1
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Qin F, Zhao N, Yin G, Wang T, Jv X, Han S, An L. Rapid Response of Daphnia magna Motor Behavior to Mercury Chloride Toxicity Based on Target Tracking. TOXICS 2024; 12:621. [PMID: 39330549 PMCID: PMC11435506 DOI: 10.3390/toxics12090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
A rapid and timely response to the impacts of mercury chloride, which is indispensable to the chemical industry, on aquatic organisms is of great significance. Here, we investigated whether the YOLOX (improvements to the YOLO series, forming a new high-performance detector) observation system can be used for the rapid detection of the response of Daphnia magna targets to mercury chloride stress. Thus, we used this system for the real-time tracking and observation of the multidimensional motional behavior of D. magna. The results obtained showed that the average velocity (v¯), average acceleration (a¯), and cumulative travel (L) values of D. magna exposed to mercury chloride stress changed significantly under different exposure times and concentrations. Further, we observed that v¯, a¯ and L values of D. magna could be used as indexes of toxicity response. Analysis also showed evident D. magna inhibition at exposure concentrations of 0.08 and 0.02 mg/L after exposure for 10 and 25 min, respectively. However, under 0.06 and 0.04 mg/L toxic stress, v¯ and L showed faster toxic response than a¯, and overall, v¯ was identified as the most sensitive index for the rapid detection of D. magna response to toxicity stress. Therefore, we provide a strategy for tracking the motile behavior of D. magna in response to toxic stress and lay the foundations for the comprehensive screening of toxicity in water based on motile behavior.
Collapse
Affiliation(s)
- Feihu Qin
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Nanjing Zhao
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Gaofang Yin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Tao Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Xinyue Jv
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Shoulu Han
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Lisha An
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| |
Collapse
|
3
|
Mishra M. Daphnia magna as a Model Organism to Predict the Teratogenic Effect of Different Compounds. Methods Mol Biol 2024; 2753:261-281. [PMID: 38285344 DOI: 10.1007/978-1-0716-3625-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
For aquatic ecosystem Daphnia magna is evolving as a model organism to check the teratogenicity of numerous compounds. D. magna can be easily cultured in the laboratory, and the teratogen effect of several compounds can be easily studied. The developmental stages are well studied in D. magna. All the developmental stages are transparent so the defect can be easily accessed. So, the postembryonic developmental changes can be easily studied after the exposure with teratogen. More importantly, D. magna also have a swimming behavioral phenotype. The behavioral defect can be easily accessed after teratogen exposure. The current chapter summarizes numerous protocols associated with embryo and adult staining and adult behavioral assays that can be used to access the teratogenicity of any unknown compound.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
4
|
Chen H, Zhao Y, Zhao T, Li Y, Ren B, Liang H, Liang H. Multi-walled carbon nanotubes enhance the toxicity effects of dibutyl phthalate on early life stages of zebrafish (Danio rerio): Research in physiological, biochemical and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165684. [PMID: 37482360 DOI: 10.1016/j.scitotenv.2023.165684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers. PAEs are ubiquitous in natural water bodies, with dibutyl phthalate (DBP) being one of the most common PAEs. DBP is prone to leaching or migration into the environment, posing serious health and environmental risks. Carbon nanotubes (CNTs) have been widely used in various fields with the rapid development of nanotechnology. CNTs could alter the environmental behavior and toxicity of co-existing pollutants. CNTs have been shown to rapidly adsorb PEAs. However, current knowledge about the effects of CNTs on DBP toxicity is limited. Here we show that the toxic effects of single and combined exposure to DBP (0.1, 0.5, 1.0 mg/L) and different CNTs (MWCNTs/MWCNTs-COOH, 0.5 mg/L) on the early growth stage of zebrafish. The results suggested that a significant increase in heart rate and heart malformation rate was observed after co-exposure of DBP and MWCNTs/MWCNTs-COOH (p < 0.05). Furthermore, combined exposure increased antioxidant enzyme activity during early developmental stages in zebrafish (p < 0.05). The qRT-PCR results revealed that DBP and MWCNTs/MWCNTs-COOH co-exposure significantly interfered with the expression of genes related to oxidative stress, energy metabolism, development of cardiac function, and apoptosis (p < 0.05). In addition, for oxidative stress and cardiotoxicity, MWCNTs/MWCNTs-COOH aggravated the toxic effects of 0.5 mg/L DBP on embryos/larvae. The metabolomics results showed that co-exposure mitigated the disturbance of amino acid metabolism mediated by single DBP exposure. In general, MWCNTs/MWCNTs-COOH increased the impact of DBP in the early developmental stages of zebrafish. This study provides new insights into the toxicology of early developmental stages of aquatic organisms exposed to co-exist pollutants of DBP and CNTs.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q. Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms? NANOMATERIALS 2022; 12:nano12101708. [PMID: 35630938 PMCID: PMC9145953 DOI: 10.3390/nano12101708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.
Collapse
Affiliation(s)
- Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Krishna P. Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway;
| | - Qamar Rahman
- Amity Institute of Biotechnology, Amity University, Lucknow 226028, India
- Correspondence:
| |
Collapse
|
6
|
Kumari M, Kumar A. Estimating combined health risks of nanomaterials and antibiotics from natural water: a proposed framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13845-13856. [PMID: 34596816 DOI: 10.1007/s11356-021-16795-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) are one of the major class of emerging contaminants identified in aquatic environment. There is a probability that they can co-exist with other chemical pollutants like antibiotics (ABs) as ABs-NPs complexes in natural water systems. If these complexes are taken up via inadvertent ingestion of contaminated water, it might show detrimental effects on human health. To address this challenging issue, this study developed a risk framework to assess the combined exposure of ABs and NPs in natural waters for the first time. The six-step framework was applied to a hypothetical exposure of NPs (copper oxide, CuO; zinc oxide, ZnO; iron oxide, Fe3O4; and titanium oxide, TiO2) and ABs (ciprofloxacin, CIP; ofloxacin, OFX; norfloxacin, NOR; and levofloxacin, LEVO) to estimate human health risks for two different exposure scenarios. Risk estimation was also conducted for the released fragments of ABs, NPs and metal ions in the human digestive system. Mixture toxicity risk assessment was conducted for three different combinations: (i) ABs and metal ions, (ii) ABs and NPs, and (iii) NPs and metals ions. Although the expected risk values were observed to be less than 1 (both hazard quotients and hazard interactions less than 1) for all the conditions and assumptions made, still a thorough monitoring and analysis of the studied contaminants in water is required to protect humans from their adverse effects, if any. Maximum allowable concentrations (Cmax) at which no risk can occur to humans was found to be (maximum values): ABs (233.8 µg/L, NOR); metal ions (1.02 × 109 mg/L, Ti2+ ions), and NPs (6.68 × 105 mg/L, TiO2), respectively.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| |
Collapse
|
7
|
Zhang C, Chen X, Ho SH. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125959. [PMID: 33990041 DOI: 10.1016/j.jhazmat.2021.125959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanomaterials (CNMs) provide an effective solution and a novel advancement for wastewater treatment. In this review, a total of 3823 bibliographic records derived from recent 10 years are visualized based on scientometric analysis. The results indicate metal-free CNMs-mediated advanced oxidation processes (AOPs) might be a motive force to develop CNMs application for wastewater treatment; however, corresponding evaluations of aquatic toxicity still lack sufficient attention. Therefore, recent breakthroughs and topical innovations related to prevalent wastewater treatment technologies (i.e., adsorption, catalysis and membrane separation) using three typical dimensional CNMs (nanodiamonds, carbon nanotubes, and graphene-based nanomaterials) are comprehensively summarized in-depth, along with a compendious introduction to some novel techniques (e.g., computational simulation) for identifying reaction mechanisms. Then, current research focusing on CNMs-associated aquatic toxicity is discussed thoroughly, mainly demonstrating: (1) the adverse effects on aquatic organisms should not be overlooked prior to large-scale CNMs application; (2) divergent consequences can be further reduced if the ecological niche of aquatic organisms is emphasized; and (3) further investigations on joint toxicity can provide greater beneficial insight into realistic exposure scenarios. Finally, ongoing challenges and developmental directions of CNMs-based wastewater treatment and evaluation of its aquatic toxicity are pinpointed and shaped in terms of future research.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
8
|
Oliveira MLS, Dotto GL, Pinto D, Neckel A, Silva LFO. Nanoparticles as vectors of other contaminants in estuarine suspended sediments: Natural and real conditions. MARINE POLLUTION BULLETIN 2021; 168:112429. [PMID: 33962087 DOI: 10.1016/j.marpolbul.2021.112429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Studding the behaviour and danger of nanoparticles (NPs, minerals and amorphous phases) in the estuarine ecosystem is presently incomplete by the lack of measureable description of NPs in the ecological conditions, such as suspended-sediments (SS). In the last years, several works have revealed the toxic consequences of ultra-fine and nanoparticulate compounds on diverse systems, raising apprehensions over the nanocontaminants behaviour and destiny in the numerous ecological partitions. The general objective of the manuscript is to explain the geochemical conditions of the LES (Laguna estuarine system, southern Brazil) suspended sediments covering an area around the main South American coal plant, enhancing the creation of future public policies for environmental recovery projects. Subsequently the discharge of nanoparticles and toxic element (TE) in the ecosystem, NPs react with several constituents of the nature and suffers active alteration progressions. Contamination coming from engineering actions, wastewater, are something identifiable, however when these contaminations are accompanied by other contamination sources (e.g. mining and farming) the work gets defaulted. By combining material about the concentration of TE contaminants and NPs occurrences, this work offers novel visions into contaminant contact and the possible effects of such exposure on estuarine systems in Brazil. The results presented here will be useful for different areas of estuaries around the world.
Collapse
Affiliation(s)
- Marcos L S Oliveira
- Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Alcindo Neckel
- Faculdade Meridional, IMED, 304, Passo Fundo, RS 99070-220, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| |
Collapse
|
9
|
Dong L, Wu Y, Bian Y, Zheng X, Chen L, Chen Y, Zhang X. Carbon nanotubes mitigate copper-oxide nanoparticles-induced inhibition to acidogenic metabolism of Propionibacterium acidipropionici by regulating carbon source utilization. BIORESOURCE TECHNOLOGY 2021; 330:125003. [PMID: 33770734 DOI: 10.1016/j.biortech.2021.125003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrated that multi-walled carbon nanotubes (MWCNTs) could mitigate copper oxide nanoparticles (CuO NPs)-induced inhibition to acidogenic metabolism of propionic acid bacteria (i.e., Propionibacterium acidipropionici) by regulating carbon source utilization. CuO NPs severely inhibited the growth of P. acidipropionici, damaged its cell membrane, and down-regulated gene expressions and enzyme activities involved in acidogenic metabolism, thereby decreasing propionate production. However, although MWCNTs had a slightly negative impact on the growth and cell membrane, the gene expressions and catalytic activities were enhanced (glycolysis and pyruvate metabolism), resulting in the improved propionate production. Additionally, the gene expressions and catalytic activities of key enzymes (e.g., tpiA, pgk, PK, OTTAC, etc.) related to acidogenic metabolism were also enhanced by the co-existence of both nanomaterials, thereby promoting propionate production towards P. acidipropionici. This work demonstrated that the presence of MWCNTs could affect the inhibition of CuO NPs to fermentation processes via regulating carbon source utilization.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co., LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Lang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| |
Collapse
|
10
|
Sharifi P, Bidabadi SS, Zaid A, Abdel Latef AAH. Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112051. [PMID: 33601169 DOI: 10.1016/j.ecoenv.2021.112051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have recently attracted huge attention to their impacts on the environment and plants. Therefore, this experiment was conducted to investigate the responses of lead (Pb) and cadmium (Cd) exposed pot marigold plants to various levels of MWCNT. Calendula officinalis (L.) seedlings were cultivated in Pb and Cd-polluted soils with exposure to 0, 50, 100, 250, 500 and 1000 mg L-1 of MWCNT. The results demonstrated that foliar-applied MWCNT up to 250 mg L-1 not only alleviated Pb and Cd-induced toxicity by reducing oxidative damage and boosting both enzymatic and non-enzymatic antioxidant defense system but also promoted the phytoremediation property of pot marigold plants by enhancing the accumulation of both Pb and Cd from the soil. Interestingly, oxidative damage exacerbation and both Pb and Cd accumulation reduction were noticed in pot marigold seedlings exposed to 500 and 1000 mg L-1 MWCNTs. The findings of this study clearly showed that the use of appropriate concentrations of MWCNTs in increasing the phytoremediation properties of pot marigold was justified, while the use of high concentrations is toxic to the plant and intensifies the toxic effects of heavy metals (HMs) on plant physiology. This study provides a novel method to facilitate the phytoremediation of HMs polluted soils using MWCNT as well as explores the potential risks of these nanoparticles to the plants.
Collapse
Affiliation(s)
- Parisa Sharifi
- Department of Agricultural Extension and Education, Higher Education Center Shahid Bakeri Miyandoab, Urmia University, Urmia 94171-71946, Iran
| | - Siamak Shirani Bidabadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
11
|
Cui Y, Zhang X, Yin K, Qi X, Zhang Y, Zhang J, Li S, Lin H. Dibutyl phthalate-induced oxidative stress, inflammation and apoptosis in grass carp hepatocytes and the therapeutic use of taxifolin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142880. [PMID: 33131843 DOI: 10.1016/j.scitotenv.2020.142880] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of plastic products has led to the widespread presence of plasticizers in the environment. As a common environmental pollutant, research on plasticizer toxicity is insufficient in fish cells. In particular, research on the toxicity of dibutyl phthalate (DBP) in grass carp hepatocyte lines is insufficient. To further explore these mechanisms, we treated grass carp hepatocytes with 300 μM DBP, a common plasticizer, for 24 h, and hepatocytes were also treated with 1 μM taxifolin (TAX), an antioxidant, for 24 h to study its antagonistic effect on DBP. After DBP exposure, oxidative stress levels and inflammation in hepatocytes increased, and the mRNA and protein expression of apoptosis-related markers increased significantly, leading to hepatocyte apoptosis. Moreover, AO/EB staining, Hoechst staining and flow cytometry also showed that the level of apoptotic cells increased after DBP exposure. Notably, both TAX pretreatment and TAX simultaneous treatment alleviated oxidative stress, increased inflammatory factor levels and apoptosis induced by DBP. In comparison, the effect of simultaneous TAX treatment was better than that of TAX pretreatment. Our results showed that TAX alleviates DBP-induced apoptosis in grass carp hepatocytes through oxidative stress and inflammation, and TAX pretreatment and simultaneous treatment exhibited specific effects. Specifically, simultaneous treatment had a better effect. Our study assessed the toxicity of DBP in grass carp hepatocytes and provided a theoretical and research basis for the in vivo study of animal models in the future. The innovation of this study involves the exploration of the interaction between DBP and TAX for the first time. This study may enrich knowledge regarding the theoretical mechanism of DBP toxicity in fish hepatocytes and propose methods address DBP toxicity.
Collapse
Affiliation(s)
- Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
12
|
Abbas WT. Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7669-7690. [PMID: 33398757 DOI: 10.1007/s11356-020-12166-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Applications of nanotechnology in fish cultures have participated in getting over various difficulties that hinder fish productivity. They can achieve growth performance after adding some important minerals and vitamins in the form of nano-feed supplements like selenium, zinc, iron, and vitamin C. Also, they have an important role in reproduction, and fish medicine as antimicrobial, drug delivery, nano-vaccination, and rapid disease diagnosis. Moreover, their roles in water remediation and purification, and fish packaging are documented. On the other hand, some nanoparticles exhibit toxic effects on living organisms, which return to their tiny size, high reactivity, and permeability. They can alter many physiological functions and cause cytotoxicity, DNA damage, and histopathological changes. Also, nanotechnology applications cause new secondary pollutants to be introduced into the environment that can negatively affect fish health and the surrounding living organisms. So, in spite of the promising applications of nanotechnology to fulfill high growth performance and pathogen-free fish, there are a lot of debates about the potential toxicity of nanomaterials, their reactivity with the surrounding environment, and bioaccumulation. The present review aims to elucidate and discuss various advantages and challenges of nanotechnology applications in fish cultures. Also, it points to green nanotechnology as a promising alternative to chemical ones.
Collapse
Affiliation(s)
- Wafaa Tawfik Abbas
- Departmentof Hydrobiology, National Research Centre, 33 El Bohouth St. Dokki, P.O. Box 12622, Giza, Egypt.
| |
Collapse
|
13
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
14
|
Xu K, Liu YX, Wang XF, Li SW, Cheng JM. Combined toxicity of functionalized nano-carbon black and cadmium on Eisenia fetida coelomocytes: The role of adsorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122815. [PMID: 32768857 DOI: 10.1016/j.jhazmat.2020.122815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the potential threats of functionalized nano-carbon black (FNCB) combined with cadmium (Cd) to soil invertebrates. In this study, immunocompetent coelomocytes from Eisenia fetida are harnessed, and the joint cytotoxicity types of FNCB and Cd co-exposure are analyzed. The extracellular interaction mechanisms of FNCB and Cd were completely explored using adsorption kinetics and thermodynamics accompanied by isotherm batch experiments and Fourier infrared spectroscopy. The results indicated that functional amorphous carbon nanoparticles up to certain dose may injure cells due to their surface oxygen-containing groups. The MIXTOX model and the combination index suggested that the combined action of FNCB and Cd exhibited antagonism at the low dose/effect-level and synergism at the high dose/effect-level. FNCB decreased the intracellular free Cd2+ content at a low mixture dose, while it increased it at a high mixture dose. The adsorption of Cd on FNCB followed pseudo-second-kinetics and the Langmuir isotherm, hence better indicating a chemisorption, which was also supported by the activation energy (Ea = 36.6 kJ/mol), enthalpy change (ΔH = -98.4 kJ/mol), and functional group changes. Coordination binding should be responsible for the subsequent interaction of toxicity.
Collapse
Affiliation(s)
- Kun Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Ya-Xin Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Xiao-Feng Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Shou-Wang Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Jie-Min Cheng
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China.
| |
Collapse
|
15
|
Brzeziński T, Czub M, Nawała J, Gordon D, Dziedzic D, Dawidziuk B, Popiel S, Maszczyk P. The effects of chemical warfare agent Clark I on the life histories and stable isotopes composition of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115142. [PMID: 32750525 DOI: 10.1016/j.envpol.2020.115142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/07/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Chemical warfare agents (CWA) dumped worldwide in all types of aquatic reservoirs pose a potential environmental hazard. Leakage of CWAs from eroding containers at dumping sites had been observed, and their presence in the tissues of aquatic animals was confirmed. However, the ecological effects of CWA have not yet been studied. In standardized laboratory bioassays, we tested if sublethal concentration of Clark I, an arsenic based CWA, can affect life histories (somatic growth rate, fecundity, size at maturity), population growth rate and stable isotope signatures of a keystone crustacean grazer Daphnia magna. We found that the life histories and fitness of daphnids reared in the presence of Clark I differed from those reared in Clark-free conditions. The effects were observed when Clark I concentrations were no less than 5 μg×L-1. With increasing concentrations of the tested CWA, all of the tested parameters decreased linearly. The finding indicates that even sublethal concentrations of Clark I can affect crustacean populations, which should be taken into account when assessing the environmental risks of this particular CWA. We found intraspecific diversity in susceptibility to Clark I, with some clones being significantly less vulnerable than others. We also found that in the presence of Clark I, the ratio of heavy and light isotopes of nitrogen in the bodies of daphnids was affected - daphnids exhibited δ15N enrichment with increasing concentrations of this CWA. The isotopic composition of carbon was not affected by the presence of Clark I. The nitrogen isotopic signature may be used as an indicator of stress in zooplankton exposed to the presence of toxic xenobiotics.
Collapse
Affiliation(s)
- Tomasz Brzeziński
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Michał Czub
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Jakub Nawała
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Diana Gordon
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Daniel Dziedzic
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Barbara Dawidziuk
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Stanisław Popiel
- Institute of Chemistry, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. W. Urbanowicza 2, 00-908, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
16
|
Wang W, Zhao X, Ren X, Duan X. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105546. [PMID: 32574930 DOI: 10.1016/j.aquatox.2020.105546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In natural environments, organisms are often exposed to several environmental pollutants at any one time, and the potential effects of such co-exposures on human and environmental health are of considerable concern. It is thought that multi-walled carbon nanotubes (MWCNTs) may interact with other pollutants in aquatic systems and induce considerably different effects compared with exposure to a single contaminant. The objective of this study was to evaluate the potential acute combined effects of mixtures of MWCNTs and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on embryonic development stages, oxidative stress, apoptosis and DNA damage in developing zebrafish (Danio rerio). The embryos were treated with BDE-47 (5, 10, and 50 μg/L) and MWCNTs (50 mg/L), either combined or individually, for 96 h. Following exposure, BDE-47 induced significant acute toxicity, while the MWCNTs exhibited slight toxicity. When compared with BDE-47-only exposure, the inhibited growth induced by BDE-47 was weakened in the presence of MWCNTs. Similarly, the levels of oxidative stress biomarkers (reactive oxygen species, superoxide dismutase, catalase activities and malondialdehyde), apoptosis (apoptosis rate, caspase-3 and caspase-9 activities) and DNA damage (comet assay and comet olive tails) decreased in the presence of MWCNTs compared to those exposed to BDE-47 alone. These results demonstrate that MWCNTs can weaken the developmental inhibition, oxidative stress, apoptosis and DNA damage induced by BDE-47 in the early stages of zebrafish development.
Collapse
Affiliation(s)
- Weitong Wang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China.
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street 1301, Tiexi Dist, Siping, 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| |
Collapse
|
17
|
Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3093. [PMID: 32664362 PMCID: PMC7412248 DOI: 10.3390/ma13143093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) exposed to a biological milieu will strongly interact with proteins, forming "coronas" on the surfaces of the NPs. The protein coronas (PCs) affect the properties of the NPs and provide a new biological identity to the particles in the biological environment. The characterization of NP-PC complexes has attracted enormous research attention, owing to the crucial effects of the properties of an NP-PC on its interactions with living systems, as well as the diverse applications of NP-PC complexes. The analysis of NP-PC complexes without a well-considered approach will inevitably lead to misunderstandings and inappropriate applications of NPs. This review introduces methods for the characterization of NP-PC complexes and investigates their recent applications in biomedicine. Furthermore, the review evaluates these characterization methods based on comprehensive critical views and provides future perspectives regarding the applications of NP-PC complexes.
Collapse
Affiliation(s)
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
18
|
Abbas Q, Yousaf B, Ali MU, Munir MAM, El-Naggar A, Rinklebe J, Naushad M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. ENVIRONMENT INTERNATIONAL 2020; 138:105646. [PMID: 32179325 DOI: 10.1016/j.envint.2020.105646] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/24/2023]
Abstract
The ever increasing production and use of nano-enabled commercial products release the massive amount of engineered nanoparticles (ENPs) in the environment. An increasing number of recent studies have shown the toxic effects of ENPs on different organisms, raising concerns over the nano-pollutants behavior and fate in the various environmental compartments. After the release of ENPs in the environment, ENPs interact with various components of the environment and undergoes dynamic transformation processes. This review focus on ENPs transformations in the various environmental compartments. The transformation processes of ENPs are interrelated to multiple environmental aspects. Physical, chemical and biological processes such as the homo- or hetero-agglomeration, dissolution/sedimentation, adsorption, oxidation, reduction, sulfidation, photochemically and biologically mediated reactions mainly occur in the environment consequently changes the mobility and bioavailability of ENPs. Physico-chemical characteristics of ENPs (particle size, surface area, zeta potential/surface charge, colloidal stability, and core-shell composition) and environmental conditions (pH, ionic strength, organic and inorganic colloids, temperature, etc.) are the most important parameters which regulated the ENPs environmental transformations. Meanwhile, in the environment, organisms encountered multiple transformed ENPs rather than the pristine nanomaterials due to their interactions with various environmental materials and other pollutants. Thus it is the utmost importance to study the behavior of transformed ENPs to understand their environmental fate, bioavailability, and mode of toxicity.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - Mu Naushad
- Department of Chemistry, College of Science, Bld#5, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. ENVIRONMENT INTERNATIONAL 2020; 134:105298. [PMID: 31765863 DOI: 10.1016/j.envint.2019.105298] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNMs) are novel nanomaterials with excellent physicochemical properties, which are widely used in biomedicine, energy and sensing. Besides, CNMs also play an important role in environmental pollution control, which can absorb heavy metals, antibiotics and harmful gases. However, CNMs are inevitably entering the environment while they are rapidly developing. They are harmful to living organisms in the environment and are difficult to degrade under natural conditions. Here, we systematically describe the toxicity of carbon nanotubes (CNTs), graphene (GRA) and C60 to cells, animals, humans, and microorganisms. According to the current research results, the toxicity mechanism is summarized, including oxidative stress response, mechanical damage and effects on biological enzymes. In addition, according to the latest research progress, we focus on the two major degradation methods of chemical degradation and biodegradation of CNTs, GRA and C60. Meanwhile, the reaction conditions and degradation mechanisms of degradation are respectively stated. Moreover, we have prospects for the limitations of CNM degradation under non-experimental conditions and their potential application.
Collapse
Affiliation(s)
- Zan Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaojuan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
20
|
Stripping chronopotentiometry at scanned deposition potential (SSCP): An effective methodology for dynamic speciation analysis of nanoparticulate metal complexes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Martín-de-Lucía I, Gonçalves SF, Leganés F, Fernández-Piñas F, Rosal R, Loureiro S. Combined toxicity of graphite-diamond nanoparticles and thiabendazole to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1145-1154. [PMID: 31726545 DOI: 10.1016/j.scitotenv.2019.06.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Carbon-based nanomaterials exhibit unique properties that make them suitable for a wide variety of industrial and biomedical applications. In this work, we studied the acute toxicity of graphite-diamond nanoparticles (GDN) combined with the fungicide thiabendazole (TBZ) to the immobilization of the cladoceran Daphnia magna in the presence and absence of the micro green algae Raphidocelis subcapitata, supplied as food source. The toxicity of GDN to D. magna decreased in the presence of R. subcapitata, while that of TBZ increased, the latter suggesting a carrier effect to TBZ. GDN-TBZ mixtures were fitted to the most common conceptual models applied to mixture toxicity: Concentration Addition (CA), Independent Action (IA) and Combination Index (CI). For GDN-TBZ mixtures in the absence of food the best fit was obtained with dose ratio deviation from CA model, while in the presence of food, dose level deviation from CA gave a better fit. The binary mixtures of GDN and TBZ showed synergistic toxic interactions at low concentrations, which could be attributed to the increased bioavailability of TBZ adsorbed on GDN. For higher concentrations of GDN, the binary mixtures turned antagonistic due to particle agglomeration. Our study provides evidence that deviations from additivity are dose dependent and relevant for the risk assessment of mixtures of nanoparticles with other chemical pollutants.
Collapse
Affiliation(s)
- Idoia Martín-de-Lucía
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Sandra F Gonçalves
- Department of Biology & CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Francisco Leganés
- Department of Biology, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Bownik A. Effects of ectoine on behavioral, physiological and biochemical parameters of Daphnia magna exposed to dimethyl sulfoxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:193-201. [PMID: 31129327 DOI: 10.1016/j.scitotenv.2019.05.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
DMSO is a very common solvent for hydrophobic chemicals that may pose a threat to aquatic organisms. Ectoine (ECT) is a protective amino acid produced by various strains of halophilic bacteria with high potential to alleviate detrimental effects induced by environmental stressors. This amino acid is used in many cosmetics and pharmaceuticals may enter aquatic ecosystems interacting with ions and macromolecules. Little is known on the effects of DMSO and its interaction with ECT on behavioral, physiological and biochemical endpoints of aquatic invertebrates. Therefore, the purpose of the present study was to determine protective effects of DMSO alone and in the combination with ECT on hopping frequency, swimming speed, heart rate, thoracic limb activity, catalase activity and NOx level in an animal model, Daphnia magna subjected to 0.1% and 1% DMSO alone and during combinatorial exposure to ECT (0-25 mg/L) and DMSO for 24 h and 48 h. The results showed that swimming speed, heart rate and thoracic limb activity were inhibited by both 0.1% and 1% DMSO alone however alleviating effects were observed in the combination DMSO + ECT. Thoracic limb activity was higher in the animals exposed to both solutions of DMSO alone, however the parameter was more stimulated at DMSO + ECT. The results suggest that DMSO alone may alter Daphnia behavior and physiological parameters, therefore use of the control group of non-treated animals with DMSO alone would be recommended to avoid data misinterpretation.
Collapse
Affiliation(s)
- Adam Bownik
- Institute of Biological Basis of Animal Production, University of Life Sciences, 20-950 Lublin, Poland.
| |
Collapse
|
23
|
Chen Z, Zhu X, Lv X, Huang Y, Qian W, Wang P, Li B, Wang Z, Cai Z. Alleviative Effects of C 60 on the Trophic Transfer of Cadmium along the Food Chain in Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8381-8388. [PMID: 31276389 DOI: 10.1021/acs.est.9b01636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
C60 could enhance the accumulation of pollutants in organisms, but their effects on higher trophic levels remain unknown. In the present study, the transfer of C60 from Daphnia magna to zebrafish (Danio rerio) and its effects on Cd transfer were investigated. The results showed that C60 could be transferred from D. magna to zebrafish through dietary exposure and accumulate mainly in the intestines, but biomagnification was not observed. The presence of C60 promoted accumulation of Cd in D. magna. However, it decreased Cd burden in the higher trophic level (zebrafish), displaying an alleviative effect on the trophic transfer of Cd along the food chain. To explore the underlying mechanisms, the release of Cd from D. magna in digestive fluids and changes in zebrafish digestive physiology were further investigated. The results showed that C60 did not inhibit Cd release from D. magna, but stimulated the digestive tracts of zebrafish to excrete Cd earlier and in a greater amount, which consequently lowered assimilation efficiency of Cd in zebrafish. Overall, the present study showed the trophic transfer of C60 in the aquatic food chain and revealed the effects of C60 on trophic transfer of Cd along the food chain in aquatic environment.
Collapse
Affiliation(s)
- Zuohong Chen
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai) , Zhuhai 519000 , P.R. China
| | - Xiaohui Lv
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Yuxiong Huang
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , P.R. China
| | - Wei Qian
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Pu Wang
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Bing Li
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering , Jiangnan University , Wuxi 214122 , P.R. China
| | - Zhonghua Cai
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| |
Collapse
|
24
|
Cai C, Zhao M, Yu Z, Rong H, Zhang C. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:205-217. [PMID: 30690355 DOI: 10.1016/j.scitotenv.2019.01.180] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s are toxic and non-biodegradable environmental pollutants. The contamination of sediments with heavy metal(loid)s has attracted increasing attention due to the negative environmental effects of heavy metal(loid)s and the development of new remediation techniques for metal(loid) contaminated sediments. As a result of rapid nanotechnology development, nanomaterials are also being increasingly utilized for the remediation of contaminated sediments due to their excellent capacity of immobilizing/adsorbing metal(loid) ions. This review summarizes recent studies that have used various nanomaterials such as nanoscale zero-valent iron (nZVI), stabilizer-modified nZVI, nano apatite based-materials including nano-hydroxyapatite particles (nHAp) and stabilized nano-chlorapatite (nCLAP), carbon nanotubes (CNTs), and titanium dioxide nanoparticles (TiO2 NPs) for the remediation of heavy metal(loid) contaminated sediments. We also review the analysis of potential mechanisms involved in the interaction of nanomaterials with metal(loid) ions. Subsequently, we discuss the factors affecting the nanoparticle-heavy metal(loid)s interaction, the environmental impacts resulting from the application of nanomaterials, the knowledge gaps, and potential future research.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chaosheng Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
25
|
Martínez-Paz P, Negri V, Esteban-Arranz A, Martínez-Guitarte JL, Ballesteros P, Morales M. Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:42-48. [PMID: 30690261 DOI: 10.1016/j.aquatox.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, due to the physical, chemical, electrical, thermal and mechanical properties of carbon nanotubes (CNT), its have been currently incorporated into biomedical products and they are employed in drug delivery drug administration, biosensor design, microbial treatments, consumer products, and new products containing CNT are expected in the future. CNT are hydrophobic and have a tendency to accumulate in sediments if they are released into aquatic ecosystems. Vertebrate studies have revealed concerns about the toxicity of carbon nanotubes, but there is very limited data on the toxic effects in aquatic invertebrate species. The aim of the present study is to determine the effects of MWCNT in Chironomus riparius at the molecular level, understanding its mode of action and analyzing the suitability of this species to monitor and assess risk of nanomaterials in aquatic ecosystems. To evaluate possible toxic effects caused by carbon nanotube environmental dispersion with regard to aquatic compartment, we study the mRNA levels of several related genes with DNA repairing mechanisms, cell stress response, cell apoptosis and cytoskeleton by Real-Time PCR and proposed a freshwater invertebrate C. riparius, which is a reference organism in aquatic toxicology. The obtained results show a transcriptional alteration of some genes included in this study, indicating that different cell processes are affected and providing one the first evidences in the mechanisms of action of MWCNT in invertebrates. Moreover, this data reinforces the need for further studies to assess the environmental risk of nanomaterial to prevent future damage to aquatic ecosystems.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Viviana Negri
- Laboratorio de Síntesis Orgánica e Imagen Molecular por Resonancia Magnética, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Adrian Esteban-Arranz
- Nanomedicine Lab, Faculty of Biology, Medicine and Health and National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Ballesteros
- Laboratorio de Síntesis Orgánica e Imagen Molecular por Resonancia Magnética, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Zhang T, Tang M, Yao Y, Ma Y, Pu Y. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity. Int J Nanomedicine 2019; 14:993-1009. [PMID: 30799918 PMCID: PMC6369850 DOI: 10.2147/ijn.s191689] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Protein adsorption onto nanoparticles in the form of protein corona, affects properties of nanomaterials and their behavior in the biological milieu. This study aims at exploring the effects of multiwalled carbon nanotubes (MWCNTs) surface chemistry on bovine serum albumin (BSA) and immunoglobulin G (IgG), including their adsorption behavior and spatial configurations, as well as the impact on cellular uptake, cytotoxicity, and cellular responses. METHODS Three types of MWCNTs (pristine MWCNTs, MWCNTs-COOH, and MWCNTs-PEG) were synthesized by classical chemical reduction. The size, morphology, hydrodynamic size, and zeta potential were characterized using transmission electron microscopy and dynamic light scattering. MWCNTs were exposed to BSA and IgG solutions, then the amount of MWCNT absorption was performed by bicinchoninic acid assay, and the effects were assessed by utilizing fluorescence spectroscopy, circular dichroism (CD) spectroscopy. Quantitative measurement of MWCNTs uptake with or without protein corona was performed as turbidity method. CCK assay and a microdilution method were performed to evaluate the effects of protein corona on cytotoxicity and pro-inflammatory cytokines release. RESULTS The BSA and IgG adsorption capacities of MWCNTs followed the order pristine MWCNTs>MWCNTs-COOH and MWCNTs-PEG. MWCNT binding can cause fluorescence quenching and conformational changes in BSA and IgG, indicating that both the physicochemical properties of MWCNTs and protein properties play critical roles in determining their adsorption behavior. Further study showed time-dependent increases in MWCNT cellular uptake and internalization. Hydrophobicity is the major factor increasing cellular uptake of pristine MWCNTs, but a protein corona enriched with dysoposnins is the main factor reducing uptake of MWCNT-COOH by RAW264.7 cells. The cytotoxicity and pro-inflammatory response related to physicochemical properties of MWCNTs, and frustrated phagocytosis is a key initiating event in the pro-inflammatory response of MWCNT-exposed macrophages. CONCLUSION These findings shed light on how functionalized MWCNTs interact with protein coronas and provide useful insight into the dramatic effect of protein coronas on different functionalized MWCNTs. These events affect cellular uptake and cytotoxicity, which could inform how to enhance MWCNT biocompatibility and develop approaches for managing MWCNT hazards.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University, Nanjing, Jiangsu, 210009, China,
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China,
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University, Nanjing, Jiangsu, 210009, China,
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China,
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University, Nanjing, Jiangsu, 210009, China,
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University, Nanjing, Jiangsu, 210009, China,
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University, Nanjing, Jiangsu, 210009, China,
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China,
| |
Collapse
|
27
|
Parada J, Rubilar O, Diez MC, Cea M, Sant'Ana da Silva A, Rodríguez-Rodríguez CE, Tortella GR. Combined pollution of copper nanoparticles and atrazine in soil: Effects on dissipation of the pesticide and on microbiological community profiles. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:228-236. [PMID: 30196035 DOI: 10.1016/j.jhazmat.2018.08.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 05/23/2023]
Abstract
Copper nanoparticles (NCu) have been proposed as an antimicrobial agent in agriculture. Therefore, NCu may interact with numerous pollutants including pesticides. Little is known about the combined effects of NCu and pesticides in soil. This study aimed at assessing the impact of NCu combined with the herbicide atrazine (ATZ) on soil. We focused on assessing the adsorption and dissipation of ATZ in the presence of NCu and the changes in microbial community profiles. First, ATZ adsorption isotherms (described using the Freundlich equation) were evaluated. After that, soil samples were spiked with NCu (40-60 nm) at 0.05 and 0.15% w/w and ATZ (3 mg a.i kg-1) and incubated for 30 days. The results showed that ATZ adsorption is favored by the presence of NCu. On the other hand, NCu at 0.15% w/w caused a significant decrease in ATZ dissipation, increasing its half-life from 6 to 37 days. Microbial community profiles (bacteria, fungi and nitrifying bacteria) remained relatively stable throughout the evaluated period. Therefore, our findings suggest that NCu can increase the persistence of ATZ in soil, which may be mostly associated to physical-chemical interaction with soil particles more than a microbial impact.
Collapse
Affiliation(s)
- J Parada
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Temuco, Chile; Laboratorio de Nanobiotecnología Ambiental, Universidad de La Frontera, Temuco, Chile
| | - M C Diez
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Temuco, Chile
| | - M Cea
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - A Sant'Ana da Silva
- National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, 20081-312, RJ, Brazil; Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, RJ, Brazil
| | - C E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - G R Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Temuco, Chile; Laboratorio de Nanobiotecnología Ambiental, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
28
|
Trompeta AFA, Preiss I, Ben-Ami F, Benayahu Y, Charitidis CA. Toxicity testing of MWCNTs to aquatic organisms. RSC Adv 2019; 9:36707-36716. [PMID: 35539094 PMCID: PMC9075126 DOI: 10.1039/c9ra06672a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
The increase in global production of carbon nanotubes (CNTs), as well as their use in polymer nanocomposites has raised concerns as to their possible effects on the marine environment that could ultimately affect human populations. Specifically, CNTs have already been tested in antifouling formulations for the prevention of biofouling, mainly to protect ships' hulls, as well as in composite materials that come in contact with seawater. At this point, it seems crucial to assess the possible effects of CNTs on aquatic organisms and assess their toxicity. Thus, in this study, three different model organisms were selected for toxicity testing: Daphnia magna water flea, Artemia salina nauplii and Danio rerio zebrafish. The CNTs that were tested have been produced in house via the chemical vapour deposition method and were fully characterised in order to understand the effect of their properties on the aquatic organisms. In this study pristine multiwalled carbon nanotubes (MWCNTs) as well as functionalised with carboxyl groups were used. Dispersion issues were evident in all tests, both for the pristine and functionalised carbon nanotubes, thus their toxicity could not be determined in relation to their concentration. To overcome this issue, optical observation of the organisms took place. MWCNT black aggregates were clearly observed in the intestine of A. salina. Following an additional 24 h in seawater the intestine appeared clean and restored to its normal appearance. This observation leads to the conclusion that MWCNTs did not prove to be fatal to D. magna and A. salina despite their presence in the digestive track of both non-target organisms. These results show that MWCNTs do not affect the non-target organisms in the short term, thus their use in antifouling coatings and composite materials for maritime applications can be further investigated. Optical observation of Artemia salina′s intestine after 100 mg L−1 MWCNT-COOH exposure: the intestine appeared clean and restored to its normal appearance.![]()
Collapse
Affiliation(s)
- Aikaterini-Flora A. Trompeta
- Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology
- School of Chemical Engineering
- National Technical University of Athens
- Athens
- Greece
| | - Iris Preiss
- School of Zoology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Frida Ben-Ami
- School of Zoology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Yehuda Benayahu
- School of Zoology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology
- School of Chemical Engineering
- National Technical University of Athens
- Athens
- Greece
| |
Collapse
|
29
|
Bhattacharjee B, Pal PK, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D. Aqueous bark extract of Terminalia arjuna protects against cadmium-induced hepatic and cardiac injuries in male Wistar rats through antioxidative mechanisms. Food Chem Toxicol 2018; 124:249-264. [PMID: 30529122 DOI: 10.1016/j.fct.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is one of the most ubiquitous toxic heavy metal in the environment. The present study was conducted to evaluate the protective role of aqueous bark extract of Terminalia arjuna (TA) against Cd induced oxidative damage in hepatic and cardiac tissues as the TA bark extract has folkloric medicinal use in the treatment of various hepatic and cardiac disorders. Male Wistar rats were divided into 4 groups. The control group was treated with normal saline as the vehicle; the second group orally administered with TA (20 mg/kg bw) daily for 15 days; the third group injected with Cd-acetate (0.44 mg/kg bw, s.c.) every alternate day for a period of 15 days; and the fourth group was administered with TA, 60 min prior to Cd treatment. The biomarkers of organ damage were significantly increased in the Cd treated groups. Besides, a significant alteration in the tissue levels of biomarkers of oxidative stress, the activities and the levels of antioxidant enzymes was observed following treatment with Cd. Additionally, some of the enzymes were found to be inhibited uncompetitively by Cd when tested in an in vitro system. Furthermore, evidence gathered from studies on the histological parameters and mitochondrial membrane potential in both the tissues argue in favour of the possible protective role of TA against Cd induced damage. Finally, gas chromatography-mass spectrometry revealed the presence of eight major bioactive phytochemicals in aqueous bark extract of TA having potent free radical scavenging property. The results indicate that the extract could protect hepatic and cardiac tissues against Cd-induced oxidative stress mediated damages through antioxidant mechanism(s).
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Arnab Kumar Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India; Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
30
|
Yan Z, Sun H, Jiang R, Dong H, Yang H, Liu J, Lu G, Ji Y. Accumulation, metabolite and active defence system responses of fluoxetine in zebrafish embryos: Influence of multiwalled carbon nanotubes with different functional groups. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:204-212. [PMID: 30399532 DOI: 10.1016/j.aquatox.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Studies on the bioavailability of organic contaminants adsorbed to nanomaterials are increasing. In this study, we investigated the interaction between fluoxetine (FLX) and three multiwalled carbon nanotubes (MWCNTs) with different functional groups in zebrafish (Danio rerio) embryos, focusing on the FLX accumulation, the formation of the metabolite norfluoxetine (NFLX), and the active defence system responses. The accumulation of FLX in zebrafish was intensified by MWCNTs (46-99%), which simultaneously facilitated the formation of the metabolite NFLX by 23-167%. The consistent enhancement revealed that the absorbed FLX is bioavailable in zebrafish. Moreover, the coexisting MWCNTs further promoted the influences of FLX on the active defence system in zebrafish (e.g. antioxidant and metabolic function), eliciting the defence function. The influences of MWCNTs on the bioavailability of FLX in zebrafish could be ordered as OH-MWCNTs > COOH-MWCNTs > pristine MWCNTs. The release of FLX from MWCNTs in biofluids may partially contribute to these significant alterations. In particular, MWCNTs themselves may also modulate the bioavailability of FLX in zebrafish by downregulating the gene expression of membrane ATP-binding cassette transporter (abcb4). These findings demonstrated that MWCNTs increased the bioavailability of FLX in zebrafish, especially the functionalized MWCNTs. The production of metabolites may be a useful bio-endpoint to evaluate the bioavailability of adsorbed contaminants on nanomaterials.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongwei Sun
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Yong Ji
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| |
Collapse
|
31
|
Liu Y, Nie Y, Wang J, Wang J, Wang X, Chen S, Zhao G, Wu L, Xu A. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:92-102. [PMID: 29990744 DOI: 10.1016/j.ecoenv.2018.06.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Emerging nanoscience and nanotechnology inevitably facilitate discharge of engineered nanomaterials (ENMs) into the environment. Owing to their versatile physicochemical properties, ENMs invariably come across and interact with various pollutants already existing in the environment, leading to considerable uncertainty regarding the risk assessment of pollutants. Nevertheless, the underlying mechanisms of the complicated joint toxicity are still largely unexplored. This review aims to aid in understanding the interaction of ENMs and pollutants from the perspective of ecological and environmental health risk assessment. Based on related research published from 2005 to 2018, this review focuses on summarizing the effect of ENMs on the toxicity of pollutants both in vivo and in vitro. Physicochemical interaction appears as a main factor affecting ENMs-pollutants joint toxicity, with the mechanisms and the resultants for ENM-pollutant adsorption been illustrated. Cellular and molecular mechanisms involved in the joint toxicity of ENMs and pollutants are discussed, including the effect of ENMs on the bioaccumulation, biodistribution, and metabolism of pollutants, as well as the defense responses of organisms against such pollutants. Future in-depth investigation are suggested to focus on further exploring biological mechanisms (especially for the antagonized effect of ENMs against pollutants), using more advanced mammalian models, and paying more attention to the realistic exposure scenarios.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Jingjing Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
32
|
Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1170-1181. [PMID: 29710572 DOI: 10.1016/j.scitotenv.2018.04.180] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The usage of engineered nanomaterials (NM) offers many novel products and applications with advanced features, but at the same time raises concerns with regard to potential adverse biological effects. Upon release and emission, NM may interact with chemicals in the environment, potentially leading to a co-exposure of organisms and the occurrence of mixture effects. A prominent idea is that NM may act as carriers of chemicals, facilitating and enhancing the entry of substances into cells or organisms, subsequently leading to an increased toxicity. In the literature, the term 'Trojan-horse effect' describes this hypothesis. The relevance of this mechanism for organisms is, however, unclear as yet. Here, a review has been performed to provide a more systematic picture on existing evidence. It includes 151 experimental studies investigating the exposure of various NM and chemical mixtures in ecotoxicological in vitro and in vivo model systems. The papers retrieved comprised studies investigating (i) uptake, (ii) toxicity and (iii) investigations considering both, changes in substance uptake and toxicity upon joint exposure of a chemical with an NM. A closer inspection of the studies demonstrated that the existing evidence for interference of NM-chemical mixture exposure with uptake and toxicity points into different directions compared to the original Trojan-horse hypothesis. We could discriminate at least 7 different categories to capture the evidence ranging from no changes in uptake and toxicity to an increase in uptake and toxicity upon mixture exposure. Concluding recommendations for the consideration of relevant processes are given, including a proposal for a nomenclature to describe NM-chemical mixture interactions in consistent terms.
Collapse
Affiliation(s)
- Steffi Naasz
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
33
|
Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. CHEMOSPHERE 2018; 206:255-264. [PMID: 29753288 DOI: 10.1016/j.chemosphere.2018.05.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained significant development over the past decades, which led to the revolution in the fields of information, medicine, industry, food security and aerospace aviation. Nanotechnology has become a new research hot spot in the world. However, we cannot only pay attention to its benefit to the society and economy, because its wide use has been bringing potential environmental and health effects that should be noticed. This paper reviews the recent progress from 2015-present in the toxicity of various carbon nanomaterials to plants, animals and microbes, and lays the foundation for further study on the environmental and ecological risks of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shuang Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yingzhu Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
34
|
Morozesk M, Franqui LS, Mansano AS, Martinez DST, Fernandes MN. Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: The influence of two co-exposure protocols on in vitro toxicity tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:136-147. [PMID: 29751160 DOI: 10.1016/j.aquatox.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies.
Collapse
Affiliation(s)
- Mariana Morozesk
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil
| | - Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of Sao Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil.
| | - Marisa N Fernandes
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
35
|
Mülhopt S, Diabaté S, Dilger M, Adelhelm C, Anderlohr C, Bergfeldt T, Gómez de la Torre J, Jiang Y, Valsami-Jones E, Langevin D, Lynch I, Mahon E, Nelissen I, Piella J, Puntes V, Ray S, Schneider R, Wilkins T, Weiss C, Paur HR. Characterization of Nanoparticle Batch-To-Batch Variability. NANOMATERIALS 2018; 8:nano8050311. [PMID: 29738461 PMCID: PMC5977325 DOI: 10.3390/nano8050311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced.
Collapse
Affiliation(s)
- Sonja Mülhopt
- Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Silvia Diabaté
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Marco Dilger
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Christel Adelhelm
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Christopher Anderlohr
- Institute for Technical Thermodynamics and Refrigeration (ITTK), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Thomas Bergfeldt
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Johan Gómez de la Torre
- Department of Engineering Sciences, Applied Materials Science, Uppsala University, 752 36 Uppsala, Sweden.
| | - Yunhong Jiang
- Department of Architecture and Civil Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK.
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Dominique Langevin
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Sud 11, Université Paris Saclay, 91190 Saint-Aubin, France.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eugene Mahon
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland.
| | - Inge Nelissen
- Health Department, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium.
| | - Jordi Piella
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain.
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain.
| | - Sikha Ray
- Science and Technology of Nanosystems (STN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Reinhard Schneider
- Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Terry Wilkins
- Faculty of Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | - Carsten Weiss
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Hanns-Rudolf Paur
- Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| |
Collapse
|
36
|
Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, Da Silva De Assis HC, Schnitzler MC, Schnitzler DC, Carneiro PG, Cestari MM. Evaluation of multiwalled carbon nanotubes toxicity in two fish species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:215-223. [PMID: 29287268 DOI: 10.1016/j.ecoenv.2017.12.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Carbon Nanotubes are among the most promising materials for the technology industry. Their unique physical and chemical proprieties may reduce the production costs and improve the efficiency of a large range of products. However, the same characteristics that have made nanomaterials interesting for industry may be responsible for inducing toxic effects on the aquatic organisms. Since the carbon nanotubes toxicity is still a controversial issue, we performed tests of acute and subchronic exposure to a commercial sample of multiwalled carbon nanotubes in two fish species, an exotic model (Danio rerio) and a native one (Astyanax altiparanae). Using the alkaline version of the comet assay on erythrocytes and the piscine micronucleous, also performed on erythrocytes, it was verified that the tested carbon nanotubes sample did not generate apparent genotoxicity by means of single/double DNA strand break or clastogenic/aneugenic effects over any of the species, independently of the exposure period. Although, our findings indicate the possibility of the occurrence of CNTs-DNA crosslinks. Apparently, the sample tested induces oxidative stress after subchronic exposure as shown by activity of superoxide dismutase and catalase. The data obtained by the activity levels of acetylcholinesterase suggests acute neurotoxicity in Astyanax altiparanae and subchronic neurotoxicity in Danio rerio.
Collapse
Affiliation(s)
- Giovani Valentin Cimbaluk
- Laboratório de citogenética animal e mutagênese ambiental da Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Wanessa Algarte Ramsdorf
- Laboratório de ecotoxicologia da Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | - Mariane Cristina Schnitzler
- Laboratório de química orgânica e nanoestruturas da Universidade Federal de São João Del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | - Danielle Caroline Schnitzler
- Laboratório de Estudos em Matrizes Ambientais: Sedimento, Solo e Água Universidade - Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | - Pedro Gontijo Carneiro
- Laboratório de química orgânica e nanoestruturas da Universidade Federal de São João Del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | - Marta Margarete Cestari
- Laboratório de citogenética animal e mutagênese ambiental da Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
37
|
Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:328-337. [PMID: 29154051 DOI: 10.1016/j.scitotenv.2017.11.095] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 05/20/2023]
Abstract
An increasing amount of carbon-based nanomaterials (CNM) (mostly fullerenes, carbon nanotubes and graphene) has been observed in aquatic systems over the last years. However, the potential toxicity of these CNM on aquatic ecosystems remains unclear. This paper reviews the existing literature on the toxic effects of CNM in aquatic organisms as well as the toxic effects of CNM through influencing the toxicity of other micro-pollutants, and outlines a series of research needs to reduce the uncertainty associated with CNMs toxic effects. The results show that environmental concentrations of CNM do not pose a threat on aquatic organisms on their own. The observed concentrations of CNM in aquatic environments are in the order of ngL-1 or even lower, much below than the lowest observed effect concentrations (LOEC) on different aquatic organisms (in the order of mgL-1). Toxic effects have been mainly observed in short-term experiments at high concentrations, and toxicity principally depends on the type of organisms, exposition time and CNM preparation methods. Moreover, we observed that CNM interact (establishing synergistic and/or antagonistic effects) with other micro-pollutants. Apparently, the resulting interaction is highly dependent on the chemical properties of each micro-pollutant, CNM acting either as carriers or as sorbents, thereby modifying the original toxicity of the contaminants. Results stress the need of studying the interactive effects of CNM with other micro-pollutants at environmental relevant concentrations, as well as their effects on biological communities in the long-term.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain
| | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit 101, 17003.Girona, Spain; GRECO, Institute of Aquatic Ecology, Campus Montilivi, 17130. University of Girona, Spain
| |
Collapse
|
38
|
Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. PLoS One 2018; 13:e0194935. [PMID: 29596457 PMCID: PMC5875790 DOI: 10.1371/journal.pone.0194935] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 01/03/2023] Open
Abstract
Increased production of carbon nanotubes (CNTs) and their widespread application in industrial and consumer products have led to a rise in the release of CNTs into the aquatic environment. CNTs have a very strong adsorption affinity for various environmental contaminants; therefore, they may also influence the toxic effects of other pollutants, such as toxic metals. In this study, the effect of two different functionalized carbon nanotubes, carboxylate and polyethyleneimine modified multi-walled carbon nanotubes (C-MWCNTs and N-MWCNT, respectively) on lead toxicity and bioaccumulation was investigated with a freshwater zooplankton Daphnia magna. The acute toxicity results indicate that the different surface properties of the two types of MWCNTs have different effects on lead toxicity to D. magna. The negatively charged C-MWCNT showed a notable decrease in lead toxicity (LC50 value increased from 0.15 mg L-1 to 1.08 mg L-1 in the presence of 10 mg L-1 C-MWCNT), whereas the positively charged N-MWCNT had only a slight effect on lead toxicity (LC50 value increased from 0.15 mg L-1 to 0.16 mg L-1 in the presence of 10 mg L-1 N-MWCNT). The decrease of lead toxicity was related with the reduced bioavailability of free metal form (Pb2+) caused by greater adsorption of lead onto the MWCNTs. The present study suggests that there is a need to consider carefully the complex interaction of CNTs with toxic metals in future ecotoxicological studies.
Collapse
|
39
|
Ren X, Zhao X, Duan X, Fang Z. Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO 2 can lead to adverse reproductive outcomes in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:612-622. [PMID: 29107901 DOI: 10.1016/j.envpol.2017.10.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO2) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 μg L-1 TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L-1 nano-TiO2 for 21 days. Nano-TiO2 can absorb TDCIPP and nano-TiO2 is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO2 adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO2 resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO2 is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Ziwei Fang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| |
Collapse
|
40
|
Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 2017. [DOI: 10.1080/17435390.2017.1343404] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | | | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jorge L. Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, USA
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|