1
|
Xie J, Zhang G, Guo J, Chen C, Wu Q, Luo M, Chen D, Peng X, He L, Li Y, Zhang Q, Li A, Lin T, Jiang G. Unveiling the Presence of Short- and Medium-Chain Chlorinated Paraffins in the Hadal Trenches of the Western Pacific Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39145972 DOI: 10.1021/acs.est.4c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This study delves into the unexplored distribution and accumulation of chlorinated paraffins (CPs), pervasive industrial contaminants used as flame retardants and plasticizers, within the hadal trenches, some of Earth's most isolated marine ecosystems. Analysis of sediments from the Mussau (MS) and Mariana trench (MT) reveals notably high total CP concentrations (∑SCCPs + ∑MCCPs) of 10,963 and 14,554 ng g-1 dw, respectively, surpassing those in a reference site in the western Pacific abyssal plain (8533 ng g-1 dw). In contrast, the New Britain Trench (NBT) exhibits the lowest concentrations (2213-5880 ng g-1 dw), where CP distribution correlates with clay content, δ13C and δ15N values, but little with total organic carbon and depth. Additionally, amphipods from these trenches display varying CP levels, with MS amphipods reaching concerning concentrations (8681-16,138 ng g-1 lw), while amphipods in the MT-1 site show the lowest (4414-5010 ng g-1 lw). These bioaccumulation trends appear to be primarily influenced by feeding behaviors (δ13C) and trophic levels (δ15N). Utilizing biota-sediment accumulation factor values and principal component analysis, we discern that CPs in sediment may come from surface-derived particulate organic matters, while those in amphipods may come from the above carrion. Our findings elucidate the profound impacts of the emerging pollutants on the Earth's least explored marine ecosystems.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Chuchu Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Min Luo
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaotong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Chen H, Chigusa K, Kanda K, Tanoue R, Ochiai M, Iwata H. Developmental toxicity of short-chain chlorinated paraffins on early-stage chicken embryos in a shell-less (ex-ovo) incubation system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116304. [PMID: 38626606 DOI: 10.1016/j.ecoenv.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs) are listed as a category of globally controlled persistent organic pollutants (POPs) by the Stockholm Convention in 2017. However, SCCP toxicity, particularly their developmental toxicity in avian embryos, has not been well studied. In this study, we observed the early development of chicken embryos (Gallus gallus domesticus) by applying a shell-less (ex-ovo) incubation system developed in our previous studies. After exposing embryos at Hamburger Hamilton stage (HHS) 1 to SCCPs (control, 0.1% DMSO; SCCPs-L, 200 ng/g; SCCPs-M, 2000 ng/g; SCCPs-H, 20,000 ng/g), we observed the development of embryos from the 3rd to 9th incubation day. Exposure to SCCPs-M and -H induced a significant reduction in survival, with an LD50 of 3100 ng/g on the 9th incubation day. Significant dose-dependent decreases in body length were observed from days 4-9. We also found that SCCPs-H decreased the blood vessel length and branch number on the 4th incubation day. Additionally, SCCPs-H significantly reduced the heart rate on the 4th and 5th incubation days. These findings suggest that SCCPs may have potential of developmental and cardiovascular toxicity during the early stages of chicken embryos. Quantitative PCR of the mRNA of genes related to embryonic development showed that SLC16A10 (a triiodothyronine transporter) level decreased in the SCCPs-H group, showing a significant positive correlation with the body length of embryos. THRA level, a thyroid hormone receptor, was significantly decreased in the SCCPs-H group, whereas that of DIO3 level, a deiodinase was significantly increased. These results suggest that SCCPs exposure induces developmental delays via the thyroxine signaling pathway. Analysis of thyroid hormones (THs) in blood plasma also indicated a significant reduction in thyroxine (T4) levels in the SCCPs-H group on the 9th incubation day of embryos. In conclusion, SCCPs induce developmental toxicity by disrupting thyroid functions at the early-life stage of chicken embryos.
Collapse
Affiliation(s)
- Hao Chen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Kaori Chigusa
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Kazuki Kanda
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
3
|
Cao X, Lu R, Xu Q, Zheng X, Zeng Y, Mai B. Distinct biomagnification of chlorinated persistent organic pollutants in adjacent aquatic and terrestrial food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120841. [PMID: 36493935 DOI: 10.1016/j.envpol.2022.120841] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biomagnification of persistent organic pollutants (POPs) in food webs has been studied for many years. However, the different processes and influencing factors in biomagnification of POPs in aquatic and terrestrial food webs still need clarification. Polychlorinated biphenyls (PCBs) and short-chain chlorinated paraffins (SCCPs) were measured in organisms from adjacent terrestrial and aquatic environment in this study. The median levels of PCBs in terrestrial and aquatic organisms were 21.7-138 ng/g lw and 37.1-149 ng/g lw, respectively. SCCP concentrations were 18.6-87.3 μg/g lw and 21.4-93.9 μg/g lw in terrestrial and aquatic organisms, respectively. Biomagnification factors (BMFs) of PCBs increased with higher log KOW in all food chains. BMFs of SCCPs were negatively correlated with log KOW in aquatic food chains, but positively correlated with log KOW in terrestrial food chains. The terrestrial food web had similar trophic magnification factors (TMFs) of PCBs, and higher TMFs of SCCPs than the aquatic food web. Biomagnification of PCBs was consistent in aquatic and terrestrial food webs, while SCCPs had higher biomagnification potential in terrestrial than aquatic organisms. The distinct biomagnification of SCCPs was affected by the respiratory elimination for terrestrial organisms, the different metabolism rates in various species, and more homotherms in terrestrial food webs. Fugacity model can well predict levels of less hydrophobic chemicals, and warrants more precise toxicokinetic data of SCCPs.
Collapse
Affiliation(s)
- Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qishan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
4
|
Chen L, Mai B, Luo X. Bioaccumulation and Biotransformation of Chlorinated Paraffins. TOXICS 2022; 10:778. [PMID: 36548610 PMCID: PMC9783579 DOI: 10.3390/toxics10120778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs), a class of persistent, toxic, and bioaccumulated compounds, have received increasing attention for their environmental occurrence and ecological and human health risks worldwide in the past decades. Understanding the environmental behavior and fate of CPs faces a huge challenge owing to the extremely complex CP congeners. Consequently, the aims of the present study are to summarize and integrate the bioaccumulation and biotransformation of CPs, including the occurrence of CPs in biota, tissue distribution, biomagnification, and trophic transfer, and biotransformation of CPs in plants, invertebrates, and vertebrates in detail. Biota samples collected in China showed higher CP concentrations than other regions, which is consistent with their huge production and usage. The lipid content is the major factor that determines the physical burden of CPs in tissues or organs. Regarding the bioaccumulation of CPs and their influence factors, inconsistent results were obtained. Biotransformation is an important reason for this variable. Some CP congeners are readily biodegradable in plants, animals, and microorganisms. Hydroxylation, dechlorination, chlorine rearrangement, and carbon chain decomposition are potential biotransformation pathways for the CP congeners. Knowledge of the influence of chain length, chlorination degree, constitution, and stereochemistry on the tissue distribution, bioaccumulation, and biotransformation is still scarce.
Collapse
Affiliation(s)
- Liujun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Lin L, Abdallah MAE, Chen LJ, Luo XJ, Mai BX, Harrad S. Comparative in vitro metabolism of short chain chlorinated paraffins (SCCPs) by human and chicken liver microsomes: First insight into heptachlorodecanes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158261. [PMID: 36030865 DOI: 10.1016/j.scitotenv.2022.158261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are emerging persistent organic pollutants of great concern due to their ubiquitous distribution in the environment. However, little information is available on the biotransformation of SCCPs in organisms. In this study, a chlorinated decane: 1, 2, 5, 5, 6, 9, 10-heptachlorodecanes (HeptaCDs) was subjected to in vitro metabolism by human and chicken liver microsomes at environmentally relevant concentration. Using ultra-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry, two metabolites: monohydroxylated hexachlorodecane (HO-HexCD) and monohydroxy heptachlorodecane (HO-HeptaCD) were detected in human liver microsomal assays, while only one metabolite (HO-HexCD) was identified in chicken liver microsomal assays. The formation of HO-HexCD was fitted to a Michaelis-Menten model for chicken liver microsomes with a Vmax (maximum metabolic rate) value of 4.52 pmol/mg/min. Metabolic kinetic parameters could not be obtained for human liver microsomes as steady state conditions were not reached under our experimental conditions. Notwithstanding this, the observed average biotransformation rate of HeptaCDs was much faster for human liver microsomes than for chicken liver microsomes. Due to the lack of authentic standards for the identified metabolites, the detailed structure of each metabolite could not be confirmed due to the possibility of conformational isomers. This study provides first insights into the biotransformation of SCCPs, providing potential biomarkers and enhancing understanding of bioaccumulation studies.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B5 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Liu-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B5 2TT, United Kingdom
| |
Collapse
|
6
|
Occurrence, Distribution and Health Risk of Short-Chain Chlorinated Paraffins (SCCPs) in China: A Critical Review. SEPARATIONS 2022. [DOI: 10.3390/separations9080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With being listed in the Stockholm Convention, the ban on short-chain chlorinated paraffins (SCCPs) has been put on the agenda in China. Based on the literature over the past decade, this study comprehensively analyzed the occurrence, distribution of and human exposure to SCCPs in China, aiming to provide a reference for the changes in SCCPs after the ban. SCCPs were ubiquitous in environmental matrices, and the levels were considerably higher than those in other countries. SCCPs from the emission region were 2–4 orders of magnitude higher than those in the background area. Environmental processes may play an important role in the SCCP profiles in the environment, and C10 and Cl6 were identified as potential factors distinguishing their spatial distribution. River input was the dominant source in the sea areas, and atmospheric transport was the main source in the remote inland areas. Ingestion and dermal absorption and food intake may pose potential risk to residents, especially for children and infants. More studies are needed on their temporal trend, source emission and environmental degradation. The enactment of the restriction order will have a great impact on China’s CP industry; nevertheless, it will play a positive role in the remediation of SCCP pollution in the environment.
Collapse
|
7
|
He H, Li Y, Shen R, Shim H, Zeng Y, Zhao S, Lu Q, Mai B, Wang S. Environmental occurrence and remediation of emerging organohalides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118060. [PMID: 34479159 DOI: 10.1016/j.envpol.2021.118060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).
Collapse
Affiliation(s)
- Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Siyan Zhao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen H, Xu L, Zhou W, Han X, Zeng L. Occurrence, distribution and seasonal variation of chlorinated paraffins in coral communities from South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123529. [PMID: 32721639 DOI: 10.1016/j.jhazmat.2020.123529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Our previous study revealed bioaccumulation and trophic magnification of chlorinated paraffins (CPs) in marine organisms. However, little is known about the occurrence and distribution of CPs in coral reef ecosystems. In this study, the levels of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were determined in ten common coral species from the coastal regions of Hainan Island, South China Sea. SCCPs and MCCPs were detected in all coral species in concentrations ranging from 184 to 7,410 and 305 to 14,800 ng g-1 lw, respectively. In most of the coral species, congener group patterns of the SCCPs and MCCPs were dominated by C10Cl6-8 and C14Cl7-8, respectively. The CP levels and congener group patterns changed slightly between the dry and wet seasons. Redundancy analyses indicated that the accumulation patterns of CPs in different corals were partly influenced by Symbiodinium densities and coral species. Significant negative correlations were found between Symbiodinium densities and CP levels. This is the first report of CP exposure in reef corals and highlights the need for CP toxicity data to evaluate the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China; Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530, China
| | - Wei Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
10
|
Fernie KJ, Karouna-Renier NK, Letcher RJ, Schultz SL, Peters LE, Palace V, Henry PFP. Endocrine and physiological responses of hatchling American kestrels (Falco sparverius) following embryonic exposure to technical short-chain chlorinated paraffins (C 10-13). ENVIRONMENT INTERNATIONAL 2020; 145:106087. [PMID: 32950788 DOI: 10.1016/j.envint.2020.106087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are complex mixtures of polychlorinated n-alkanes, shown to bioaccumulate but with unknown effects in wild birds. The present study examined development-related effects of SCCPs on captive American kestrels (Falco sparverius) treated in ovo on embryonic day (ED) 5 by injection with technical Chloroparaffin® (C10-13, 55.5% Cl) at environmentally relevant nominal (measured) concentrations of 10 (10), 50 (29) or 100 (97) ng ΣSCCP/g egg ww, and artificially incubated until hatching (ED27-ED29). The SCCP concentrations measured in the yolk sacs of the hatchling kestrels bracketed concentrations reported in the eggs of wild birds. Uptake and deposition of these SCCPs differed between male and female hatchlings, with only males showing differences in SCCP concentrations, being highest in the high-dose males than each of the other male groups. Embryonic exposure to SCCPs suppressed glandular total thyroxine (TT4) (20-33%) and reduced circulating triiodothyronine (TT3) (37-40%) in male hatchlings only when compared to control males, but had no effect on glandular TT3 or circulating TT4 in male or female kestrels. Histological assessments of thyroid glands showed that both sexes experienced significant structural changes indicative of gland activation. These thyroid glandular changes and the variations in SCCP concentrations were related to circulating TT3 in female hatchlings. Hepatic deiodinase enzyme (D1, D2) activities were stable and no SCCP-related changes were observed in hatching success, hatchling size, or immune organ size. However, several of the thyroid function indicators were correlated with hatchling size and smaller bursas and spleens, possibly indirectly through SCCP-induced changes in thyroid function. Because changes in thyroid function were evident at concentrations measured in wild bird eggs, similar changes may occur in wild nestlings. The potential impact of these changes on thyroid-mediated growth and survival in wild birds requires further investigation.
Collapse
Affiliation(s)
- K J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - N K Karouna-Renier
- USGS Patuxent Wildlife Research Center, BARC, East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - R J Letcher
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, 1125 Colonel By Drive, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - S L Schultz
- USGS Patuxent Wildlife Research Center, BARC, East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - L E Peters
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - V Palace
- International Institute of Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| | - P F P Henry
- USGS Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| |
Collapse
|
11
|
A simplified screening method for short- and medium-chain chlorinated paraffins in food by gas chromatography-low resolution mass spectrometry. J Chromatogr A 2020; 1631:461574. [PMID: 32987312 DOI: 10.1016/j.chroma.2020.461574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
This study evaluates the performance of a simplified screening method for short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) based on gas chromatography-electron capture negative ionization/mass spectrometry (GC-ECNI/MS) analysis and chlorine content quantification. The response from different combinations of 'indicator' congener groups present in technical mixture standards were used within calibration calculations to test the hypothesis that ∑SCCPs and ∑MCCPs could be quantified with acceptable accuracy using only a subset of the commonly analysed C10 to C17 and Cl5 to Cl10 groups. Potential combinations were assessed with respect to calibration curve performance and accuracy of SCCP and MCCP analysis of spiked food samples (olive oil, salmon, pork sausage, breakfast cereal, cow's milk and lard). Based on these trials, a screening method which quantifies ∑SCCPs and ∑MCCPs using only congener groups with 6 and 8 chlorine atoms for each carbon chain length was proposed. Concentrations of SCCPs and MCCPs in triplicate analyses of spiked food samples calculated using the proposed screening method deviated by ≤ 25% for the vast majority of samples (maximum deviation 37%) from levels determined using all analysed congener groups. The mean trueness of the screening method as applied to each of the spiked food samples and lard samples from a previous European Union Reference Laboratory (EURL) interlaboratory study ranged from 65 to 110% for ∑SCCPs and 102 to 175% for ∑MCCPs. Relative standard deviations (RSDs) were ≤ 25% for all triplicate analyses and matrix specific LOQs ranged from 0.7 to 6 ng/g ww for ∑SCCPs and from 1.3 to 12 ng/g ww for ∑MCCPs. The proposed screening method has the potential to deliver substantial time savings in instrumental analysis and manual labour without greatly reducing the overall accuracy and sensitivity of SCCP and MCCP quantification.
Collapse
|
12
|
Liu Y, Luo X, Zeng Y, Wang Q, Tu W, Yang C, Mai B. Trophic Magnification of Short- and Medium-Chain Chlorinated Paraffins in Terrestrial Food Webs and Their Bioamplification in Insects and Amphibians during Metamorphosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11282-11291. [PMID: 32822158 DOI: 10.1021/acs.est.0c03096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies on the biomagnification of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in terrestrial ecosystems and their bioamplification during metamorphosis in insects and amphibians are scarce. Therefore, this study sought to characterize the occurrence and trophic dynamics of SCCPs and MCCPs in an insect-dominated terrestrial food web in an e-waste recycling site in South China. Median ∑SCCPs and ∑MCCPs concentrations in the organisms ranged from 2200 to 34 000 ng/g lipid weight and from 990 to 19 000 ng/g lipid weight, respectively. The homologue profiles of CPs in the predators were distinct from those in insects, presenting more short chain-high chlorinated congeners (C10-12Cl8-10). The trophic magnification factors (TMFs) of ∑SCCPs and ∑MCCPs were 2.08 and 2.45, respectively, indicating biomagnification in the terrestrial food web. A significant positive relationship between the TMFs and octanol-air partition coefficients was observed. TMFs were also positively correlated with chlorination degree but did not correlate with carbon chain length. Nonlinear correlations between metamorphosis-associated bioamplification and the octanol-water partition coefficients of SCCPs and MCCPs were observed for insects, whereas negative linear correlations were observed for amphibians, which suggested species-specific alterations to the chemicals during metamorphosis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanghong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Chunyan Yang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Sun R, Chen J, Shao H, Tang L, Zheng X, Li QX, Wang Y, Luo X, Mai B. Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): Comparison to fish. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122590. [PMID: 32315939 DOI: 10.1016/j.jhazmat.2020.122590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are a complex group of chlorinated organic pollutants that have raised an increasing public attention. However, limited information is currently available on the bioaccumulation of SCCPs in terrestrial birds which are abundant and widely distributed around the world. In the present study, chicken (Gallus domesticus) was used as a model organism to provide significant implications for other avian species. We investigated the transfer of SCCPs from dietary sources (feed and topsoil) to chicken and their tissue distribution behavior. SCCPs were detected in chicken feed (54-170 ng/g, dry weight), topsoil (170-860 ng/g, dry weight), and adult chicken tissues (460-13000 ng/g, lipid weight). Adult chicken tended to accumulate SCCP congeners with lower n-octanol-water partition coefficients (KOW) and octanol-air partition coefficients (KOA). The accumulation ratio values for SCCPs of the chicken were more influenced by KOA than by KOW, which was contrary to those for aquatic fish. Levels and homologue profiles of SCCPs varied among chicken tissues. SCCP levels in the livers were significantly lower than those in the other tissues (p < 0.05). The accumulation potential for SCCP congeners with higher KOW increased in the order of muscle < liver < fat.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiemin Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yangyang Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
14
|
Gao W, Bai L, Ke R, Cui Y, Yang C, Wang Y, Jiang G. Distributions and Congener Group Profiles of Short-Chain and Medium-Chain Chlorinated Paraffins in Cooking Oils in Chinese Markets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7601-7608. [PMID: 32530629 DOI: 10.1021/acs.jafc.0c02328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are organic pollutants that have caused widespread concerns in recent years. Because of their lipophilic characteristics, CPs may enter into the body through diet or other routes and exert adverse effects on human health. In this study, we investigated the occurrence and congener profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in 176 cooking oils and 19 oil containers collected from various markets in China. The concentrations of SCCPs and MCCPs in cooking oils were in the range of not detected (ND) to 16,055 ng/g and ND to 11,612 ng/g, respectively, and the geomean concentrations of MCCPs were lower than those of SCCPs. The concentrations of CPs in sesame oil, rapeseed oil, and camellia oil were higher than those in other types of oils, and different oil processing methods had different effects on the presence of CPs in the oils. CPs were detected in 5 out of 20 oil containers, although their concentrations were much lower than those detected in the oil samples, indicating that containers are not the main sources of CPs detected in the oils. The mean SCCP and MCCP intakes through cooking oils of the general Chinese population were 8.83 and 6.09 μg/kg/d, respectively.
Collapse
Affiliation(s)
- Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhui Ke
- Chinese National Research Institute of Food & Fermentation Industries Co., Ltd, Beijing 100016, China
| | - Yang Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Yang
- Chinese National Research Institute of Food & Fermentation Industries Co., Ltd, Beijing 100016, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Guan KL, Liu Y, Luo XJ, Zeng YH, Mai BX. Short- and medium-chain chlorinated paraffins in aquatic organisms from an e-waste site: Biomagnification and maternal transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134840. [PMID: 31791788 DOI: 10.1016/j.scitotenv.2019.134840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Chlorinated paraffins (CPs) are globally pervasive contaminants that are toxic to humans and wildlife. Inconsistent biomagnification behaviors in different food chains have been reported, and very few studies have been conducted to investigate the maternal transfer of CPs in ovoviviparous species. This study investigated the biomagnification of short- and medium-chain chlorinated paraffins (S/MCCPs) in two aquatic food chains, as well as maternal transfer of S/MCCPs in watersnakes collected from an e-waste polluted pond in southern China. The concentrations of SCCPs and MCCPs varied from 1.2 to 250 μg/g lipid weight (lw) and from 2.3 to 200 μg/g lw in the collected organisms. The SCCP homologue profiles in prey (fish and prawn) differed from those in predators (watersnake and waterbird egg), while MCCP homologue group patterns were homogeneous. All maternal transfer concentration ratios (egg to muscle) of S/MCCPs in the watersnakes were lower than 1 and negatively correlated with the octanol-water partition coefficients (log KOW), different from the maternal transfer of halogenated aromatic pollutants in the watersnake. Biomagnification factors (BMFs) of S/MCCPs for fish-watersnake muscle food chain were larger than 1, while BMFs for the fish-waterbird egg food chain were less than 1. However, when watersnake egg was used to calculate BMF, no biomagnification was found. BMFs in the two food chains showed significant positive linear correlations with chlorine atoms, but no significant correlation with carbon atom numbers, which suggested that a congener-group-specific elimination and excretion process for S/MCCPs exist.
Collapse
Affiliation(s)
- Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
16
|
Huang D, Gao L, Qiao L, Cui L, Xu C, Wang K, Zheng M. Concentrations of and risks posed by short-chain and medium-chain chlorinated paraffins in soil at a chemical industrial park on the southeast coast of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113704. [PMID: 31855677 DOI: 10.1016/j.envpol.2019.113704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 05/22/2023]
Abstract
The concentrations, spatial distributions, and sources of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in soil at a chemical industrial park were determined. The samples were analyzed by two-dimensional gas chromatography coupled with electron capture-negative ion mass spectrometry. The risks posed by SCCPs and MCCPs to soil biota were assessed. The SCCP and MCCP concentrations were 37.5-995.7 and 15.1-739.6 ng/g dry weight, respectively, and the chlorine contents were 60.5%-63.0% and 56.7%-58.3%, respectively. The CP concentrations in soil were at medium levels relative to concentrations at other areas. The median CP concentration in soil from the sewage treatment plant was higher than the median concentration in road soil, and this was attributed to wastewater being treated centrally. No significant correlations were found between the total organic carbon content and CP concentrations (p > 0.05), so the total organic carbon content did not strongly affect the CP concentrations in the study area. Hierarchical cluster analysis divided the soil samples into three groups. C10Cl6-7, C11Cl7-8, and C14Cl7-9 were the main congeners in most soil samples. Principal component analysis and correlation analysis indicated that the relative abundances of MCCP and SCCP were correlated and that the SCCPs may have been derived from the CP-42 and CP-52 commercial products. A preliminary risk assessment indicated that CPs in soil at the industrial park do not pose clear risks to the environmental organisms.
Collapse
Affiliation(s)
- Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
17
|
Liu YE, Luo XJ, Zapata Corella P, Zeng YH, Mai BX. Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113286. [PMID: 31563785 DOI: 10.1016/j.envpol.2019.113286] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Water, sediment, and wild aquatic species were collected from an electronic waste (e-waste) polluted pond in South China. This study aimed to investigate the bioaccumulation, tissue distribution, and trophic transfer of organophosphorus flame retardants (PFRs) in these aquatic organisms. The concentrations of PFRs detected in the analyzed organisms were between 1.7 and 47 ng/g wet weight (ww). Oriental river prawn and snakehead exhibited the highest and lowest levels, respectively. Tri-n-butyl phosphate (TnBP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP) and triphenyl phosphate (TPhP) were dominant contaminants, accounting for approximately 86% of the total sum. The mean values of bioaccumulation factors (BCFs) and logarithmic biota-sediment accumulation factors (log BSAFs) for individual PFRs varied from 6.6 to 1109 and from -2.0 to 0.41, respectively. Both log BCFs and log BSAFs of PFRs were significantly and positively correlated with their octanol-water partitioning coefficient (log KOW). The concentrations of PFRs in tissues of large mud carp and snakehead were significantly and positively correlated with the lipid content (each p < 0.05) and the liver, kidney, and gill exhibited high PFR levels. When the concentration was expressed on a lipid basis, liver exhibited the lowest level, indicating the probable effects of metabolism. Significantly positive correlation was also found between lipid content and total PFR concentration in muscle of all aquatic organisms, given the strong correlation between lipid content and the concentration of TnBP. Trophic magnification factors (TMF) of TnBP and TPhP were lower than 1 (0.57 and 0.62), indicating that these PFRs undergo trophic dilution in this aquatic food web.
Collapse
Affiliation(s)
- Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Pablo Zapata Corella
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
18
|
Li H, Bu D, Fu J, Gao Y, Cong Z, Zhang G, Wang Y, Chen X, Zhang A, Jiang G. Trophic Dilution of Short-Chain Chlorinated Paraffins in a Plant-Plateau Pika-Eagle Food Chain from the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9472-9480. [PMID: 31310123 DOI: 10.1021/acs.est.9b00858] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Little is currently known about the trophic transfer behavior of short-chain chlorinated paraffins (SCCPs) in terrestrial ecosystems. The trophodynamics of SCCPs were investigated in a typical terrestrial food chain (plant-plateau pika-eagle) from the interior of the Tibetan Plateau with an altitude of 4730 m. Pervasive contamination by SCCPs was found in the Tibetan Plateau samples, and the average concentrations of SCCPs in soil, plant, plateau pika, eagle, and gut content of eagle samples were 81.6 ± 31.1, 173 ± 70.3, 258 ± 126, 108 ± 59.6, and 268 ± 93.9 ng/g (average ± standard deviation, dry weight, dw), respectively. The trophic magnification factor (TMF) of SCCPs was 0.37, implying the trophic dilution of SCCPs in this terrestrial food chain. The TMF values of individual congener groups were positively correlated with the values of log Kow, log Koa and biotransformation half-life. As a result of long-range transport, SCCPs congeners with low molecular weight dominated in Tibetan Plateau species (C10+11 congeners = 76.9%, Cl5+6+7 congeners = 71.5%), which could partly explain the low biomagnification factors (BMFs) of SCCPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Duo Bu
- Department of Chemistry & Environmental Science , Tibet University , Lhasa 850000 , China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Guoshuai Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
19
|
Kalinowska K, Lenartowicz P, Namieśnik J, Marć M. Analytical procedures for short chain chlorinated paraffins determination - How to make them greener? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:309-323. [PMID: 30928760 DOI: 10.1016/j.scitotenv.2019.03.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
The aim of the following paper was to gather current scientific information about the analytical protocols dedicated to measuring the content level of short-chain chlorinated paraffins (SCCPs) in various types of environmental samples. Moreover, the data about the basic validation parameters of applied procedures for SCCPs determination are listed. The main issue which is highlighted in the paper is the possibility of the application of green analytical chemistry (GAC) principals in the SCCPs measuring process to reduce the environmental impact of the applied methodology. Analytical methods dedicated to SCCPs determination contain a significant number of steps and require advanced analytical equipment during the quantitative and qualitative analysis. In addition, there is a substantial issue associated with the reliability of the obtained results, especially in the case of the quantification of individual SCCPs in the studied samples. Due to this fact, the paper attempts to discuss the various stages of the analytical procedure, in which appropriate changes in the formula or equipment solutions might be introduced to ensure a better quality of the analytical results, as well as to meet the requirements of the philosophy of green analytical chemistry. The most important case which concerns this subject is finding an optimal consensus between the economic and logistic aspects and the quality and "greenness" of the analytical procedure employed in SCCPs determination process.
Collapse
Affiliation(s)
- Kaja Kalinowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Lenartowicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland; Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Opole, Poland.
| |
Collapse
|
20
|
Du X, Yuan B, Zhou Y, Zheng Z, Wu Y, Qiu Y, Zhao J, Yin G. Tissue-Specific Accumulation, Sexual Difference, and Maternal Transfer of Chlorinated Paraffins in Black-Spotted Frogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4739-4746. [PMID: 30977643 DOI: 10.1021/acs.est.8b06350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The restriction on usage of short-chain chlorinated paraffins (SCCPs) under Stockholm Convention may promote the production and application of medium chain chlorinated paraffins (MCCPs) and long chain chlorinated paraffins (LCCPs) as substitutes. This study focused on the tissue-specific exposure to SCCPs, MCCPs, and LCCPs in black-spotted frog, a prevalent amphibian species in the Yangtze River Delta, China. The total CP concentrations in frog liver, muscle, and egg samples ranged of 35-1200, 6.3-97, and 6.8-300 ng/g wet weight (ww), respectively. Livers and eggs contained primary SCCPs (on average 78%) while MCCPs (43%) together with SCCPs (41%) were dominant in muscles. A significantly negative correlation was observed between hepatosomatic index and CPs concentration in liver ( p < 0.01), indicating that CP exposure may lower survival rates of frogs by suppressing the energy storage in liver. Additionally, maternal transfer, an important uptake pathway for CPs, was evaluated for the first time by calculating the ratios of CP levels in eggs to those in their paired liver tissues. The ratio of egg to liver for CP congener groups raised with the increasing of log Kow values, indicating mother to egg transport of CPs was related to the lipophilicity of the chemicals.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Ziye Zheng
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Yan Wu
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
- Shimadzu (China) Company, Limited , Shanghai 200233 , P. R. China
| |
Collapse
|
21
|
Yuan B, Vorkamp K, Roos AM, Faxneld S, Sonne C, Garbus SE, Lind Y, Eulaers I, Hellström P, Dietz R, Persson S, Bossi R, de Wit CA. Accumulation of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Marine and Terrestrial Animals from Scandinavia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3526-3537. [PMID: 30848596 DOI: 10.1021/acs.est.8b06518] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (SCCPs, MCCPs, and LCCPs) have a wide range of physical-chemical properties, indicating their varying bioaccumulation tendencies in marine and terrestrial ecosystems. However, there are few empirical data to reveal such bioaccumulation tendencies. In this study, we analyzed SCCPs, MCCPs, and LCCPs in samples from 18 species at both low and high trophic levels of marine and terrestrial ecosystems from the Scandinavian region collected during the past decade. These included fish, seabirds, marine mammals, and terrestrial birds and mammals. SCCPs, MCCPs, and LCCPs were present in all the species, with concentrations ranging from 26-1500, 30-1600, 6.0-1200 ng/g lipid, respectively. Although MCCPs and SCCPs predominated in most species, many terrestrial species had generally higher concentrations of LCCPs than marine species. Terrestrial raptors in particular accumulated higher concentrations of LCCPs, including C24/25-which are predominant among very-long-chain components. LCCP concentrations were highest and predominated (55% of total CPs) in peregrine falcons in this study, which is the first report where concentrations of LCCPs surpass those of SCCPs and MCCPs in wildlife. The results also indicate biomagnification of SCCPs, MCCPs, and LCCPs in both marine and terrestrial food chains, but in-depth studies of specific food webs are needed.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8 , SE-10691 Stockholm , Sweden
| | - Katrin Vorkamp
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Anna Maria Roos
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Suzanne Faxneld
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Svend Erik Garbus
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Ylva Lind
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Peter Hellström
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Sara Persson
- Department of Environmental Research and Monitoring , Swedish Museum of Natural History , PO Box 50007, SE-10405 Stockholm , Sweden
| | - Rossana Bossi
- Department of Environmental Science, Arctic Research Centre , Aarhus University , Frederiksborgvej 399 , PO Box 358, DK-4000 Roskilde , Denmark
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8 , SE-10691 Stockholm , Sweden
| |
Collapse
|
22
|
Yuan B, Muir D, MacLeod M. Methods for trace analysis of short-, medium-, and long-chain chlorinated paraffins: Critical review and recommendations. Anal Chim Acta 2019; 1074:16-32. [PMID: 31159936 DOI: 10.1016/j.aca.2019.02.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/01/2022]
Abstract
Many methods for quantifying chlorinated paraffins (CPs) yield only a total concentration of the mixture as a single value. With appropriate analytical instrumentation and quantification methods, more reliable and detailed analysis can be performed by quantifying total concentrations of short-, medium-, and long-chain CPs (SCCPs, MCCPs, and LCCPs), and in the current optimal situation by quantifying individual carbon-chlorine congener groups (CnClm). Sample extraction and clean-up methods for other persistent organochlorines that have been adapted for recovery of CPs must be applied prior to quantification with appropriate quality assurance and quality control to ensure applicability of the methods for SCCPs, MCCPs, and LCCPs. Part critical review, part tutorial, and part perspective, this paper provides practical guidance to analytical chemists who are interested in establishing a method for analysis of CPs in their lab facilities using commercial reference standards, or for expanding existing analysis of total CPs or SCCPs to analysis of SCCPs, MCCPs, and LCCPs, or to analysis of CnClm congener groups.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Derek Muir
- Environment and Climate Change Canada, Burlington, ON, Canada
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
23
|
Xu C, Zhang Q, Gao L, Zheng M, Qiao L, Cui L, Wang R, Cheng J. Spatial distributions and transport implications of short- and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:821-828. [PMID: 30179813 DOI: 10.1016/j.scitotenv.2018.08.355] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 05/22/2023]
Abstract
To investigate the spatial distributions, potential transport and ecological risks of chlorinated paraffins (CPs) in and around e-waste dismantling area, we collected soil samples within 5 km of the e-waste dismantling centers and sediment samples in the surrounding area from the lower reaches of Jiaojiang River. Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were analyzed by two-dimensional gas chromatography coupled with electron-capture negative-ionization mass spectrometry (GC × GC-ECNI-MS). The SCCP and MCCP concentration ranges in soils were 68.5 to 2.20 × 105 ng/g dry weight (dw) and 507 to 4.40 × 106 ng/g dw, respectively. The ranges for the levels of SCCPs and MCCPs in sediments were 32.5-1.29 × 104 ng/g dw and 271-2.72 × 104 ng/g dw, respectively. No significant correlation was observed between total organic carbon (TOC) and CP concentrations (P > 0.05). The spatial distributions showed that the CP levels were closely related to e-waste pollution. Correspondence analysis revealed that shorter-chain and less chlorinated congeners were enriched in sediments from sites distant from e-waste pollution source, while longer-chain and higher chlorinated congeners were concentrated in soils and sediments collected near the pollution source, which indicated that complex environmental processes, such as transportation via atmosphere and/or water, and deposition, resulted in different CP profiles in different sampling locations and environment matrixes (e.g., soil and sediments). Principal component analysis (PCA) indicated that e-waste pollution could be the same source of SCCPs and MCCPs. The preliminary risk assessment indicated that CPs in soils within 1 km of e-waste dismantling centers at current levels posed a considerable risk to soil-dwelling organisms, and the sediment MCCPs in Jiaojiang estuary at present levels also posed a risk to sediment-dwelling organisms.
Collapse
Affiliation(s)
- Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhua Wang
- Agriculture University of Hebei, Baoding 071000, China
| | - Jie Cheng
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| |
Collapse
|
24
|
Xu J, Guo W, Wei L, Gao Y, Zhang H, Zhang Y, Sun M, Chen J. Validation of a HRGC-ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma. J Environ Sci (China) 2019; 75:289-295. [PMID: 30473294 DOI: 10.1016/j.jes.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 05/22/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are produced in high volume and have the high potential to pose a threat to human health. However, little information is available for SCCP contamination in human blood/plasma/serum, mainly due to the difficulty of sample preparation and quantitative analysis. A method using high resolution gas chromatography coupled with electron capture negative ionization low resolution mass spectrometry (HRGC-ECNI/LRMS) was developed and validated to measure SCCPs in human plasma. The pretreatment process included protein denaturation and lipid elimination, liquid-liquid extraction with a mixture of n-hexane/dichloromethane (1:1, V/V), and cleanup on a multi-layer silica column. The blank controls, including procedural blank, vacuum blood collection tube blank, and instrumental blank, were the most pivotal points for the reliable analysis of SCCPs. The average value of procedural blanks was 9.0ng/g; and the method detection limit (MDL), calculated as the sum of the average procedural blank value and 3 times of the standard deviation of the procedural blanks, was 12.6ng/g plasma. The validated method was applied to measure the concentrations of the total SCCPs (∑SCCPs) in 50 plasma samples from a general population. The measured plasma concentrations of ∑SCCPs ranged from <MDL to 203ng/g wet weight (ww), with an average value of 32.0ng/g ww. The relative abundance profiles of SCCPs in plasma samples were dominated by C10- and C11-CP congener groups centered on Cl6-7. The developed method can be used for the comprehensive and large-scale investigation of SCCP levels in human plasma.
Collapse
Affiliation(s)
- Jiazhi Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijing Guo
- Dalian Center for Disease Control and Prevention, Dalian 116021, China
| | - Linhuan Wei
- Dalian Center for Disease Control and Prevention, Dalian 116021, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yichi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming Sun
- Dalian Center for Disease Control and Prevention, Dalian 116021, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Li Q, Cheng X, Cui Y, Sun J, Li J, Zhang G. Short- and medium-chain chlorinated paraffins in the Henan section of the Yellow River: Occurrences, fates, and fluxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1312-1319. [PMID: 30021298 DOI: 10.1016/j.scitotenv.2018.05.344] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were measured in sediment and suspended particulate matter (SPM) from the middle and lower reaches of the Yellow River in the three seasons to elucidate their environmental behavior. The mean concentrations of ∑SCCPs and ∑MCCPs were 262 and 97.1 ng g-1 dw (dry weight) in sediment and 17,055 and 2573 ng g-1 dw in SPM, respectively, and higher SCCP levels did not clearly reflect a shift to more MCCPs in this section of the Yellow River. The predominant homologue groups were C10-CP and C11-CP for SCCPs and C14-CP for MCCPs. The CPs possibly mainly derived from the use of CP commercial mixtures, mainly included CP-42 and CP-52. The spatial distributions and principal component analysis indicated that industrial inputs, dams, and topography played important roles in influencing the environmental behavior of CPs in both sediment and SPM. In addition, decreasing fluxes of CPs were observed in SPM from Tongguan to Aishan stations, particularly in reservoirs, which implies that CPs may have accumulated in the Henan section of the Yellow River.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xianghui Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yanrui Cui
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Chen H, Lam JCW, Zhu M, Wang F, Zhou W, Du B, Zeng L, Zeng EY. Combined Effects of Dust and Dietary Exposure of Occupational Workers and Local Residents to Short- and Medium-Chain Chlorinated Paraffins in a Mega E-Waste Recycling Industrial Park in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11510-11519. [PMID: 30203967 DOI: 10.1021/acs.est.8b02625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Four types of dust samples and nine categories of locally produced staple foods were collected from a mega e-waste recycling industrial park and its surrounding regions, and simultaneously analyzed for short-chain and medium-chain chlorinated paraffins (CPs) to estimate dust and dietary exposure and their combined effects on occupational workers and local residents. All samples related to e-waste activities contained considerably high concentrations of CPs. The highest dust concentration was found in e-waste workshops. CPs were highly accumulated in local plant and animal origin foods, most markedly in fish, vegetables, and rice. The main contribution to CP intake under a median exposure scenario was from the diet, and vegetables, fish, and rice were the three largest dietary intake sources. Only the combined dust and food exposure from the present study has approached or even exceeded the highest tolerable daily intake (TDI) set up by the International Program on Chemical Safety (IPCS). However, due to lack of official threshold values for CP exposure on adverse human health, there are limitations on accurate risk assessment. Considering the presence of other exposure pathways, CPs' endocrine disrupter properties, as well as the multicomponent chemical "cocktails" effects, potential high risks from CP exposure may be posed to e-waste workers and local residents.
Collapse
Affiliation(s)
- Hui Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Mingshan Zhu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Fei Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Wei Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Bibai Du
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Lixi Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| | - Eddy Y Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
27
|
Zeng Y, Huang C, Luo X, Liu Y, Ren Z, Mai B. Polychlorinated biphenyls and chlorinated paraffins in home-produced eggs from an e-waste polluted area in South China: Occurrence and human dietary exposure. ENVIRONMENT INTERNATIONAL 2018; 116:52-59. [PMID: 29653400 DOI: 10.1016/j.envint.2018.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The levels of polychlorinated biphenyls (PCBs) and short/median-chain chlorinated paraffins (S/MCCPs) in 68 home-produced eggs collected in 2013 and 2016 from an electronic-waste (e-waste) site in South China were measured and the human dietary exposure to these two classes of contaminants via egg consumption was calculated. The levels of PCBs, SCCPs, and MCCPs varied from 236 to 8870 ng/g lipid weight (lw), 477 to 111,000 ng/g lw, and 125 to 91,100 ng/g lw, respectively. There are no significant differences in the levels of PCBs, SCCPs, and MCCPs between 2013 and 2016 (p > 0.05). The congener profiles of PCBs and MCCPs were similar to each other between 2013 and 2016; however, the homologue profiles of SCCPs were different. The Toxic Equivalent Quantities (TEQs) of ∑DL-PCBs and the levels of ∑ICES-6 PCBs strongly exceeded the limits set by EU Regulation 1259/2011 (2.5 pg World Health Organization-TEQ2005 g-1 lw for DL-∑PCBs and 40 ng/ g lw for ∑ICES-6 PCBs). The estimated daily intakes (EDI) of PCBs, SCCPs, and MCCPs by adults and children ranged between 5.57 and 1100, 11.8 and 11,900, and 3.62 and 11,400 ng/kg bw/d, respectively. PCBs pose serious health risks for local residents, especially for children, due to the high ratios of EDI (68% in 2013 and 70% in 2016 for adults and 100% for children) in excess of the exposure limits.
Collapse
Affiliation(s)
- Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yine Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihe Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
28
|
Du X, Yuan B, Zhou Y, Benskin JP, Qiu Y, Yin G, Zhao J. Short-, Medium-, and Long-Chain Chlorinated Paraffins in Wildlife from Paddy Fields in the Yangtze River Delta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1072-1080. [PMID: 29320169 DOI: 10.1021/acs.est.7b05595] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in April, 2017. As a consequence of this regulation, increasing production and usage of alternatives, such as medium- and long-chain chlorinated paraffins (MCCPs and LCCPs, respectively), is expected. Little is known about the environmental fate and behavior of MCCPs and LCCPs. In the present study, SCCPs, MCCPs, and LCCPs were analyzed in nine wildlife species from paddy fields in the Yangtze River Delta, China, using atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry. SCCPs, MCCPs, and LCCPs were detected in all samples at concentrations ranging from <91-43 000, 96-33 000, and 14-10 000 ng/g lipid, respectively. Most species contained primarily MCCPs (on average 44%), with the exception of collared scops owl and common cuckoo, in which SCCPs (43%) accumulated to a significantly (i.e., p < 0.05) greater extent than MCCPs (40%). Cl6 groups were dominant in most species except for yellow weasel and short-tailed mamushi, which contained primarily Cl7 groups. Principal components analysis, together with CP concentrations and carbon stable isotope analysis showed that habitat and feeding habits were key factors driving CP accumulation and congener group patterns in wildlife. This is the first report of LCCP exposure in wildlife and highlights the need for data on risks associated with CP usage.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University , SE-10691 Stockholm, Sweden
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| |
Collapse
|
29
|
Huang H, Gao L, Zheng M, Li J, Zhang L, Wu Y, Wang R, Xia D, Qiao L, Cui L, Su G, Liu W, Liu G. Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:439-445. [PMID: 29100181 DOI: 10.1016/j.envpol.2017.10.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/25/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Food intake is one of the main pathways of human exposure to chlorinated paraffins (CPs). This study assessed the dietary exposure for the general Chinese population to short-chain chlorinated paraffin (SCCPs) and medium-chain chlorinated paraffins (MCCPs) through meat and meat products. Twenty samples of meat and meat products from 20 Chinese provinces were collected in 2011. As the sampling sites covered about two-thirds of the Chinese population, the meat samples were considered to be representative of the true characteristics of CPs contamination in Chinese meat products. The concentrations of SCCPs and MCCPs in the meat samples were measured using the comprehensive two-dimensional gas chromatography electron capture negative ionization high-resolution time-of-flight mass spectrometry method. Forty-eight SCCP and MCCP homolog groups were detected in the meat samples. The mean SCCP and MCCP concentrations in all meat samples were 129 ± 4.1 ng g-1 wet weight and 5.7 ± 0.59 ng g-1 wet weight, respectively. The concentrations of SCCPs and MCCPs varied in samples from different provinces. The geographical distribution of CP concentrations was similar to the distribution of CPs manufacturing plants in China. The most abundant groups of SCCPs in all samples were C10-11 Cl6-7, and the most abundant groups of MCCPs in most samples were C14 Cl7-8. The possible sources of SCCPs and MCCPs in meat and meat products might be CP-42 and CP-52. The 50th percentile estimated daily intakes of SCCPs and MCCPs through meat consumption for a "standard" Chinese adult male were 0.13 and 0.0047 μg kg-1 bw d-1, respectively, both much lower than the tolerable daily intakes (TDIs) for SCCPs and MCCPs. This preliminary risk assessment has indicated that the indirect exposure of SCCPs and MCCPs through meat consumption does not pose significant risk to human health in China.
Collapse
Affiliation(s)
- Huiting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jianghan University, Wuhan 430056, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center of Food Safety and Risk Assessment, Beijing 100021, China.
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center of Food Safety and Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center of Food Safety and Risk Assessment, Beijing 100021, China
| | - Runhua Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dan Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Guijin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Huang H, Gao L, Xia D, Qiao L. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China. Sci Rep 2017; 7:10749. [PMID: 28883426 PMCID: PMC5589728 DOI: 10.1038/s41598-017-06148-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/09/2017] [Indexed: 11/09/2022] Open
Abstract
Chlorinated paraffins (CPs) are highly complex technical mixtures, and the short chain chlorinated paraffins (SCCPs) are classed as persistent and have been included in the Stockholm Convention. However, there have been few studies of SCCPs and medium chain chlorinated paraffins (MCCPs) and their bioaccumulation and biomagnification in different species of fish. The present study investigated the levels, congener group profiles, bioaccumulation, and biomagnification of SCCPs and MCCPs in different species of fish from Liaodong Bay, North China. The ranges for the ΣSCCP and ΣMCCP concentrations were 376.3-8596 ng/g lipid weight (lw) and 22.37-5097 ng/g lw, respectively. The logarithms of bioaccumulation factors of ΣSCCPs ranged from 4.69 to 6.05, implying that SCCPs bioaccumulated in the fish. The trophic magnification factor of ΣSCCPs was 2.57, indicating that SCCPs could biomagnify in fish. Carbon chain length, the numbers of chlorine atoms, and octanol/water partition coefficients of the SCCPs and MCCPs might be important factors affecting the bioaccumulation of these chemicals in fish. The risk posed to human health by consumption of fish containing SCCPs was low. New SCCPs with nine carbons (C9) were detected in fish in this study.
Collapse
Affiliation(s)
- Huiting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
| | - Dan Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 100085, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
31
|
Zeng L, Lam JCW, Chen H, Du B, Leung KMY, Lam PKS. Tracking Dietary Sources of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals through a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9543-9552. [PMID: 28783326 DOI: 10.1021/acs.est.7b02210] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Our previous study revealed an elevated accumulation of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in marine mammals from Hong Kong waters in the South China Sea. To examine the bioaccumulation potential and biomagnification in these apex predators, we sampled the dietary items of marine mammals and tracked the sources of SCCPs and MCCPs through a marine food web in this region. Sixteen fish species, seven crustacean species, and four mollusk species were collected, and the main prey species were identified for two species of marine mammals. Concentrations of ∑SCCPs and ∑MCCPs in these collected species suggested a moderate pollution level in Hong Kong waters compared to the global range. Lipid content was found to mediate congener-specific bioaccumulation in these marine species. Significantly positive correlations were observed between trophic levels and concentrations of ∑SCCPs or ∑MCCPs (p < 0.05). Trophic magnification factors for ∑SCCPs and ∑MCCPs were 4.29 and 4.79, indicating that both of them have trophic magnification potentials. Elevated biomagnification of SCCPs and MCCPs from prey species to marine mammals was observed. This is the first report of dietary source tracking of SCCPs and MCCPs in marine mammals. The elevated biomagnification between prey and marine mammals raises environmental concerns about these contaminants.
Collapse
Affiliation(s)
- Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong , Hong Kong SAR, China
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
| | - Hui Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Bibai Du
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong , Pokfulam, Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
32
|
Xia D, Gao LR, Zheng MH, Li JG, Zhang L, Wu YN, Qiao L, Tian QC, Huang HT, Liu WB, Su GJ, Liu GR. Health risks posed to infants in rural China by exposure to short- and medium-chain chlorinated paraffins in breast milk. ENVIRONMENT INTERNATIONAL 2017; 103:1-7. [PMID: 28351765 DOI: 10.1016/j.envint.2017.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are complex mixtures of synthetic chemicals found widely in environmental matrices. Short-chain CPs (SCCPs) are candidate persistent organic pollutants under the Stockholm Convention. There should be great concern about human exposure to SCCPs. Data on CP concentrations in human breast milk is scarce. This is the first study in which background SCCP and medium-chain CP (MCCP) body burdens in the general rural population of China have been estimated and health risks posed to nursing infants by CPs in breast milk assessed. The concentrations of 48 SCCP and MCCP formula congeners were determined in 24 pooled human milk samples produced from 1412 individual samples from eight provinces in 2007 and 16 provinces in 2011. The samples were analyzed by comprehensive two-dimensional gas chromatography electron capture negative ionization high-resolution time-of-flight mass spectrometry. The median SCCP and MCCP concentrations were 303 and 35.7ngg-1 lipid weight, respectively, for the 2007 samples and 360 and 45.4ngg-1 lipid weight, respectively, for the 2011 samples. The C10 and C14 homologs were the dominant CP carbon-chain-length groups, contributing 51% and 82% of the total SCCP and MCCP concentrations, respectively. There are probably multiple CP sources to the general Chinese population and numerous exposure pathways. The median estimated daily SCCP and MCCP intakes for nursing infants were 1310 and 152ngkg-1d-1, respectively, in 2007 and 1520 and 212ngkg-1d-1, respectively, in 2011. SCCPs do not currently pose significant risks to infants in China. However, it is necessary to continuously monitor CP concentrations and health risks because CP concentrations in Chinese human breast milk are increasing.
Collapse
Affiliation(s)
- Dan Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Rong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ming-Hui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Guang Li
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China
| | - Lei Zhang
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China
| | - Yong-Ning Wu
- National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing 100050, China.
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qi-Chang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Bin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gui-Jin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guo-Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
33
|
Liu LH, Ma WL, Liu LY, Huo CY, Li WL, Gao CJ, Li HL, Li YF, Chan HM. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:232-243. [PMID: 28388519 DOI: 10.1016/j.envpol.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 05/22/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C13 group, Cl7 group and N20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world.
Collapse
Affiliation(s)
- Li-Hua Liu
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Chun-Yan Huo
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Wen-Long Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Chong-Jing Gao
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Hai-Ling Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
34
|
Zeng L, Lam JCW, Horii Y, Li X, Chen W, Qiu JW, Leung KMY, Yamazaki E, Yamashita N, Lam PKS. Spatial and temporal trends of short- and medium-chain chlorinated paraffins in sediments off the urbanized coastal zones in China and Japan: A comparison study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:357-367. [PMID: 28209434 DOI: 10.1016/j.envpol.2017.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/15/2017] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
To examine the impacts of urbanization and industrialization on the coastal environment, and assess the effectiveness of control measures on the contamination by chlorinated paraffins (CPs) in East Asia, surface and core sediments were sampled from the urbanized coastal zones in China and Japan (i.e., Pearl River Delta (PRD), Hong Kong waters and Tokyo Bay) and analyzed for short-chain (SCCPs) and medium-chain CPs (MCCPs). Much higher concentrations of CPs were found in the industrialized PRD than in adjacent Hong Kong waters. Significant correlation between CP concentration and population density in the coastal district of Hong Kong was observed (r2 = 0.72 for SCCPs and 0.55 for MCCPs, p < 0.05), highlighting the effect of urbanization. By contrast, a relatively lower pollution level of CPs was detected in Tokyo Bay. More long-chain groups within SCCPs in the PRD than in Hong Kong waters and Tokyo Bay implied the effect of industrialization. Comparison of temporal trends between Hong Kong outer harbor with Tokyo Bay shows the striking difference in historical deposition of CPs under different regulatory situations in China and Japan. For the first time, the declining CP concentrations in Tokyo Bay, Japan, attest to the effectiveness of emissions controls.
Collapse
Affiliation(s)
- Lixi Zeng
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon, Hong Kong SAR, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Weifang Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
35
|
Sun R, Luo X, Tang B, Chen L, Liu Y, Mai B. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:165-174. [PMID: 28040337 DOI: 10.1016/j.envpol.2016.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 05/22/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log KOW) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log KOW, and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log KOW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem.
Collapse
Affiliation(s)
- Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
36
|
Yuan B, Fu J, Wang Y, Jiang G. Short-chain chlorinated paraffins in soil, paddy seeds (Oryza sativa) and snails (Ampullariidae) in an e-waste dismantling area in China: Homologue group pattern, spatial distribution and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:608-615. [PMID: 27751635 DOI: 10.1016/j.envpol.2016.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 05/22/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) in multi-environmental matrices are studied in Taizhou, Zhejiang Province, China, which is a notorious e-waste dismantling area. The investigated matrices consist of paddy field soil, paddy seeds (Oryza sativa, separated into hulls and rice unpolished) and apple snails (Ampullariidae, inhabiting the paddy fields). The sampling area covered a 65-km radius around the contamination center. C10 and C11 are the two predominant homologue groups in the area, accounting for about 35.7% and 33.0% of total SCCPs, respectively. SCCPs in snails and hulls are generally higher than in soil samples (30.4-530 ng/g dw), and SCCPs in hulls are approximate five times higher than in corresponding rice samples (4.90-55.1 ng/g dw). Homologue pattern analysis indicates that paddy seeds (both hull and rice) tend to accumulate relatively high volatile SCCP homologues, especially the ones with shorter carbon chain length, while snails tend to accumulate relatively high lipophilic homologues, especially the ones with more substituted chlorines. SCCPs in both paddy seeds and snails are linearly related to those in the soil. The e-waste dismantling area, which covers a radius of approximate 20 km, shows higher pollution levels for SCCPs according to their spatial distribution in four matrices. The preliminary assessment indicates that SCCP levels in local soils pose no significant ecological risk for soil dwelling organisms, but higher risks from dietary exposure of SCCPs are suspected for people living in e-waste dismantling area.
Collapse
Affiliation(s)
- Bo Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
37
|
van Mourik LM, Gaus C, Leonards PEG, de Boer J. Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015. CHEMOSPHERE 2016; 155:415-428. [PMID: 27135701 DOI: 10.1016/j.chemosphere.2016.04.037] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 05/21/2023]
Abstract
This review provides an update on information regarding the production volumes, regulations, as well as the environmental levels, trends, fate and human exposure to chlorinated paraffin mixtures (CPs). CPs encompas thousands congeners with varying properties and environmental fate. Based on their carbon chain lengths, CPs are divided into short- (SCCPs; C10-13), medium- (MCCPs; C14-17) and long- (LCCPs; C ≥ 18) chained groups. They are high production volume and persistent chemicals, and their cumulative global production already surpasses that of other persistent anthropogenic chemicals (e.g. PCBs). However, international regulations are still curbed by insufficient information on their levels and fate, including bioaccumulation and toxicity potential. An increasing number of studies since 2010 demonstrate that CPs are detected in almost every compartment in the environment, including remote areas. Consensus on the long range transport and high bioaccumulation potential (BCF > 5000 & TMF > 1) has recently been reached for SCCPs, fulfilling criteria under the Stockholm Convention for designation as a persistent organic pollutant; information on their levels is, however, still sparse for many countries. M/LCCPs have received comparatively little attention in the past, but as replacement chemicals for SCCPs, MCCPs are now considered in an increasing number of studies. The limited data to date suggests MCCPs are widely used. Although data on their bioaccumulation and toxicity are still inconclusive, MCCPs and LCCPs with C<20 may also have a bioaccumulation potential. Considering this and their high production volumes, use, and ubiquitous occurrence in the environment, a better understanding on the levels and fate of all CPs is needed.
Collapse
Affiliation(s)
- Louise M van Mourik
- National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains 4108, Qld, Australia; Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Caroline Gaus
- National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains 4108, Qld, Australia.
| | - Pim E G Leonards
- Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | - Jacob de Boer
- Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Sun R, Luo X, Tang B, Li Z, Huang L, Wang T, Mai B. Short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary in South China: Residue levels and interspecies differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:196-203. [PMID: 26925731 DOI: 10.1016/j.scitotenv.2016.02.144] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/01/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
There is limited information available on the bioaccumulation of short-chain chlorinated paraffins (SCCPs), a complicated group of persistent organic pollutants (POPs) candidates listed in the Stockholm Convention, in estuarine ecosystem. This study analyzed SCCPs in marine organisms (five fish and six invertebrates) from the Pearl River Estuary in South China. The concentrations of total SCCPs ranged from 210 to 21,000 ng · g(-1) lipid weight, with relatively higher levels in benthic invertebrates (shrimp, crabs and bivalves) than in non-benthic species (pelagic and mesopelagic fish and squid). SCCPs were biomagnified from prey fish (tapertail anchovy, Coilia mystus) to predator fish (Bombay duck, Harpadon nehereus), and the biomagnification factors (BMFs) of SCCP congeners ranged from 1.1 (C10H16Cl6) to 3.4 (C13H18Cl10). Species-specific homologue group patterns were also observed, with significantly lower proportions of C10 congeners in the shrimp, bivalves and Bombay duck than in the other species.
Collapse
Affiliation(s)
- Runxia Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zongrui Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liqian Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
39
|
Sun Y, Pan W, Lin Y, Fu J, Zhang A. Chlorination pattern effect on thermodynamic parameters and environmental degradability for C₁₀-SCCPs: Quantum chemical calculation based on virtual combinational library. J Environ Sci (China) 2016; 39:184-197. [PMID: 26899657 DOI: 10.1016/j.jes.2015.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 05/22/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are still controversial candidates for inclusion in the Stockholm Convention. The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors. A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed. We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations. The thermodynamic properties were acquired using the AM1 method, and frontier molecular orbital analysis was carried out to obtain the E(HOMO), E(LUMO) and E(LUMO)-E(HOMO) for degradability exploration at the same level. The influence of the chlorination degree (N(Cl)) on the relative stability and environmental degradation was elucidated. A novel structural descriptor, μ, was proposed to measure the dispersion of the chlorine atoms within a molecule. There were significant correlations between thermodynamic values and N(Cl), while the reported N(Cl)-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners. In addition, isomers with large μ showed higher relative stability than those with small μ. This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and OH attack respectively. The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack, while direct photolysis of C10-SCCP congeners cannot readily occur due to the large E(LUMO)-E(HOMO) values. The chlorination effect and the conclusions were further checked with appropriate density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yuan Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China.
| |
Collapse
|
40
|
Cao Y, Harada KH, Liu W, Yan J, Zhao C, Niisoe T, Adachi A, Fujii Y, Nouda C, Takasuga T, Koizumi A. Short-chain chlorinated paraffins in cooking oil and related products from China. CHEMOSPHERE 2015; 138:104-111. [PMID: 26051978 DOI: 10.1016/j.chemosphere.2015.05.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are emerging persistent organic pollutants. It has been found that dietary intakes of SCCPs in China have recently increased and are now higher than in Japan and Korea. The contribution of cooking oil to dietary exposure to SCCPs in China was evaluated by analyzing SCCPs in cooking oil, raw seeds used to produce cooking oil, and fried confectionery products collected in China in 2010 and 2012. Detectable amounts of SCCP homologs were found in 48 out of the 49 cooking oil samples analyzed, and the SCCP concentrations varied widely, from <9 to 7500 ng g(-1). Estimated dietary intakes of total SCCPs in cooking oil ranged from <0.78 to 38 μg d(-1). The estimated dietary intake of SCCPs was relatively high (mean 14.8 μg d(-1)) for residents of Beijing. Fried confectionery was found to contain SCCP concentrations of 11-1000 ng g(-1). Cooking oil might therefore be one of the sources of SCCPs to Chinese diets. SCCPs were also detected in raw seeds used to produce cooking oil, but the concentrations varied widely. The SCCP homolog patterns in the raw seed and cooking oil samples were different, implying that the seeds used to produce the oil (and therefore the soil on which the seeds were produced) were unlikely to be the sources of SCCPs in cooking oil. Further investigations are needed to determine the routes through which cooking oil becomes contaminated with SCCPs during the production and processing of the oil.
Collapse
Affiliation(s)
- Yang Cao
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Wanyang Liu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Junxia Yan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha 410078, PR China
| | - Can Zhao
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Institute for Environment Health and Related Product Safety, China CDC, Panjiayuan, Beijing 100021, PR China
| | - Tamon Niisoe
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Ayumu Adachi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yukiko Fujii
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Chihiro Nouda
- Shimadzu Techno-Research Incorporated, Nishinokyo, Kyoto 604-8435, Japan
| | - Takumi Takasuga
- Shimadzu Techno-Research Incorporated, Nishinokyo, Kyoto 604-8435, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan.
| |
Collapse
|