1
|
Alshemmari H, Al-Kasbi MM, Kavil YN, Orif MI, Al-Hulwani EK, Al-Darii RJ, Al-Shukaili SM, Al-Balushi FAA, Chakraborty P. New and legacy pesticidal persistent organic pollutants in the agricultural region of the Sultanate of Oman. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132205. [PMID: 37604036 DOI: 10.1016/j.jhazmat.2023.132205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Comprehensive air and surface soil monitoring was conducted for new and legacy organochlorine pesticides (OCPs) to fill the knowledge and data gap on the sources and fate of pesticidal persistent organic pollutants (POPs) in the Sultanate of Oman. DDTs in agricultural soil samples ranged from 0.013 to 95.80 ng/g (mean: 8.4 ± 25.06 ng/g), with a median value of 0.07 ng/g. The highest concentration was observed at Shinas, where intensive agricultural practice is prevalent. The dominance of p,p'-DDT in soil and air reflected technical DDT formulation usage in Oman. Among newly enlisted POPs, pentachlorobenzene had the maximum detection frequency in air (47%) and soil (41%). Over 90% of sites reflected extensive past use of hexachlorobenzene. Major OCP isomers and metabolites showed net volatilisation from the agricultural soil, thereby indicating concurrent emission and re-emission processes from the soil of Oman. However, the cleansing effect of oceanic air mass is the possible reason for relatively lower atmospheric OCP levels from a previous study. Although DDT displayed maximum cancer risk, the level is below the permissible limit. DDT primarily stemmed from obsolete stock and inadequate management practices. Hence, we suggest there is a need for DDT regulation in Oman.
Collapse
Affiliation(s)
- Hassan Alshemmari
- Environmental Pollution and Climate Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, State of Kuwait; Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, State of Kuwait
| | - Mohammed M Al-Kasbi
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Yasar N Kavil
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, State of Kuwait; Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Mohammed I Orif
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Ebtesam K Al-Hulwani
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Rawya J Al-Darii
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Suleiman M Al-Shukaili
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Fawaz A A Al-Balushi
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, Muscat P.C:100, Sultanate of Oman
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
2
|
Haarr A, Nipen M, Mwakalapa EB, Borgen AR, Mmochi AJ, Borga K. Chlorinated paraffins and dechloranes in free-range chicken eggs and soil around waste disposal sites in Tanzania. CHEMOSPHERE 2023; 329:138646. [PMID: 37037350 DOI: 10.1016/j.chemosphere.2023.138646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Electronic waste is a source of both legacy and emerging flame retardants to the environment, especially in regions where sufficient waste handling systems are lacking. In the present study, we quantified the occurrence of short- and medium chain chlorinated paraffins (SCCPs and MCCPs) and dechloranes in household chicken (Gallus domesticus) eggs and soil collected near waste disposal sites on Zanzibar and the Tanzanian mainland. Sampling locations included an e-waste facility and the active dumpsite of Dar es Salaam, a historical dumpsite in Dar es Salaam, and an informal dumpsite on Zanzibar. We compared concentrations and contaminant profiles between soil and eggs, as free-range chickens ingest a considerable amount of soil during foraging, with potential for maternal transfer to the eggs. We found no correlation between soil and egg concentrations or patterns of dechloranes or CPs. CPs with shorter chain lengths and higher chlorination degree were associated with soil, while longer chain lengths and lower chlorination degree were associated with eggs. MCCPs dominated the CP profile in eggs, with median concentrations ranging from 500 to 900 ng/g lipid weight (lw) among locations. SCCP concentrations in eggs ranged from below the detection limit (LOD) to 370 ng/g lw. Dechlorane Plus was the dominating dechlorane compound in all egg samples, with median concentrations ranging from 0.5 to 2.8 ng/g lw. SCCPs dominated in the soil samples (400-21300 ng/g soil organic matter, SOM), except at the official dumpsite where MCCPs were highest (65000 ng/g SOM). Concentrations of dechloranes in soil ranged from below LOD to 240 ng/g SOM, and the dominating compounds were Dechlorane Plus and Dechlorane 603. Risk assessment of CP levels gave margins of exposure (MOE) close to or below 1000 for SCCPs at one location.
Collapse
Affiliation(s)
- Ane Haarr
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Oslo, Norway.
| | - Maja Nipen
- Norwegian Institute for Air Research (NILU), P.O. Box 100, 2027, Kjeller, Norway.
| | - Eliezer B Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | - Anders R Borgen
- Norwegian Institute for Air Research (NILU), P.O. Box 100, 2027, Kjeller, Norway.
| | - Aviti J Mmochi
- Institute of Marine Science, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania.
| | - Katrine Borga
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Oslo, Norway; Center for Biogeochemistry in the Anthropocene, University of Oslo, PB 1066, 0316, Oslo, Norway.
| |
Collapse
|
3
|
Zhang J, Liao H, Chen Y, Li X, Chen R, Han S, Liu S, Yin S. Concentrations and homologue patterns of SCCPs and MCCPs in the serum of the general population of adults in Hangzhou, China. CHEMOSPHERE 2023:139131. [PMID: 37285971 DOI: 10.1016/j.chemosphere.2023.139131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their ubiquitous presence in the environment and humans, chlorinated paraffins (CPs) are a major environmental and public health concern. CPs are known to persist, bioaccumulate and potentially threaten human health, but reports on their internal exposure in the adult general population are still scarce. In this study, serum samples collected from adults living in Hangzhou, China, were quantified for SCCPs and MCCPs using GC-NCI-MS methods. A total of 150 samples were collected and subjected to analysis. ∑SCCPs were detected in 98% of the samples with a median concentration of 721 ng/g lw. MCCPs were found in all serum samples with a median concentration of 2210 ng/g lw, indicating that MCCPs were the dominant homologous group. For SCCPs and MCCPs, ∑C10 and ∑C14 were found to be the dominant carbon chain length homologues. Our results showed that age, BMI and lifestyle were not found to be significantly associated with internal exposure to CPs for the samples in this study. Based on PCA analysis, an age-specific distribution of CP homologues was observed. This suggests that internal exposure to CPs in the general population is related to exposure scenarios and history. The results of this study may contribute to a better understanding of the internal exposure to CPs in the general population and may provide a direction for the investigation of the source of exposure to CPs in the environment and daily life.
Collapse
Affiliation(s)
- Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanhong Chen
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xue Li
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; Toxicological Centre, Universiteit Antwerpen, Wilrijk, 2610, Belgium.
| |
Collapse
|
4
|
Jevrosimov I, Kragulj Isakovski M, Apostolović T, Tamindžija D, Rončević S, Sigmund G, Ercegović M, Maletić S. Microbially inoculated chars strongly reduce the mobility of alachlor and pentachlorobenzene in an alluvial sediment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022. [PMID: 36165191 DOI: 10.1002/ieam.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to investigate the transport behavior of two organic and persistent contaminants (alachlor and pentachlorobenzene) on Danube alluvial sediment in the absence and in the presence of microbially inoculated biochar produced at 400 °C and three hydrochars produced at 180, 200, and 220 °C. Stainless steel columns were used for the sorption experiments in nonequilibrium conditions. Obtained results were modeled using the advective-dispersive equation under nonequilibrium conditions. Transport of these compounds through the alluvial sediment column showed that the retention time increased with increasing molecular hydrophobicity. Inoculated biochar increases the retardation of both compounds: twofold for pentachlorobenzene compared with alachlor as a consequence of a higher hydrophobicity. Obtained results indicate that the highest biodegradation coefficient was observed for pentachlorobenzene (λ = 10) in alluvial sediment with addition of an inoculated hydrochar, which is assumed to be a consequence of biosorption. Moreover, all experiments on the columns indicate that the addition of inoculated chars yields a significantly higher Rd coefficient for pentachlorobenzene than for alachlor. Bacterial counts increased in all of the column experiments, which indicates the successful adaptation of microorganisms to experimental conditions and their potential for the removal of a large number of organic pollutants. Thus, addition of inoculated chars to contaminated sediments has the potential as a remediation technique to inhibit the leaching of pollutants to groundwaters. Integr Environ Assess Manag 2022;00:1-10. © 2022 SETAC.
Collapse
Affiliation(s)
- Irina Jevrosimov
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, R. Serbia
| | - Marijana Kragulj Isakovski
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, R. Serbia
| | - Tamara Apostolović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, R. Serbia
| | - Dragana Tamindžija
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, R. Serbia
| | - Srđan Rončević
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, R. Serbia
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Marija Ercegović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade, R. Serbia
| | - Snežana Maletić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, R. Serbia
| |
Collapse
|
5
|
Occurrence, Distribution and Health Risk of Short-Chain Chlorinated Paraffins (SCCPs) in China: A Critical Review. SEPARATIONS 2022. [DOI: 10.3390/separations9080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With being listed in the Stockholm Convention, the ban on short-chain chlorinated paraffins (SCCPs) has been put on the agenda in China. Based on the literature over the past decade, this study comprehensively analyzed the occurrence, distribution of and human exposure to SCCPs in China, aiming to provide a reference for the changes in SCCPs after the ban. SCCPs were ubiquitous in environmental matrices, and the levels were considerably higher than those in other countries. SCCPs from the emission region were 2–4 orders of magnitude higher than those in the background area. Environmental processes may play an important role in the SCCP profiles in the environment, and C10 and Cl6 were identified as potential factors distinguishing their spatial distribution. River input was the dominant source in the sea areas, and atmospheric transport was the main source in the remote inland areas. Ingestion and dermal absorption and food intake may pose potential risk to residents, especially for children and infants. More studies are needed on their temporal trend, source emission and environmental degradation. The enactment of the restriction order will have a great impact on China’s CP industry; nevertheless, it will play a positive role in the remediation of SCCP pollution in the environment.
Collapse
|
6
|
Wang K, Gao L, Zhu S, Liu X, Chen Q, Cui L, Qiao L, Xu C, Huang D, Wang S, Zheng M. Short- and medium-chain chlorinated paraffins in soil from an urban area of northern China: Levels, distribution, and homolog patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150833. [PMID: 34627908 DOI: 10.1016/j.scitotenv.2021.150833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are persistent organic pollutants that are present in relatively high concentrations in various environmental media in China. Many studies have focused on chlorinated paraffins in soil from agricultural land and contaminated areas. There are limited data on the levels of chlorinated paraffins in soil from urban areas. In this study, to investigate the levels, distribution, and homolog patterns of chlorinated paraffins (CPs) in soil from a typical urban area, 130 soil samples were collected and combined to form 26 pooled samples. The samples were analyzed for 50 CP congener groups (C9-17Cl5-10). The concentration ranges for SCCPs, medium-chain CPs (MCCP), and chlorinated nonane paraffin (C9-CP) were 19-1456 ng/g (average: 234 ng/g), <10-385 ng/g (average: 54 ng/g), and 1-39 ng/g (average: 11 ng/g), respectively. The CP concentrations were not significantly correlated with the total organic carbon content (P > 0.05). Compared with other areas worldwide, the SCCP and C9-CP concentrations in soil in this area were at the medium level, and the concentrations of MCCPs were at a low level. The CP concentrations were higher in soil samples collected near factories and domestic garbage disposal sites. C10Cl6-7 were the main SCCP homologs and C14Cl7-8 were the main MCCP homologs. Principal component analysis showed that the sources of C9-CPs, SCCPs, and MCCPs in the soils were similar. Risk assessment showed that the concentrations of SCCPs and MCCPs in soil in this area did not pose a significant risk to soil organisms or human health.
Collapse
Affiliation(s)
- Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China National Institute of Standardization, Beijing 100191, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment Hangzhou Institute for Advanced study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xia Liu
- China National Institute of Standardization, Beijing 100191, China
| | - Qianwen Chen
- China National Institute of Standardization, Beijing 100191, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
7
|
Nipen M, Vogt RD, Bohlin-Nizzetto P, Borgå K, Mwakalapa EB, Borgen AR, Jørgensen SJ, Ntapanta SM, Mmochi AJ, Schlabach M, Breivik K. Spatial trends of chlorinated paraffins and dechloranes in air and soil in a tropical urban, suburban, and rural environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118298. [PMID: 34626702 DOI: 10.1016/j.envpol.2021.118298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.
Collapse
Affiliation(s)
- Maja Nipen
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway; NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway.
| | - Rolf David Vogt
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway
| | | | - Katrine Borgå
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo, Norway
| | | | | | - Susanne Jøntvedt Jørgensen
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway
| | - Samwel Moses Ntapanta
- Department of Social Anthropology, University of Oslo, P.O. Box 1091, 0317 Oslo, Norway
| | - Aviti John Mmochi
- Institute for Marine Science, University of Dar Es Salaam, Zanzibar, Tanzania
| | - Martin Schlabach
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Knut Breivik
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway; NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| |
Collapse
|
8
|
Nevondo V, Okonkwo OJ. Status of short-chain chlorinated paraffins in matrices and research gap priorities in Africa: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52844-52861. [PMID: 34478051 PMCID: PMC8476396 DOI: 10.1007/s11356-021-15924-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Chlorinated paraffins (CPs) have been applied as additives in a wide range of consumer products, including polyvinyl chloride (PVC) products, mining conveyor belts, paints, sealants, adhesives and as flame retardants. Consequently, CPs have been found in many matrices. Of all the CP groups, short-chain chlorinated paraffins (SCCPs) have raised an alarming concern globally due to their toxicity, persistence and long-range transportation in the environment. As a result, SCCPs were listed in the Stockholm Convention on Persistent Organic Pollutants (POPs) in May 2017. Additionally, a limit for the presence of SCCPs in other CP mixtures was set at 1% by weight. CPs can be released into the environment throughout their life cycle; therefore, it becomes crucial to assess their effects in different matrices. Although about 199 studies on SCCP concentration in different matrices have been published in other continents; however, there are scarce/or limited studies on SCCP concentration in Africa, particularly on consumer products, landfill leachates and sediment samples. So far, published studies on SCCP concentration in the continent include SCCPs in egg samples, e-waste recycling area and indoor dust in Ghana and South Africa, despite absence of any production of SCCPs in Africa. However, there still remains a huge research gap in the continent of Africa on SCCPs. Consequently, there is a need to develop robust SCCP inventories in Africa since the Stockholm Convention has already developed guidance document in this respect. This review, therefore, examines the state of knowledge pertaining to the levels and trends of these contaminants in Africa and further provides research gaps that need to be considered in order to better understand the global scale of the contaminant.
Collapse
Affiliation(s)
- Vhodaho Nevondo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| |
Collapse
|
9
|
Landa-Faz A, Rodríguez-Vázquez R, Roldán-Carrillo TG, Hidalgo-Lara ME, Aguilar-López R, Cebrián-García ME. Bioremediation of an agricultural saline soil contaminated with endosulfan and Escherichia coli by an active surface agent induced in a Penicillium crustosum culture. Prep Biochem Biotechnol 2021; 52:292-301. [PMID: 34383615 DOI: 10.1080/10826068.2021.1941104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study evaluates the production of a biological active surface agent (BASA) through its surface tension (ST) and emulsifying activity (E24) for endosulfan degradation (ED) and Escherichia coli growth inhibition (EcGI) in an agricultural saline soil. The fungus, identified as Penicillium crustosum was isolated from the Citrus sinensis peel (CsP), then the surface properties were evaluated in 9 culture media through a Taguchi L9 experimental design. The culture conditions included: stirring speed, pH, carbon (C) and nitrogen (N) sources; being glucose, NH4N03, 120 rpm and pH of 5, the most significant parameters in the BASA production. The BASA identified as a lipopeptide type, showed a ST = 38 mN m-1 and E24=71%. Both properties were stable at 80 °C, while ST presented stability in the pH range of 2 - 12, and a saline concentration of 200 g L-1; E24 was also stable at a pH between 8-12. Further application of BASA and fungal inoculum to a contaminated agricultural saline soil presented an EcGI of 99.8% on the 8th day, and ED of 92.9 ± 4.7% in 30 days, respectively; being the first report that uses this fungus for pesticide and bacteria elimination from an agricultural saline soil.
Collapse
Affiliation(s)
- Anbu Landa-Faz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV Zacatenco, Ciudad de México, Mexico
| | | | | | | | - Ricardo Aguilar-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV Zacatenco, Ciudad de México, Mexico
| | | |
Collapse
|
10
|
Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Li J, Xu L, Zhou Y, Yin G, Wu Y, Yuan GL, Du X. Short-chain chlorinated paraffins in soils indicate landfills as local sources in the Tibetan Plateau. CHEMOSPHERE 2021; 263:128341. [PMID: 33297267 DOI: 10.1016/j.chemosphere.2020.128341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 05/22/2023]
Abstract
Background contamination levels of contemporary persistent organic pollutants (POPs) may be elevated due to local discharges, and hence it is of high importance to assess and monitor them in alpine and Polar Regions. This study investigated the role of waste disposal in the Tibetan plateau as the local source of short-chain chlorinated paraffins (SCCPs). SCCPs were determined in soils from the urban landfill and rural dumpsites, with a concentration range of 56.8-1348 ng/g dw. The gradient descent of SCCP levels from Lhasa landfill to the surrounding soils with increasing distances suggested a significant SCCP release from waste disposal. The transport pattern was well fitted by the Boltzmann equation after normalization in terms of soil organic carbon contents. Compared to the landfill cells closed in early years, the recently closed cells contained higher concentrations but lower proportions of the short-chain congener groups, likely reflecting the SCCP use history in Tibet. In open-burning dumpsites, higher SCCP levels and dominance of lighter congener groups indicates that such crude waste treatment process might cause an extra release of volatile SCCPs. This study elucidates local SCCP inputs to the background environment, and demonstrates that both urbanization and badly-managed landfill have been contributing to the presence of contemporary POPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Liang Xu
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Yan J, Wang D, Meng Z, Yan S, Teng M, Jia M, Li R, Tian S, Weiss C, Zhou Z, Zhu W. Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115697. [PMID: 33070067 DOI: 10.1016/j.envpol.2020.115697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Wu Y, Gao S, Ji B, Liu Z, Zeng X, Yu Z. Occurrence of short- and medium-chain chlorinated paraffins in soils and sediments from Dongguan City, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114181. [PMID: 32806426 DOI: 10.1016/j.envpol.2020.114181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
As a group of emerging organic pollutants, chlorinated paraffins (CPs) have attracted rising global attention due to their persistence and toxicity. In this study, we have investigated the concentration levels and profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in soils and sediments from Dongguan City, an industrial area in South China, and have also screened very short-chain chlorinated paraffins (vSCCPs) by means of ultra-high resolution liquid chromatograph coupled with an Orbitrap Fusion Tribrid mass spectrometer. The results indicated that total SCCP concentrations ranged from 6.75 to 993 ng/g (mean 172 ng/g) in soils and from 4.00 to 613 ng/g (mean 153 ng/g) in sediments, respectively. Higher MCCP levels were observed with a range of 23.9-2427 ng/g (mean 369 ng/g) in soils and 14.0-1581 ng/g (mean 493 ng/g) in sediments, respectively. The results indicated that MCCPs dominated over SCCPs in the studied region. The dominant homologues in soils and sediments were C13Cl6-7 and C14Cl7-8, C13Cl7, and C14Cl7-8, respectively. Furthermore, six vSCCP homologues (C8Cl7-8 and C9Cl5-8) in soils and four vSCCPs (C9Cl5-8) in sediments have been identified. Because of their higher detection frequencies, further studies should focus on the transformation mechanisms and toxicities of these vSCCPs in environmental media and biota.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bingjing Ji
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
14
|
Wang K, Gao L, Zhu S, Cui L, Qiao L, Xu C, Huang D, Zheng M. Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China. CHEMOSPHERE 2020; 247:125855. [PMID: 31935577 DOI: 10.1016/j.chemosphere.2020.125855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 05/22/2023]
Abstract
To preliminarily investigate the occurrence, spatial distributions, homolog compositions, and ecological risks of chlorinated paraffins (CPs) in Yunnan, China, 110 soil samples were collected from an area part of Yunnan, representative of the whole Yunnan area, where had similar characteristics to most parts of Yunnan and 22 pooled soil samples were analyzed for 50 CP congener groups (C9-17Cl5-10). The chlorinated nonane paraffin (C9-CP), short chain (SCCP), and medium chain chlorinated paraffin (MCCP) concentrations in soil samples were 8-109 ng/g (average 39 ng/g), 79-948 ng/g (average 348 ng/g), and 20-1206 ng/g (average 229 ng/g), respectively. The C9-CP homologs contributed 5%-16% of the C9-13-CP concentrations in soils. No significant correlation was found between CP concentrations and the total organic carbon content (P > 0.05). The CP levels in soils from Yunnan were at a medium level compared with those in other areas worldwide. Human activity and atmosphere deposition would influence the levels and spatial distributions of CPs in this area. The concentrations of CPs in east area were higher than those in west area. C10Cl6-7 were the major SCCP congeners and C14Cl6-7 were the major MCCP congeners. Principal component analysis indicated that SCCPs and MCCPs came from different sources. A preliminary risk assessment indicated that these concentrations of CPs in soil from Yunnan do not pose a significant ecological risk for soil organisms.
Collapse
Affiliation(s)
- Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
15
|
Marć M, Bystrzanowska M, Tobiszewski M. Exploratory analysis and ranking of analytical procedures for short-chain chlorinated paraffins determination in environmental solid samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134665. [PMID: 31818586 DOI: 10.1016/j.scitotenv.2019.134665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Short-chain chlorinated paraffins are ones of the most recent chemical compounds that have been classified as persistent organic pollutants. They have various applications and are emitted to the environment. Despite the fact, that the content levels of these compounds in the environmental compartments should be monitored, there is still a lack of well-defined and validated analytical procedures, proposed or suggested by the national or international environmental protection agencies. Finding an appropriate analytical procedure (sensitive and green at the same time) from many available ones is very often a difficult task. Therefore it can be supported with multicriteria decision analysis. The dataset consisting of 22 procedures was described by 7 criteria, mainly referring to procedures greenness. The data treatment with cluster analysis and principal component analysis revealed the internal structure of the dataset. Moreover, both statistical tools allowed for reduction of dataset criteria to three. This was used for applying ternary plot to show the multicriteria decision analysis results within all possible weights. With the aid of chemometric and multicriteria decision analysis tools it was easy to assess the set of analytical procedure. Depending on the applied weights to assessment criteria different analytical procedures are the most appropriate (winners).
Collapse
Affiliation(s)
- Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Marta Bystrzanowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland
| | - Marek Tobiszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland
| |
Collapse
|
16
|
Moeckel C, Breivik K, Nøst TH, Sankoh A, Jones KC, Sweetman A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. ENVIRONMENT INTERNATIONAL 2020; 137:105563. [PMID: 32106045 DOI: 10.1016/j.envint.2020.105563] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 05/22/2023]
Abstract
Organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and chlorinated paraffins (CPs)) and heavy metals and metalloids (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Zn) were analysed in surface soil samples from the Agbogbloshie e-waste processing and dumping site in Accra (Ghana). In order to identify which of the pollutants are likely to be linked specifically to handling of e-waste, samples were also collected from the Kingtom general waste site in Freetown (Sierra Leone). The results were compared using principal component analyses (PCA). PBDE congeners found in technical octa-BDE mixtures, highly chlorinated PCBs and several heavy metals (Cu, Pb, Ni, Cd, Ag and Hg) showed elevated concentrations in the soils that are likely due to contamination by e-waste. PCAs associated those compounds with pyrogenic PAHs, suggesting that burning of e-waste, a common practice to isolate valuable metals, may cause this contamination. Moreover, other contamination pathways, especially incorporation of waste fragments into the soil, also appeared to play an important role in determining concentrations of some of the pollutants in the soil. Concentrations of several of these compounds were extremely high (especially PBDEs, heavy metals and SCCPs) and in some cases exceeded action guideline levels for soil. This indicates that exposure to these contaminants via the soil alone is potentially harmful to the recyclers and their families living on waste sites. Many organic contaminants and other exposure pathways such as inhalation are not yet included in such guidelines but may also be significant, given that deposition from the air following waste burning was identified as a major pollutant source.
Collapse
Affiliation(s)
- Claudia Moeckel
- NILU - Norwegian Institute for Air Research, 2007 Kjeller, Norway; Stockholm University, 11418 Stockholm, Sweden.
| | - Knut Breivik
- NILU - Norwegian Institute for Air Research, 2007 Kjeller, Norway; University of Oslo, 0351 Oslo, Norway
| | - Therese Haugdahl Nøst
- NILU - Norwegian Institute for Air Research, 2007 Kjeller, Norway; The Arctic University of Norway, 9019 Tromsø, Norway
| | - Alhaji Sankoh
- Njala University, Njala, Moyamba District, Sierra Leone
| | - Kevin C Jones
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Andrew Sweetman
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
17
|
Kalinowska K, Lenartowicz P, Namieśnik J, Marć M. Analytical procedures for short chain chlorinated paraffins determination - How to make them greener? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:309-323. [PMID: 30928760 DOI: 10.1016/j.scitotenv.2019.03.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
The aim of the following paper was to gather current scientific information about the analytical protocols dedicated to measuring the content level of short-chain chlorinated paraffins (SCCPs) in various types of environmental samples. Moreover, the data about the basic validation parameters of applied procedures for SCCPs determination are listed. The main issue which is highlighted in the paper is the possibility of the application of green analytical chemistry (GAC) principals in the SCCPs measuring process to reduce the environmental impact of the applied methodology. Analytical methods dedicated to SCCPs determination contain a significant number of steps and require advanced analytical equipment during the quantitative and qualitative analysis. In addition, there is a substantial issue associated with the reliability of the obtained results, especially in the case of the quantification of individual SCCPs in the studied samples. Due to this fact, the paper attempts to discuss the various stages of the analytical procedure, in which appropriate changes in the formula or equipment solutions might be introduced to ensure a better quality of the analytical results, as well as to meet the requirements of the philosophy of green analytical chemistry. The most important case which concerns this subject is finding an optimal consensus between the economic and logistic aspects and the quality and "greenness" of the analytical procedure employed in SCCPs determination process.
Collapse
Affiliation(s)
- Kaja Kalinowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Lenartowicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland; Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Opole, Poland.
| |
Collapse
|
18
|
Xu C, Zhang Q, Gao L, Zheng M, Qiao L, Cui L, Wang R, Cheng J. Spatial distributions and transport implications of short- and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:821-828. [PMID: 30179813 DOI: 10.1016/j.scitotenv.2018.08.355] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 05/22/2023]
Abstract
To investigate the spatial distributions, potential transport and ecological risks of chlorinated paraffins (CPs) in and around e-waste dismantling area, we collected soil samples within 5 km of the e-waste dismantling centers and sediment samples in the surrounding area from the lower reaches of Jiaojiang River. Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were analyzed by two-dimensional gas chromatography coupled with electron-capture negative-ionization mass spectrometry (GC × GC-ECNI-MS). The SCCP and MCCP concentration ranges in soils were 68.5 to 2.20 × 105 ng/g dry weight (dw) and 507 to 4.40 × 106 ng/g dw, respectively. The ranges for the levels of SCCPs and MCCPs in sediments were 32.5-1.29 × 104 ng/g dw and 271-2.72 × 104 ng/g dw, respectively. No significant correlation was observed between total organic carbon (TOC) and CP concentrations (P > 0.05). The spatial distributions showed that the CP levels were closely related to e-waste pollution. Correspondence analysis revealed that shorter-chain and less chlorinated congeners were enriched in sediments from sites distant from e-waste pollution source, while longer-chain and higher chlorinated congeners were concentrated in soils and sediments collected near the pollution source, which indicated that complex environmental processes, such as transportation via atmosphere and/or water, and deposition, resulted in different CP profiles in different sampling locations and environment matrixes (e.g., soil and sediments). Principal component analysis (PCA) indicated that e-waste pollution could be the same source of SCCPs and MCCPs. The preliminary risk assessment indicated that CPs in soils within 1 km of e-waste dismantling centers at current levels posed a considerable risk to soil-dwelling organisms, and the sediment MCCPs in Jiaojiang estuary at present levels also posed a risk to sediment-dwelling organisms.
Collapse
Affiliation(s)
- Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhua Wang
- Agriculture University of Hebei, Baoding 071000, China
| | - Jie Cheng
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| |
Collapse
|
19
|
Yan J, Zhu W, Wang D, Teng M, Yan S, Zhou Z. Different effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on sex hormone levels, metabolic profile and oxidative stress in adult mice testes. ENVIRONMENTAL RESEARCH 2019; 169:315-325. [PMID: 30502743 DOI: 10.1016/j.envres.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
In the environment, endosulfan persists in forms of two isomers (α and β) and a toxic metabolite, endosulfan sulfate. The toxicity of endosulfan on various mammalian tissues has been investigated, but whether the different isomers and metabolites of endosulfans affect mammalian reproductive function remains unclear. This study is aimed to elucidate the different toxicological effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on adult mice testes. We found that the three endosulfans (α endosulfan, β endosulfan and endosulfan sulfate) altered serum sex steroid hormone levels, and changed expression of steroidogenesis genes. By comparing results of 1H-NMR and LC-MS/MS metabolomics between samples treated with different endosulfans, we found that endosulfans changed levels of metabolites involved in energy metabolism and oxidative stress, and these were associated with the imbalance of sex sterol hormone synthesis. Moreover, endosulfan isomers and sulfate metabolite treatment disrupted the mice testicular antioxidant systems and caused an increase in lipid peroxidation. Interestingly, the three endosulfans tested in this study each yielded different effects on serum sex hormone levels and testicular metabolic profiles in the adult mice. Beta-endosulfan exposure caused the strongest disturbance in the testes compared to the other endosulfans, with significantly higher testosterone levels and more pronounced changes to endogenous metabolites. Taken together, we identified the different effects of endosulfans on the testis by exposing mice to α endosulfan, β endosulfan and endosulfan sulfate, and we found that changes in sex sterol hormone levels induced by treatment with endosulfans were correlated to changes in endogenous metabolites. These findings provide new insight into mechanism of endosulfan-induced testicular toxicity.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Yan J, Wang D, Miao J, Liu C, Wang Y, Teng M, Zhou Z, Zhu W. Discrepant effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on oxidative stress and energy metabolism in the livers and kidneys of mice. CHEMOSPHERE 2018; 205:223-233. [PMID: 29702342 DOI: 10.1016/j.chemosphere.2018.04.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Endosulfan, an organochloride pesticide, has been used for many commercial purposes. Endosulfan is composed of two isomers, α-endosulfan and β-endosulfan. In biological and soil systems, endosulfan is metabolized into endosulfan sulfate. In this study, the different toxicological effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on the livers and kidneys of mice were comprehensively investigated. The results demonstrated that both endosulfan isomers and endosulfan sulfate disturbed the hepatic and renal antioxidant systems. Furthermore, 1H NMR metabolomics analysis revealed that endogenous metabolites involved in oxidative stress and energy metabolism were altered after exposure to these compounds. In the liver, the changes in hepatic endogenous metabolites and the induction of hepatic CYP450 mRNA isoforms were similar among mice treated with the three compounds, and the sulfate metabolite was the exclusive exogenous compound detected. Therefore, the metabolism of α- and β-endosulfan to endosulfan sulfate is likely the main cause of toxicological effects in the livers of mice. However, in kidneys, the changes in the metabolome and in CYP450 mRNA expression induced by α-endosulfan and β-endosulfan were stereoselective. Additionally, endosulfan sulfate, which induced a significant increase of renal Cyp3a11, showed a more robust disturbance of renal metabolites than either of the two isomers. These findings revealed that more attention should be given to the toxicological evaluation of endosulfan sulfate in the future.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Nøst TH, Halse AK, Schlabach M, Bäcklund A, Eckhardt S, Breivik K. Low concentrations of persistent organic pollutants (POPs) in air at Cape Verde. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:129-137. [PMID: 28850833 DOI: 10.1016/j.scitotenv.2017.08.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Ambient air is a core medium for monitoring of persistent organic pollutants (POPs) under the Stockholm Convention and is used in studies of global transports of POPs and their atmospheric sources and source regions. Still, data based on active air sampling remain scarce in many regions. The primary objectives of this study were to (i) monitor concentrations of selected POPs in air outside West Africa, and (ii) to evaluate potential atmospheric processes and source regions affecting measured concentrations. For this purpose, an active high-volume air sampler was installed on the Cape Verde Atmospheric Observatory at Cape Verde outside the coast of West Africa. Sampling commenced in May 2012 and 43 samples (24h sampling) were collected until June 2013. The samples were analyzed for selected polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and chlordanes. The concentrations of these POPs at Cape Verde were generally low and comparable to remote sites in the Arctic for several compounds. Seasonal trends varied between compounds and concentrations exhibited strong temperature dependence for chlordanes. Our results indicate net volatilization from the Atlantic Ocean north of Cape Verde as sources of these POPs. Air mass back trajectories demonstrated that air masses measured at Cape Verde were generally transported from the Atlantic Ocean or the North African continent. Overall, the low concentrations in air at Cape Verde were likely explained by absence of major emissions in areas from which the air masses originated combined with depletion during long-range atmospheric transport due to enhanced degradation under tropical conditions (high temperatures and concentrations of hydroxyl radicals).
Collapse
Affiliation(s)
- Therese Haugdahl Nøst
- NILU - Norwegian Institute for Air Research, the FRAM Centre, P.O. Box 6606, Langnes, NO-9296 Tromsø, Norway; UiT - the Arctic University of Norway, P.O. Box 6050, Langnes, NO-9037 Tromsø, Norway.
| | - Anne Karine Halse
- NILU - Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway
| | - Martin Schlabach
- NILU - Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway
| | - Are Bäcklund
- NILU - Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway
| | - Sabine Eckhardt
- NILU - Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway
| | - Knut Breivik
- NILU - Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway; University of Oslo, Department of Chemistry, P.O. Box 1033, NO-0315 Oslo, Norway
| |
Collapse
|
22
|
Zeng L, Lam JCW, Chen H, Du B, Leung KMY, Lam PKS. Tracking Dietary Sources of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals through a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9543-9552. [PMID: 28783326 DOI: 10.1021/acs.est.7b02210] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Our previous study revealed an elevated accumulation of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in marine mammals from Hong Kong waters in the South China Sea. To examine the bioaccumulation potential and biomagnification in these apex predators, we sampled the dietary items of marine mammals and tracked the sources of SCCPs and MCCPs through a marine food web in this region. Sixteen fish species, seven crustacean species, and four mollusk species were collected, and the main prey species were identified for two species of marine mammals. Concentrations of ∑SCCPs and ∑MCCPs in these collected species suggested a moderate pollution level in Hong Kong waters compared to the global range. Lipid content was found to mediate congener-specific bioaccumulation in these marine species. Significantly positive correlations were observed between trophic levels and concentrations of ∑SCCPs or ∑MCCPs (p < 0.05). Trophic magnification factors for ∑SCCPs and ∑MCCPs were 4.29 and 4.79, indicating that both of them have trophic magnification potentials. Elevated biomagnification of SCCPs and MCCPs from prey species to marine mammals was observed. This is the first report of dietary source tracking of SCCPs and MCCPs in marine mammals. The elevated biomagnification between prey and marine mammals raises environmental concerns about these contaminants.
Collapse
Affiliation(s)
- Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong , Hong Kong SAR, China
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
| | - Hui Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Bibai Du
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong , Pokfulam, Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
23
|
Wang XT, Xu SY, Wang XK, Hu BP, Jia HH. Occurrence, homologue patterns and source apportionment of short- and medium-chain chlorinated paraffins in suburban soils of Shanghai, China. CHEMOSPHERE 2017; 180:302-311. [PMID: 28412487 DOI: 10.1016/j.chemosphere.2017.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
In order to systematically investigate the spatial distribution, homologue profiles, and sources of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in suburban soils in Shanghai, SCCPs and MCCPs in soils were analyzed using gas chromatography coupled with low resolution mass spectrometry in electron capture negative ion (ECNI) mode (GC-ECNI-MS). The CP concentrations in soils were between not detected (ND) - 697 ng g-1 with a median value of 3.52 ng g-1 for SCCPs, and ND - 666 ng g-1 with a median value of 15.3 ng g-1 for MCCPs, respectively. The concentrations of MCCPs in most soils were higher than that of SCCPs. The total CP concentrations (sum of SCCPs and MCCPs) in soils varied from ND to 964 ng g-1 with a median value of 20.5 ng g-1. The concentration of MCCPs was higher than that of SCCPs in most soils. The levels of SCCPs and MCCPs in suburban soils in Shanghai were at the medium level when compared to other areas around the world. No significant correlation was observed between soil CP concentrations and total organic carbon contents (p > 0.05). For different use type of soils, the median concentrations of CPs in soils were found higher in greenland than that in other areas probably due to busy traffic, sewage sludge application and/or wastewater irrigation. All soils were divided into two groups by hierarchical cluster analysis (HCA) both for SCCPs and MCCPs. Three discharge sources of CPs in suburban soil of Shanghai were identified by PMF model.
Collapse
Affiliation(s)
- Xue-Tong Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Si-Yue Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xi-Kui Wang
- School of Environmental Science and Engineering, Shandong Agriculture and Engineering University, Jinan 251100, China.
| | - Bao-Ping Hu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hao-Hao Jia
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Zeng L, Lam JCW, Horii Y, Li X, Chen W, Qiu JW, Leung KMY, Yamazaki E, Yamashita N, Lam PKS. Spatial and temporal trends of short- and medium-chain chlorinated paraffins in sediments off the urbanized coastal zones in China and Japan: A comparison study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:357-367. [PMID: 28209434 DOI: 10.1016/j.envpol.2017.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/15/2017] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
To examine the impacts of urbanization and industrialization on the coastal environment, and assess the effectiveness of control measures on the contamination by chlorinated paraffins (CPs) in East Asia, surface and core sediments were sampled from the urbanized coastal zones in China and Japan (i.e., Pearl River Delta (PRD), Hong Kong waters and Tokyo Bay) and analyzed for short-chain (SCCPs) and medium-chain CPs (MCCPs). Much higher concentrations of CPs were found in the industrialized PRD than in adjacent Hong Kong waters. Significant correlation between CP concentration and population density in the coastal district of Hong Kong was observed (r2 = 0.72 for SCCPs and 0.55 for MCCPs, p < 0.05), highlighting the effect of urbanization. By contrast, a relatively lower pollution level of CPs was detected in Tokyo Bay. More long-chain groups within SCCPs in the PRD than in Hong Kong waters and Tokyo Bay implied the effect of industrialization. Comparison of temporal trends between Hong Kong outer harbor with Tokyo Bay shows the striking difference in historical deposition of CPs under different regulatory situations in China and Japan. For the first time, the declining CP concentrations in Tokyo Bay, Japan, attest to the effectiveness of emissions controls.
Collapse
Affiliation(s)
- Lixi Zeng
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon, Hong Kong SAR, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Weifang Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
25
|
Qian S, Zhu H, Xiong B, Zheng G, Zhang J, Xu W. Adsorption and desorption characteristics of endosulfan in two typical agricultural soils in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11493-11503. [PMID: 28316050 DOI: 10.1007/s11356-017-8800-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Endosulfan is an organochlorine pesticide widely used in Southwest China. In this paper, the adsorption and desorption characteristics of endosulfan in two typical agricultural soils (latosol and lateritic red soil) in this area were studied. The results showed that Langmuir isothermal equation could well describe the adsorption thermodynamic characteristics of endosulfan in latosol and lateritic red soil, and the maximum adsorption capacities of α-endosulfan were 0.186 and 0.209 mg/g, while those of β-endosulfan were 0.140 and 0.148 mg/g, respectively. Endosulfan adsorption in the two soils was an exothermic physicochemical process, but dominated by physical process. The adsorption kinetic characteristics of endosulfan in the two soils could be well described by second-order kinetic equation, and the initial rate constants were 0.228 and 0.325 mg/(g min) for α-endosulfan, while those were 0.119 and 0.125 mg/(g min) for β-endosulfan, respectively. The adsorbed endosulfan in the two soils was difficult to be desorbed into the liquid phase, and showed weak desorption hysteresis. These results implied that endosulfan could be firmly adsorbed by the two soils, and their adsorption and desorption abilities may be related to the contents of soil clay and organic matter.
Collapse
Affiliation(s)
- Sheng Qian
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Heng Zhu
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bailian Xiong
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
- Department of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou, 563002, People's Republic of China
| | - Guocan Zheng
- Chongqing Entry-Exit Inspection and Quarantine Bureau, Chongqing, 400020, People's Republic of China
| | - Jinzhong Zhang
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, People's Republic of China.
| | - Weihong Xu
- College of Resources and Environment, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
26
|
Bogdal C, Niggeler N, Glüge J, Diefenbacher PS, Wächter D, Hungerbühler K. Temporal trends of chlorinated paraffins and polychlorinated biphenyls in Swiss soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:891-899. [PMID: 27876229 DOI: 10.1016/j.envpol.2016.10.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 05/22/2023]
Abstract
Persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), are ubiquitous environmental contaminants that have been targeted by national regulations since the 1970-1980s, followed in 2004 by the worldwide regulation under the Stockholm Convention on POPs. However, concerns are growing regarding the emergence of additional POP-like substances, such as chlorinated paraffins (CPs), which have particularly large production volumes. Whereas short-chain CPs (SCCPs) have recently been restricted in Europe and are currently under evaluation for inclusion into the Stockholm Convention, medium-chain CPs (MCCPs) have received little attention. On the one hand, temporal trends of CPs in the environment have hardly been investigated. On the other hand, the effectiveness of the Stockholm Convention on environmental levels of PCBs is still a matter of debate. Here, we reconstructed temporal trends of SCCPs, MCCPs, and PCBs in archived soil samples from six sampling sites in Switzerland, covering the period 1989-2014 (respectively 1988-2013 for one site). Concentrations of SCCPs have decreased in soil since 1994, which indicates positive effects of the reduction of production of SCCPs in Europe and the increasingly stringent regulation. However, the decline in soil is slow with a halving time of 18 years. Concentrations of MCCPs have continuously increased in soil over the entire period 1989-2014, with a doubling between 2009 and 2014. The concentrations of MCCPs have surpassed those of SCCPs, showing their relevance today, partly as replacements for SCCPs. Soil concentrations of PCBs peaked in 1999, i.e. three decades later than worldwide production and use of PCBs, but earlier than the entry into force of the Stockholm Convention. PCBs follow a decline in soil with a halving time of approx. 8 years. This study shows the usefulness of sample archives for the reconstruction and interpretation of time trends of persistent environmental contaminants.
Collapse
Affiliation(s)
- Christian Bogdal
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zürich, Switzerland.
| | - Nadja Niggeler
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Juliane Glüge
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Pascal S Diefenbacher
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Daniel Wächter
- Swiss Soil Monitoring Network (NABO), Agroscope, CH-8046 Zürich, Switzerland
| | - Konrad Hungerbühler
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zürich, Switzerland
| |
Collapse
|
27
|
Halse AK, Schlabach M, Schuster JK, Jones KC, Steinnes E, Breivik K. Corrigendum to "Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from Western Europe" [Environ. Pollut. 196 (2015), 21-28]. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1477-1479. [PMID: 27884468 DOI: 10.1016/j.envpol.2016.10.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Anne Karine Halse
- Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway; Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, PO Box 5003, NO-1432 Ås, Norway.
| | - Martin Schlabach
- Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway
| | - Jasmin K Schuster
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Eiliv Steinnes
- Norwegian University of Science and Technology, Department of Chemistry, NO-7491 Trondheim, Norway
| | - Knut Breivik
- Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway; University of Oslo, Department of Chemistry, Box 1033, NO-0315 Oslo, Norway
| |
Collapse
|
28
|
Xu J, Gao Y, Zhang H, Zhan F, Chen J. Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12759-12766. [PMID: 27802594 DOI: 10.1021/acs.est.6b03595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffin (CP) production is one important emission source for short- and medium-chain CPs (SCCPs and MCCPs) in the environment. In this study, 48 CP congener groups were measured in the surface soils and coniferous leaves collected from the inner and surrounding environment of a CP production plant that has been in operation for more than 30 years to investigate the dispersion and deposition behavior of SCCPs and MCCPs. The average concentrations of the sum of SCCPs and MCCPs in the in-plant coniferous leaves and surface soils were 4548.7 ng g-1 dry weight (dw) and 3481.8 ng g-1 dw, which were 2-fold and 10-fold higher than those in the surrounding environment, respectively. The Gaussian air pollution model explained the spatial distribution of CPs in the coniferous leaves, whereas the dispersion of CPs to the surrounding surface soils fits the Boltzmann equation well. Significant fractionation effect was observed for the atmospheric dispersion of CPs from the production plant. CP congener groups with higher octanol-air partitioning coefficients (KOA) were more predominant in the in-plant environment, whereas the ones with lower KOA values had the elevated proportion in the surrounding environment. A radius of approximately 4 km from the CP production plant was influenced by the atmospheric dispersion and deposition of CPs.
Collapse
Affiliation(s)
- Jiazhi Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuan Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Haijun Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Faqiang Zhan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
29
|
Sorption Behaviour of Trichlorobenzenes and Polycyclic Aromatic Hydrocarbons in the Absence or Presence of Carbon Nanotubes in the Aquatic Environment. WATER AIR AND SOIL POLLUTION 2016. [DOI: 10.1007/s11270-016-3073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Fang Y, Nie Z, Die Q, Tian Y, Liu F, He J, Huang Q. Spatial distribution, transport dynamics, and health risks of endosulfan at a contaminated site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:538-547. [PMID: 27307269 DOI: 10.1016/j.envpol.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
We analyzed concentrations, distribution characteristics, and health risks of endosulfan (α and β isomers, and endosulfan sulfate) in soils (top soils and soil profiles) and air, at and around a typical endosulfan production site in Jiangsu, China. The air-soil surface exchange flux is calculated to investigate transport dynamics of endosulfan. Concentrations at the production site ranged from 0.01 to 114 mg/kg d.w. in soil and 4.81-289 ng/m(3) in air, with very high concentrations occurring at the location of endosulfan emulsion workshop. In the surrounding area, endosulfan was detected in all samples, with concentrations ranging from 1.37-415 ng/g d.w. in soil and 0.89-10.4 ng/m(3) in air. In the contaminated site, endosulfan concentrations fluctuated with depth in the upper soil layers, then decreased below 120 cm. Soil and air within a distance of 2.0 km appear to be affected by endosulfan originating from the site. Even the health risk at the location of the endosulfan emulsifiable solution workshop was over seven times the acceptable value, the risk to nearby adults and children was low.
Collapse
Affiliation(s)
- Yanyan Fang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Nie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingqi Die
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yajun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Feng Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
31
|
Zhang Q, Wang J, Zhu J, Liu J, Zhang J, Zhao M. Assessment of the endocrine-disrupting effects of short-chain chlorinated paraffins in in vitro models. ENVIRONMENT INTERNATIONAL 2016; 94:43-50. [PMID: 27208783 DOI: 10.1016/j.envint.2016.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/18/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs), which are candidate persistent organic pollutants (POPs) according to the Stockholm Convention, are of great concern because of their persistent bioaccumulation, long-range transport and potential adverse health effects. However, data on the endocrine-disrupting effects of SCCPs remain scarce. In this study, we first adopted two in vitro models (reporter gene assays and H295R cell line) to investigate the endocrine-disrupting effects of three SCCPs (C10-40.40%, C10-66.10% and C11-43.20%) via receptor mediated and non-receptor mediated pathway. The dual-luciferase reporter gene assay revealed that all test chemicals significantly induced estrogenic effects, which were mediated by estrogen receptor α (ERα), in the following order: C11-43.20%>C10-66.10%>C10-40.40%. Notably, C10-40.40% and C10-66.10% also demonstrated remarkable anti-estrogenic activities. Only C11-43.20% showed glucocorticoid receptor-mediated (GR) antagonistic activity, with a RIC20 value of 2.6×10(-8)mol/L. None of the SCCPs showed any agonistic or antagonistic activities against thyroid receptor β (TRβ). Meanwhile, all test SCCPs stimulated the secretion of 17β-estradiol (E2). Both C10-66.10% and C11-43.20% increased the production of cortisol at a high level in H295R cell lines. In order to explore the possible mechanism underlying the endocrine-disrupting effects of SCCPs through the non-receptor pathway, the mRNA levels of 9 steroidogenic genes were measured by real-time polymerase chain reaction (RT-PCR). StAR, 17βHSD, CYP11A1, CYP11B1, CYP19 and CYP21 were upregulated in a concentration-dependent manner by all chemicals. The data provided here emphasized that comprehensive assessments of the health and ecological risks of emerging contaminants, such as SCCPs, are of great concern and should be investigated further.
Collapse
Affiliation(s)
- Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinghua Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianqiang Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Liu
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianyun Zhang
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
32
|
Huang Y, Chen L, Feng Y, Ye Z, He Q, Feng Q, Qing X, Liu M, Gao B. Short-chain chlorinated paraffins in the soils of two different Chinese cities: Occurrence, homologue patterns and vertical migration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:644-651. [PMID: 27037886 DOI: 10.1016/j.scitotenv.2016.03.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED Short-chain chlorinated paraffins (SCCPs) are candidate persistent organic pollutants (POPs) that are under review by the Stockholm Convention. China is currently the largest producer and consumer of chlorinated paraffins (CPs). To study the environmental behavior and fate of SCCPs in the soils of urban and suburban regions, the SCCP concentrations in 88 topsoils and 15 soil columns from land of different use types (e.g., woodland, vegetable field, paddy field and greenbelt) from Guangzhou and Chengdu have been determined. The SCCP concentrations in topsoils from Guangzhou (range: 1.45-25.5ngg(-1) dry weight (dw), average: 10.3ngg(-1) dw) were much higher than those from Chengdu (range: 0.218-3.26ngg(-1) dw, average: 1.43ngg(-1) dw). When compared to previously reported SCCP levels for topsoils from other areas, the SCCP concentrations measured in the present work were quite low. Much higher SCCP concentrations were observed in the greenbelt topsoils from Chengdu relative to the values measured from woodlands and vegetable and paddy fields. The composition profiles suggest that C10Cl6-10 and C11-13Cl6-8 were the major groups of SCCPs in topsoils from the woodlands and vegetable and paddy fields in Guangzhou and Chengdu. Vertical variations of the SCCP concentrations in the soil columns suggest that less chlorinated SCCPs (Cl5-6-SCCPs) are more capable of migrating to the deeper-layer soils than more chlorinated ones (Cl9-10-SCCPs). The SCCP concentrations displayed little dependence on organic matter (OM) for most topsoils (p>0.05), indicating that OM is not the controlling factor in the distribution of SCCPs in the soils. CAPSULE This study analyzed the occurrence, homologue patterns and vertical migration of SCCPs in the topsoils of two Chinese cities with different industrial structures and climate conditions.
Collapse
Affiliation(s)
- Yumei Huang
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China; College of Resource and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yongbin Feng
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China; College of Resource and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zhixiang Ye
- College of Resource and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qiusheng He
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qianhua Feng
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Xian Qing
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Ming Liu
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bo Gao
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| |
Collapse
|
33
|
van Mourik LM, Gaus C, Leonards PEG, de Boer J. Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015. CHEMOSPHERE 2016; 155:415-428. [PMID: 27135701 DOI: 10.1016/j.chemosphere.2016.04.037] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 05/21/2023]
Abstract
This review provides an update on information regarding the production volumes, regulations, as well as the environmental levels, trends, fate and human exposure to chlorinated paraffin mixtures (CPs). CPs encompas thousands congeners with varying properties and environmental fate. Based on their carbon chain lengths, CPs are divided into short- (SCCPs; C10-13), medium- (MCCPs; C14-17) and long- (LCCPs; C ≥ 18) chained groups. They are high production volume and persistent chemicals, and their cumulative global production already surpasses that of other persistent anthropogenic chemicals (e.g. PCBs). However, international regulations are still curbed by insufficient information on their levels and fate, including bioaccumulation and toxicity potential. An increasing number of studies since 2010 demonstrate that CPs are detected in almost every compartment in the environment, including remote areas. Consensus on the long range transport and high bioaccumulation potential (BCF > 5000 & TMF > 1) has recently been reached for SCCPs, fulfilling criteria under the Stockholm Convention for designation as a persistent organic pollutant; information on their levels is, however, still sparse for many countries. M/LCCPs have received comparatively little attention in the past, but as replacement chemicals for SCCPs, MCCPs are now considered in an increasing number of studies. The limited data to date suggests MCCPs are widely used. Although data on their bioaccumulation and toxicity are still inconclusive, MCCPs and LCCPs with C<20 may also have a bioaccumulation potential. Considering this and their high production volumes, use, and ubiquitous occurrence in the environment, a better understanding on the levels and fate of all CPs is needed.
Collapse
Affiliation(s)
- Louise M van Mourik
- National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains 4108, Qld, Australia; Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Caroline Gaus
- National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains 4108, Qld, Australia.
| | - Pim E G Leonards
- Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Jacob de Boer
- Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Bussian BM, Pandelova M, Lehnik-Habrink P, Aichner B, Henkelmann B, Schramm KW. Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:661-666. [PMID: 26319511 DOI: 10.1016/j.envpol.2015.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/13/2015] [Accepted: 08/15/2015] [Indexed: 06/04/2023]
Abstract
Endosulfan - an agricultural insecticide and banned by Stockholm Convention - is produced as a 2:1 to 7:3 mixture of isomers endosulfan I (ESI) and endosulfan II (ESII). Endosulfan is transformed under aerobic conditions into endosulfan sulfate (ESS). The study shows for 76 sampling locations in German forests that endosulfan is abundant in all samples with an opposite ratio between the ESI and ESII than the technical product, where the main metabolite ESS is found with even higher abundance. The ratio between ESI/ESII and ESS show clear dependence on the type of stands (coniferous vs. deciduous) and humus type and increases from deciduous via mixed to coniferous forest stands. The study argues for a systematic monitoring of ESI, ESII, and ESS and underlines the need for further research, specifically on the fate of endosulfan including biomagnifications and bioaccumulation in soil.
Collapse
Affiliation(s)
- Bernd M Bussian
- Federal Environment Agency, Section Soil State and Soil Monitoring, Am Wörlitzer Platz, 06844 Dessau-Roßlau, Germany.
| | - Marchela Pandelova
- Helmholtz Zentrum München-German Research Center for Environmental Health, Molecular EXposomics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Petra Lehnik-Habrink
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Bernhard Aichner
- University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Bernhard Henkelmann
- Helmholtz Zentrum München-German Research Center for Environmental Health, Molecular EXposomics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health, Molecular EXposomics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; TUM - Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Bio-wissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| |
Collapse
|
35
|
Nøst TH, Halse AK, Randall S, Borgen AR, Schlabach M, Paul A, Rahman A, Breivik K. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11372-11380. [PMID: 26351879 DOI: 10.1021/acs.est.5b03073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.
Collapse
Affiliation(s)
- Therese H Nøst
- FRAM Centre, NILU-Norwegian Institute for Air Research , P.O. Box 6606 Langnes, 9296 Tromsø, Norway
| | - Anne K Halse
- NILU-Norwegian Institute for Air Research , P.O. Box 100, 2027 Kjeller, Norway
| | - Scott Randall
- NILU-Norwegian Institute for Air Research , P.O. Box 100, 2027 Kjeller, Norway
- Division of Environment, Economics and Planning, COWI AS , P.O. Box 123, 1601 Fredrikstad, Norway
| | - Anders R Borgen
- NILU-Norwegian Institute for Air Research , P.O. Box 100, 2027 Kjeller, Norway
| | - Martin Schlabach
- NILU-Norwegian Institute for Air Research , P.O. Box 100, 2027 Kjeller, Norway
| | - Alak Paul
- Department of Geography and Environmental Studies, University of Chittagong , 4331 Chittagong, Bangladesh
| | - Atiqur Rahman
- Department of Geography and Environmental Studies, University of Chittagong , 4331 Chittagong, Bangladesh
- Nanjing University of Information Science and Technology , School of Atmospheric Physics & Atmospheric Environment, 210044 Nanjing, China
| | - Knut Breivik
- NILU-Norwegian Institute for Air Research , P.O. Box 100, 2027 Kjeller, Norway
- Department of Chemistry, University of Oslo , P.O. Box 1033, 0315 Oslo, Norway
| |
Collapse
|
36
|
van Mourik LM, Leonards PEG, Gaus C, de Boer J. Recent developments in capabilities for analysing chlorinated paraffins in environmental matrices: A review. CHEMOSPHERE 2015; 136:259-72. [PMID: 26042608 DOI: 10.1016/j.chemosphere.2015.05.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 05/22/2023]
Abstract
Concerns about the high production volumes, persistency, bioaccumulation potential and toxicity of chlorinated paraffin (CP) mixtures, especially short-chain CPs (SCCPs), are rising. However, information on their levels and fate in the environment is still insufficient, impeding international classifications and regulations. This knowledge gap is mainly due to the difficulties that arise with CP analysis, in particular the chromatographic separation within CPs and between CPs and other compounds. No fully validated routine analytical method is available yet and only semi-quantitative analysis is possible, although the number of studies reporting new and improved methods have rapidly increased since 2010. Better cleanup procedures that remove interfering compounds, and new instrumental techniques, which distinguish between medium-chain CPs (MCCPs) and SCCPs, have been developed. While gas chromatography coupled to an electron capture negative ionisation mass spectrometry (GC/ECNI-MS) remains the most commonly applied technique, novel and promising use of high resolution time of flight MS (TOF-MS) has also been reported. We expect that recent developments in high resolution TOF-MS and Orbitrap technologies will further improve the detection of CPs, including long-chain CPs (LCCPs), and the group separation and quantification of CP homologues. Also, new CP quantification methods have emerged, including the use of mathematical algorithms, multiple linear regression and principal component analysis. These quantification advancements are also reflected in considerably improved interlaboratory agreements since 2010. Analysis of lower chlorinated paraffins (<Cl5) remains, however, challenging and better approaches to analysing these homologues are needed. Furthermore, suitable quantification standards would facilitate improving the quality of CP analysis.
Collapse
Affiliation(s)
- Louise M van Mourik
- National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains 4108, Qld, Australia; VU University, Institute for Environmental Studies (IVM), De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Pim E G Leonards
- VU University, Institute for Environmental Studies (IVM), De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Caroline Gaus
- National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains 4108, Qld, Australia.
| | - Jacob de Boer
- VU University, Institute for Environmental Studies (IVM), De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|