root fraction. We described that bacteria were more diverse in the rhizosphere than in the substrate. In contrast, root-associated fungi were less diverse than the substrate ones. We propose using plant roots as bioreactors to sustain dynamic environments that promote the proliferation of microorganisms with biofertilizer potential. The study suggests that bacteria grow close to plant roots, while root-associated fungi may be a subset of the substrate fungi. These findings show that the composition of the biofertilizer may be influenced by the selection of microorganisms associated with plant roots, which could have implications for the effectiveness of the biofertilizer in promoting plant growth. In conclusion, our study sheds light on the intricate interplay between plant roots and the biofertilizer's microbial communities. Understanding this relationship can aid in optimizing biofertilizer production and application, contributing to sustainable agricultural practices and improved crop yields.
Collapse
Affiliation(s)
- Cristóbal Hernández-Álvarez
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Pedro Rodríguez-Martin
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Dora Trejo-Aguilar
- Laboratorio de Organismos Benéficos, Universidad Veracruzana, Veracruz, Mexico
| | - Luis D. Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| |
Collapse
|
4
|
Daâssi D, Qabil Almaghribi F. Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech 2022; 12:139. [PMID: 35646506 DOI: 10.1007/s13205-022-03198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Soil is an environmental matrix that carries life for all living things. With the rise of human activities and the acceleration of population, the soil has been exposed in part to pollution by the discharge of various xenobiotics and persistent pollutants into it. The disposal of toxic substances such as polycyclic aromatic hydrocarbons (PAHs) alters soil properties, affects microbial biodiversity, and damages objects. Considering the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and clean-up of PAH-polluted sites represents an important technological and environmental challenge for sustainable growth and development. Though several treatment methods to remediate PAH-polluted soils exist, interesting bacteria, fungi, and their enzymes receive considerable attention. The aim of the present review is to discuss PAHs' impact on soil properties. Also, this review illustrates physicochemical and biological remediation strategies for treating PAH-contaminated soil. The degradation pathways and contributing factors of microbial PAH-degradation are elucidated. This review also assesses the use of conventional microbial remediation compared to the application of genetically engineered microorganisms (GEM) that can provide a cost-effective and eco-friendly PAH-bioremediation strategy.
Collapse
Affiliation(s)
- Dalel Daâssi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah Qabil Almaghribi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Cheng Y, Zhou L, Liang T, Man J, Wang Y, Li Y, Chen H, Zhang T. Deciphering Rhizosphere Microbiome Assembly of Castanea henryi in Plantation and Natural Forest. Microorganisms 2021; 10:microorganisms10010042. [PMID: 35056492 PMCID: PMC8779262 DOI: 10.3390/microorganisms10010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
Based on the importance and sensitivity of microbial communities to changes in the forest ecosystem, soil microorganisms can be used to indicate the health of the forest system. The metagenome sequencing was used to analyze the changes of microbial communities between natural and plantation Castanea henryi forests for understanding the effect of forest types on soil microbial communities. Our result showed the soil microbial diversity and richness were higher in the natural forests than in the plantation. Proteobacteria, Actinobacteria, and Acidobacteria are the dominant categories in the C. henryi rhizosphere, and Proteobacteria and Actinobacteria were significantly enriched in the natural forest while Acidobacteria was significantly enriched in the plantation. Meanwhile, the functional gene diversity and the abundance of functions in the natural forest were higher than that of the plantation. Furthermore, we found that the microbial network in the natural forests had more complex than in the plantation. We also emphasized the low-abundance taxa may play an important role in the network structure. These results clearly showed that microbial communities, in response to different forest types, provide valuable information to manipulate microbiomes to improve soil conditions of plantation.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Oil Tea Research Center of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (L.Z.); (T.L.); (Y.L.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lexin Zhou
- Oil Tea Research Center of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (L.Z.); (T.L.); (Y.L.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
| | - Tian Liang
- Oil Tea Research Center of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (L.Z.); (T.L.); (Y.L.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
| | - Jiayin Man
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Li
- Oil Tea Research Center of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (L.Z.); (T.L.); (Y.L.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
| | - Hui Chen
- Oil Tea Research Center of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (L.Z.); (T.L.); (Y.L.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
- Correspondence: (H.C.); (T.Z.); Tel.: +86-139-5034-3791 (H.C.); +86-180-0691-1945 (T.Z.)
| | - Taoxiang Zhang
- Oil Tea Research Center of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (L.Z.); (T.L.); (Y.L.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.M.); (Y.W.)
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (H.C.); (T.Z.); Tel.: +86-139-5034-3791 (H.C.); +86-180-0691-1945 (T.Z.)
| |
Collapse
|
6
|
ROS-Scavenging Enzymes as an Antioxidant Response to High Concentration of Anthracene in the Liverwort Marchantia polymorpha L. PLANTS 2021; 10:plants10071478. [PMID: 34371683 PMCID: PMC8309224 DOI: 10.3390/plants10071478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Marchantia polymorpha L. responds to environmental changes using a myriad set of physiological responses, some unique to the lineage related to the lack of a vascular- and root-system. This study investigates the physiological response of M. polymorpha to high doses of anthracene analysing the antioxidant enzymes and their relationship with the photosynthetic processes, as well as their transcriptomic response. We found an anthracene dose-dependent response reducing plant biomass and associated to an alteration of the ultrastructure of a 23.6% of chloroplasts. Despite a reduction in total thallus-chlorophyll of 31.6% of Chl a and 38.4% of Chl b, this was not accompanied by a significant change in the net photosynthesis rate and maximum quantum efficiency (Fv/Fm). However, we found an increase in the activity of main ROS-detoxifying enzymes of 34.09% of peroxidase and 692% of ascorbate peroxidase, supported at transcriptional level with the upregulation of ROS-related detoxifying responses. Finally, we found that M. polymorpha tolerated anthracene-stress under the lowest concentration used and can suffer physiological alterations under higher concentrations tested related to the accumulation of anthracene within plant tissues. Our results show that M. polymorpha under PAH stress condition activated two complementary physiological responses including the activation of antioxidant mechanisms and the accumulation of the pollutant within plant tissues to mitigate the damage to the photosynthetic apparatus.
Collapse
|
7
|
Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z. Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112252. [PMID: 33930772 DOI: 10.1016/j.ecoenv.2021.112252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland.
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| | - Katalin Posta
- Institute of Genetics, Microbiology and Biotechnology, Szent István University, Páter Károly 1 Street, Gödöllő H-2100, Hungary
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2 Street, 43-309 Bielsko-Biała, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| |
Collapse
|
8
|
Epiphytic Microbial Diversity of Vitis vinifera Fructosphere: Present Status and Potential Applications. Curr Microbiol 2021; 78:1086-1098. [PMID: 33630126 DOI: 10.1007/s00284-021-02385-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Vineyard provides an apt environment for growth of different types of microorganisms. The microbial domain is greatly affected by changing climatic conditions, geographical region, water activity, agricultural practices, presence of different pathogens and various pests. Grapevine microbial diversity is also affected by different stages of plant growth. Epiphytic berry microflora is specifically influenced by developmental phases and plays an important role in winemaking which is studied extensively. However, very little information is available about microbial community associated with table grape berries, which are consumed as fresh fruits. Moreover, our knowledge about the important role played by these microbes is precise and their scope might be larger than what is existing in the public domain. A systematic study on effect of developmental stages of table grape berries on microbial diversity would provide new insights for exploring the applicability of these microbes in plant growth, crop protection and bioremediation. In this review, we propose an effort to relate the developmental stages of grape berry with microbial consortium present and at the same time discuss the possible applications of these microbes in plant protection and biodegradation.
Collapse
|
9
|
Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Feng Z, Liu X, Zhu H, Yao Q. Responses of Arbuscular Mycorrhizal Symbiosis to Abiotic Stress: A Lipid-Centric Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:578919. [PMID: 33281845 PMCID: PMC7688922 DOI: 10.3389/fpls.2020.578919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are one of the most important soil microbial resources that help host plants cope with various abiotic stresses. Although a tremendous number of studies have revealed the responses of AM fungi to abiotic stress and their beneficial effects transferred to host plants, little work has focused on the role of lipid metabolism in AM fungi under abiotic stress conditions. AM fungi contain a large amount of lipids in their biomass, including phospholipids (PLs) in their hyphal membranes and neutral lipids (NLs) in their storage structures (e.g., vesicles and spores). Recently, lipid transfer from plants to AM fungi has been suggested to be indispensable for the establishment of AM symbiosis, and extraradical hyphae are capable of directly taking up lipids from the environment. This experimental evidence highlights the importance of lipids in AM symbiosis. Moreover, abiotic stress reduces lipid transfer to AM fungi and promotes arbuscule collapse as well as the hydrolysis and conversion of PLs to NLs in collapsed arbuscules. Overall, this knowledge encourages us to rethink the responses of AM symbiosis to abiotic stress from a lipid-centric perspective. The present review provides current and comprehensive knowledge on lipid metabolism in AM fungi, especially in response to various abiotic stresses. A regulatory role of abscisic acid (ABA), which is considered a "stress hormone," in lipid metabolism and in the resulting consequences is also proposed.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaodi Liu
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Zhao P, Wang W, Whalen JK, Zhang S, Ye Q. Transportation and degradation of decabrominated diphenyl ether in sequential anoxic and oxic crop rotation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115082. [PMID: 32629310 DOI: 10.1016/j.envpol.2020.115082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
This work evaluated the debromination and uptake of 14C-labeled BDE-209 in rice cultivars grown in anoxic soil for 120 days (d) followed by cultivation of vegetables (peanut, eggplant and pepper) in oxic soil (120 d). Degradation of BDE-209 to lower polybrominated diphenyl ethers (PBDEs) occurred in cultivated soils, and more metabolites were released in oxic soil than in anoxic soil. The crop rotation from anoxic to oxic greatly enhanced the dissipation of BDE-209 in the soil (P < 0.05), in which the dissipation in anoxic soil planted with Huanghuazhan (HHZ, indica) and Yudao 1 (YD1, indica) were 6.8% and 2.4%, respectively, while in oxic soil with peanut and pepper were increased to 25.8% and 21.7%, respectively. The crop rotation also enhanced the degradation of BDE-209 in the soil, the recovered BDE-209 in soil after 120 d anoxic incubation with YD1 was 81.1%, but it decreased to 47.8% and 45.8% after another 120 d oxic incubation. Bioconcentration factors were between 0.23 and 0.36 for rice, eggplant and pepper but reached to 0.5 in peanut, which contains more lipids in the edible portion than the other test crops. The estimated daily intake for vegetables was 0.01-0.07 μg BDE-209-equivalent kg-1 bw day-1, which is at least two orders of magnitude below the maximum acceptable oral dose (7 μg kg-1 bw day-1). Our work confirms that crop rotation from rice to vegetable enhanced the dissipation and debromination of BDE-209 in the soil, and indicate that sequential anoxic-oxic rotation practice is considered to be effective in remediation of environmental pollutants.
Collapse
Affiliation(s)
- Pengfei Zhao
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China; Department of Natural Resource Science, Macdonald Campus, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Wei Wang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Joann K Whalen
- Department of Natural Resource Science, Macdonald Campus, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Sufen Zhang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
12
|
Malicka M, Magurno F, Piotrowska-Seget Z, Chmura D. Arbuscular mycorrhizal and microbial profiles of an aged phenol-polynuclear aromatic hydrocarbon-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110299. [PMID: 32058165 DOI: 10.1016/j.ecoenv.2020.110299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland.
| | - Franco Magurno
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, 2 Willowa Street, 43-309 Bielsko-Biała, Poland
| |
Collapse
|
13
|
Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management and destruction of obsolete pesticides and the remediation of pesticide-contaminated soil are significant global issues with importance in agriculture, environmental health and quality of life. Pesticide use and management have a history of problems because of insufficient knowledge of proper planning, storage, and use. This manuscript reviews recent literature with an emphasis on the management of obsolete pesticides and remediation of pesticide-contaminated soil. The rhizosphere of plants is a zone of active remediation. Plants also take up contaminated water and remove pesticides from soil. The beneficial effects of growing plants in pesticide-contaminated soil include pesticide transformation by both plant and microbial enzymes. This review addresses recent advances in the remediation of pesticide-contaminated soil with an emphasis on processes that are simple and can be applied widely in any country.
Collapse
|
14
|
Spinedi N, Rojas N, Storb R, Cabrera J, Aranda E, Salierno M, Svriz M, Scervino JM. Exploring the response of Marchantia polymorpha: Growth, morphology and chlorophyll content in the presence of anthracene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:570-574. [PMID: 30429053 DOI: 10.1016/j.plaphy.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were identified as hazardous contaminants that are ubiquitous and persistent in aquatic environments, where bryophytes sensu lato (mosses, liverworts and hornworts) are frequently present. Marchantia polymorpha (Class Hepaticae; thalloid liverwort) is known to respond fast to changes in the environment; it accumulates toxic substances in its tissues due to the lack of vascular and radicular systems and a reduced or absent cuticle. The objective of the present study was to quantify the effects of increasing concentrations of anthracene (0, 50 100, 280 μM) on the germination of propagules, plant morphology and chlorophyll content index (CCI) in M. polymorpha under in vitro cultures. The results show that anthracene had no statistical effect on germination or propagula formation. However, plants exposed to anthracene for 30 days showed significantly lowered the content of chlorophyll (measured as CCI), irregular growth patterns and the induction of thalli asexual reproduction as evidenced by the production of multicellular viable propagules in gemmae cups. Results of epifluorescence microscopy also showed concomitant accumulation of anthracene in the cell walls. All of these distinctive morphological and physiological adaptive responses indicators, clearly suggest that M. polymorpha are capable of resisting high (coal tar) anthracene concentrations.
Collapse
Affiliation(s)
- Nahuel Spinedi
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro 8400, Argentina
| | - Nadia Rojas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro 8400, Argentina
| | - Romina Storb
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro 8400, Argentina
| | - Juan Cabrera
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro 8400, Argentina
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Ramón y Cajal, Fray Luís 4, Granada 18071, Spain
| | - Marcelo Salierno
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro 8400, Argentina
| | - Maya Svriz
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Universidad Nacional de Río Negro, CONICET, San Carlos de Bariloche, Río Negro 8400, Argentina
| | - José Martín Scervino
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro 8400, Argentina.
| |
Collapse
|
15
|
Bioremediation: New Prospects for Environmental Cleaning by Fungal Enzymes. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Elevated tropospheric CO 2 and O 3 concentrations impair organic pollutant removal from grassland soil. Sci Rep 2018; 8:5519. [PMID: 29615649 PMCID: PMC5882802 DOI: 10.1038/s41598-018-23522-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022] Open
Abstract
The concentrations of tropospheric CO2 and O3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO2 and eO3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO2 and O3 concentrations decreased PAH removal with lowest removal rates at elevated CO2 and elevated O3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO2 and O3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO2 and O3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO2 and O3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.
Collapse
|
17
|
Cao J, Wang C, Dou Z, Liu M, Ji D. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:346-354. [PMID: 28802245 DOI: 10.1016/j.jhazmat.2017.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
A two-compartment microcosm was used to investigate the role of arbuscular mycorrhizal fungus (AMF) hyphae and earthworm in altering soil microbial community and OTC degradation. Treatments comprised OTC-contaminated hyphal compartments with or without AMF hyphae and with or without earthworms. Results indicated both AMF hyphae and earthworms accelerated OTC degradation; two degradation products were identified as 4-epi-oxytetracycline (EOTC) and 2-acetyl-2-decarboxamido-oxytetracycline (ADOTC). Q-PCR results indicated that both earthworms and AMF hyphae increased 16s rDNA gene, enhancing OTC degradation consequently. Illumina sequencing of the 16S rRNA genes showed that AMF hyphae and earthworm altered bacterial community. Earthworms stimulated the growth of class Anaerolineae, family Flavobacteriaceae, Genus Pseudomonas, reducing OTC residues. AMF hyphae significantly increased the abundance of family Pirellulaceae, genus Glycomyces, and Nonomuraea which had a negative correlation with EOTC, accelerating OTC degradation. When used together, AMF hyphae and earthworms enhanced OTC degradation by stimulating class Anaerolineae and family Flavobacteriaceae.
Collapse
Affiliation(s)
- Jia Cao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing 100193, China
| | - Chong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing 100193, China.
| | - Zhengxia Dou
- Centre for Animal Health and Productivity, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Mengli Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing 100193, China
| | - Dingge Ji
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing 100193, China
| |
Collapse
|
18
|
Ren CG, Kong CC, Bian B, Liu W, Li Y, Luo YM, Xie ZH. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:789-797. [PMID: 28165756 DOI: 10.1080/15226514.2017.1284755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Cun-Cui Kong
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
- b Shanxi Agricultural University , Taigu , China
| | - Bian Bian
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Wei Liu
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Yan Li
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Yong-Ming Luo
- c Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| | - Zhi-Hong Xie
- a Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai , China
| |
Collapse
|
19
|
Montes N, Reina R, Ortiz T, Ocampo JA, García-Romera I, Aranda E. Interactions between phenolic compounds present in dry olive residues and the arbuscular mycorrhizal symbiosis. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Rajtor M, Piotrowska-Seget Z. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. CHEMOSPHERE 2016; 162:105-116. [PMID: 27487095 DOI: 10.1016/j.chemosphere.2016.07.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil.
Collapse
Affiliation(s)
- Monika Rajtor
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Street 28, 40-032, Katowice, Poland.
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Street 28, 40-032, Katowice, Poland.
| |
Collapse
|
21
|
Deshmukh R, Khardenavis AA, Purohit HJ. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol 2016; 56:247-64. [PMID: 27407289 PMCID: PMC4920763 DOI: 10.1007/s12088-016-0584-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
Bioremediation refers to cost-effective and environment-friendly method for converting the toxic, recalcitrant pollutants into environmentally benign products through the action of various biological treatments. Fungi play a major role in bioremediation owing to their robust morphology and diverse metabolic capacity. The review focuses on different fungal groups from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds; persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pharmaceuticals and personal care products, and pesticides. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, laccases, peroxidases and cyrochrome P450 monooxygeneses. We have also discussed the recent advances in enzyme engineering and genomics and research being carried out to trace the less understood bioremediation pathways.
Collapse
Affiliation(s)
- Radhika Deshmukh
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Anshuman A. Khardenavis
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J. Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| |
Collapse
|
22
|
Iffis B, St-Arnaud M, Hijri M. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes. Environ Microbiol 2016; 18:2689-704. [DOI: 10.1111/1462-2920.13438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bachir Iffis
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal; 4101 Rue Sherbrooke Est Montréal QC H1X 2B2 Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal; 4101 Rue Sherbrooke Est Montréal QC H1X 2B2 Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal; 4101 Rue Sherbrooke Est Montréal QC H1X 2B2 Canada
| |
Collapse
|
23
|
Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. PHYTOCHEMISTRY 2016; 123:4-15. [PMID: 26803396 DOI: 10.1016/j.phytochem.2016.01.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/17/2015] [Accepted: 01/03/2016] [Indexed: 05/19/2023]
Abstract
The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses.
Collapse
Affiliation(s)
- Ingrid Lenoir
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France.
| |
Collapse
|
24
|
Plouznikoff K, Declerck S, Calonne-Salmon M. Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11281-91. [PMID: 26352597 DOI: 10.1021/acs.est.5b01740] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Anne-Sophie Dumas
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Lukas Y Wick
- UFZ, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research , Permoserstraße 15, D-04318 Leipzig, Germany
| | - Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec Canada
| | - Richard Berthomé
- Plant Genomics Research Unit, UMR INRA 1165 - CNRS 8114 - UEVE , 2, Gaston Crémieux St., CP5708, 91057 Evry Cedex, France
| |
Collapse
|
26
|
Evaluation of Ricinus communis L. for the Phytoremediation of Polluted Soil with Organochlorine Pesticides. BIOMED RESEARCH INTERNATIONAL 2015; 2015:549863. [PMID: 26301249 PMCID: PMC4537713 DOI: 10.1155/2015/549863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/27/2015] [Indexed: 11/29/2022]
Abstract
Phytoremediation is an attractive alternative to conventional treatments of soil due to advantages such as low cost, large application areas, and the possibility of in situ treatment. This study presents the assessment of phytoremediation processes conducted under controlled experimental conditions to evaluate the ability of Ricinus communis L., tropical plant species, to promote the degradation of 15 persistent organic pollutants (POPs), in a 66-day period. The contaminants tested were hexachlorocyclohexane (HCH), DDT, heptachlor, aldrin, and others. Measurements made in rhizosphere soil indicate that the roots of the studied species reduce the concentration of pesticides. Results obtained during this study indicated that the higher the hydrophobicity of the organic compound and its molecular interaction with soil or root matrix the greater its tendency to concentrate in root tissues and the research showed the following trend: HCHs < diclofop-methyl < chlorpyrifos < methoxychlor < heptachlor epoxide < endrin < o,p′-DDE < heptachlor < dieldrin < aldrin < o,p′-DDT < p,p′-DDT by increasing order of log Kow values. The experimental results confirm the importance of vegetation in removing pollutants, obtaining remediation from 25% to 70%, and demonstrated that Ricinus communis L. can be used for the phytoremediation of such compounds.
Collapse
|
27
|
Lu YF, Lu M. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:535-541. [PMID: 25534968 DOI: 10.1016/j.jhazmat.2014.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 06/04/2023]
Abstract
A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use.
Collapse
Affiliation(s)
- Yan-Fei Lu
- School of Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Mang Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| |
Collapse
|
28
|
Ye J, Yin H, Peng H, Bai J, Li Y. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:129-135. [PMID: 25232990 DOI: 10.1016/j.ecoenv.2014.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Phytoremediation is an attractive approach for the cleanup of polycyclic aromatic hydrocarbons-contaminated soil. The joint effect of alfalfa and microorganisms, including Arthrobacter oxydans, Staphylococcus auricularis and Stenotrophomonas maltophilia, on pyrene removal was investigated. The results showed that the joint effect primarily contributed to pyrene removal, and the concentration of residual pyrene in rhizosphere soil was lower than that in non-rhizosphere soil. After joint treatment for 45d, pyrene in rhizosphere soils decreased from 11.3, 52.5 and 106.0mg/kg to 2.0-3.0, 15.0-18.7, and 41.2-44.8mg/kg, respectively. These bacteria significantly enhanced pyrene accumulation and microbial community diversity, and increased soil dehydrogenase and polyphenol oxidase activities. Pyrene was initially degraded through ring cleavage. One of the main metabolites 4-dihydroxy-phenanthrene was transformed into naphthol and 1,2-dihydroxynaphthalene, which were further degraded through salicylic acid pathway and phthalic acid pathway, separately.
Collapse
Affiliation(s)
- Jinshao Ye
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hua Yin
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jieqiong Bai
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yuepeng Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Iffis B, St-Arnaud M, Hijri M. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. FEMS Microbiol Lett 2014; 358:44-54. [PMID: 25039790 DOI: 10.1111/1574-6968.12533] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/29/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) belong to phylum Glomeromycota, an early divergent fungal lineage forming symbiosis with plant roots. Many reports have documented that bacteria are intimately associated with AMF mycelia in the soil. However, the role of these bacteria remains unclear and their diversity within intraradical AMF structures has yet to be explored. We aim to assess the bacterial communities associated within intraradical propagules (vesicles and intraradical spores) harvested from roots of plant growing in the sediments of an extremely petroleum hydrocarbon-polluted basin. Solidago rugosa roots were sampled, surface-sterilized, and microdissected. Eleven propagules were randomly collected and individually subjected to whole-genome amplification, followed by PCRs, cloning, and sequencing targeting fungal and bacterial rDNA. Ribotyping of the 11 propagules showed that at least five different AMF OTUs could be present in S. rugosa roots, while 16S rRNA ribotyping of six of the 11 different propagules showed a surprisingly high bacterial richness associated with the AMF within plant roots. Most dominant bacterial OTUs belonged to Sphingomonas sp., Pseudomonas sp., Massilia sp., and Methylobacterium sp. This study provides the first evidence of the bacterial diversity associated with AMF propagules within the roots of plants growing in extremely petroleum hydrocarbon-polluted conditions.
Collapse
Affiliation(s)
- Bachir Iffis
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal 4101 Sherbrooke est, Montréal, QC, Canada
| | | | | |
Collapse
|
30
|
Lu YF, Lu M, Peng F, Wan Y, Liao MH. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms. CHEMOSPHERE 2014; 106:44-50. [PMID: 24457052 DOI: 10.1016/j.chemosphere.2013.12.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
In this work, a laboratory experiment was performed to investigate the influences of inoculation with the arbuscular mycorrhizal fungus (AMF) Glomus caledoniun L. and/or epigeic earthworms (Eisenia foetida) on phytoremediation of a PCB-contaminated soil by ryegrass grown for 180d. Planting ryegrass, ryegrass inoculated with earthworms, ryegrass inoculated with AMF, and ryegrass co-inoculated with AMF and earthworms decreased significantly initial soil PCB contents by 58.4%, 62.6%, 74.3%, and 79.5%, respectively. Inoculation with AMF and/or earthworms increased the yield of plants, and the accumulation of PCBs in ryegrass. However, PCB uptake by ryegrass accounted for a negligible portion of soil PCB removal. The number of soil PCB-degrading populations increased when ryegrass was inoculated with AMF and/or earthworms. The data show that fungal inoculation may significantly increase the remedial potential of ryegrass for soil contaminated with PCBs.
Collapse
Affiliation(s)
- Yan-Fei Lu
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang 330045, China; College of Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Mang Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Fang Peng
- College of Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yun Wan
- College of Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Min-Hong Liao
- Jiangxi Chenmin Paper Co., Ltd., Nanchang 330013, China
| |
Collapse
|