1
|
Dione MN, Shang S, Zhang Q, Zhao S, Lu X. Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:1045. [PMID: 39202405 PMCID: PMC11354197 DOI: 10.3390/genes15081045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
With the advancement of terahertz technology, unveiling the mysteries of terahertz has had a profound impact on the field of biomedicine. However, the lack of systematic comparisons for gene expression signatures may diminish the effectiveness and efficiency of identifying common mechanisms underlying terahertz effects across diverse research findings. We performed a comprehensive review and meta-analysis to compile patterns of gene expression profiles associated with THz radiation. Thorough bibliographic reviews were conducted, utilizing the PubMed, Embase, Web of Science, and ProQuest databases to extract references from published articles. Raw CEL files were obtained from Gene Expression Omnibus and preprocessed using Bioconductor packages. This systematic review (Registration No. CDR42024502937) resulted in a detailed analysis of 13 studies (14 papers). There are several possible mechanisms and pathways through which THz radiation could cause biological changes. While the established gene expression results are largely associated with immune response and inflammatory markers, other genes demonstrated transcriptional outcomes that may unravel unknown functions. The enrichment of genes primarily found networks associated with broader stress responses. Altogether, the findings showed that THz can induce a distinct transcriptomic profile that is not associated with a microthermal cellular response. However, it is impossible to pinpoint a single gene or family of genes that would accurately and reliably justify the patterns of gene expression response under THz exposure.
Collapse
Affiliation(s)
- Mactar Ndiaga Dione
- School of Life Science and Technology, Xi’an Jiaotong University (XJTU), Xi’an 710049, China
| | - Sen Shang
- School of Life Science and Technology, Xi’an Jiaotong University (XJTU), Xi’an 710049, China
| | - Qi Zhang
- School of Life Science and Technology, Xi’an Jiaotong University (XJTU), Xi’an 710049, China
| | - Sicheng Zhao
- School of Life Science and Technology, Xi’an Jiaotong University (XJTU), Xi’an 710049, China
| | - Xiaoyun Lu
- School of Life Science and Technology, Xi’an Jiaotong University (XJTU), Xi’an 710049, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
2
|
Khira R, Uggini GK. Effects of non-ionizing radio frequency electromagnetic radiation on the development and behavior of early embryos of Danio rerio. Electromagn Biol Med 2024; 43:156-163. [PMID: 38734994 DOI: 10.1080/15368378.2024.2352429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Biological effects of radio frequency electromagnetic radiation (RF-EMR) in the range of 900-1800 MHz emerging from the mobile phone were investigated and were found to influence the locomotor pattern when exposure was initiated from 1 hour post fertilization (hpf) in zebrafish embryos (ZE), Danio rerio. Mobile phones and other wireless devices offer tremendous advantages. However, on the flipside they are leading to an increased electromagnetic energy in the environment, an excess of which could be termed as electromagnetic pollution. Herein, we tried to understand the effects of RF-EMR emerging from the mobile phone, on the development and behavior of ZE, exposed to RF-EMR (specific absorption rate of 1.13 W/kg and 1800 MHz frequency) 1 hr daily, for 5 days. To understand if there could be any developmental stage-specific vulnerability to RF-EMR, the exposure was initiated at three different time points: 1hpf, 6hpf and 24hpf of ZE development. Observations revealed no significant changes in the survival rate, morphology, oxidative stress or cortisol levels. However, statistically significant variations were observed in the batch where exposure started at 1hpf, with respect to locomotion patterns (distance travelled: 659.1 ± 173.1 mm Vs 963.5 ± 200.4 mm), which could be correlated to anxiety-like behavior; along with a corresponding increase in yolk consumption (yolk sac area: 0.251 ± 0.019 mm2 Vs 0.225 ± 0.018 mm2). Therefore, we conclude that RF-EMR exposure influences the organism maximally during the earliest stage of development, and we also believe that an increase in the time of exposure (corresponding to the patterns of current usage of mobile phones) might reveal added afflictions.
Collapse
Affiliation(s)
- Rifat Khira
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Gowri K Uggini
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
3
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Chen W, Zhang Y, Shi Z. Effect of extremely low frequency electromagnetic field on the pathogenicity of Magnaporthe oryzae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161939. [PMID: 36731572 DOI: 10.1016/j.scitotenv.2023.161939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Numerous works have reported that extremely low frequency electromagnetic fields (ELF-EMFs) were associated with human health; however, little is known about their effects on the occurrence of agricultural diseases. In this study, Magnaporthe oryzae was used as a model organism, and its pathogenicity under 50 Hz, 3 mT ELF-EMF was studied. Our results showed that the pathogenicity, growth rate, and conidia generation of M. oryzae were enhanced under ELF-EMF exposure. In addition, M. oryzae exposed to ELF-EMF showed enhanced tolerance to cell wall-perturbing agents sodium lauryl sulphate, and increased expression of cell wall integrity-related genes, including RAC1, CDC42, RHO2, and NOX2. In addition, the level of reactive oxygen species (ROS) and the expression level of ROS scavenger system-related gene MoAP1 increased in ELF-EMF-exposed samples, whereas the total antioxidant capacity and the activities of superoxide dismutase and catalase did not change. Results of our study demonstrated that exposure to 50 Hz, 3 mT ELF-EMF enhanced the infection ability of M. oryzae, which present new important challenges for understanding the effect of ELF-EMF exposure on farmland ecology, especially on agricultural diseases.
Collapse
Affiliation(s)
- Wanqiu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Yingrong Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Zhenhua Shi
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Najera A, Ramis R, Las-Heras Andes F, Garcia-Pardo C, Alonso JI, Gonzalez-Rubio J, Hernando A, Martinez JL, Marcos FV. Comments on "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid". ENVIRONMENTAL RESEARCH 2022; 212:113314. [PMID: 35500852 DOI: 10.1016/j.envres.2022.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Alberto Najera
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Rebeca Ramis
- Chronic Diseases Department, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.
| | - Fernando Las-Heras Andes
- Signal Theory and Communications (TSC-UNIOVI), Dept. of Electrical Engineering, University of Oviedo, Oviedo, Spain.
| | | | - Jose I Alonso
- Dpto. Señales, Sistemas y Radiocomunicaciones, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jesus Gonzalez-Rubio
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Antonio Hernando
- Instituto de Magnetismo Aplicado, Complutense University, Madrid, Spain; IMDEA, Nanociencia, Universidad Antonio de Nebrija, Madrid and Donosti International Physics Center, San Sebastián, Spain.
| | | | - Francisco Vargas Marcos
- Department: General Sub-Directorate of Environmental Health and Occupational Health, General Directorate of Public Health, Ministry of Health, Madrid, Spain.
| |
Collapse
|
6
|
Pegios A, Kavvadas D, Ζarras K, Mpani K, Soukiouroglou P, Charalampidou S, Vagdatli E, Papamitsou T. The Effect of Electromagnetic Radiation Transmitted from Routers on Antibiotic Susceptibility of Bacterial Pathogens. J Biomed Phys Eng 2022; 12:327-338. [PMID: 36059284 PMCID: PMC9395630 DOI: 10.31661/jbpe.v0i0.2111-1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Electromagnetic non-ionizing radiation has both thermal and non-thermal outcomes on biological systems, such as humans, animals, and bacteria. OBJECTIVE This study aimed to investigate the effect of non-ionizing radiofrequency radiation, emitted by Wi-Fi routers, on bacterial strains and the modification of their susceptibility to modern antibiotics. MATERIAL AND METHODS In this case-control paired study, four bacteria were selected, and one colony from each bacterial strain was exposed to Wi-Fi radiation forming the exposure group. Another set of colonies was not exposed to Wi-Fi radiation, forming the control group. Eight different antibiotic disks were set on the bacterial plates, and the inhibition zone was measured every 3 h for each colony. RESULTS Electromagnetic radiation affects bacterial colonies and their susceptibility to antibiotics. Analysis revealed statistically significant differences, correlated with the bacterial strain, the antibiotic agent, and the time of the exposure, in the inhibition zones, mostly after 6 and 24 h (p-value < 0.05). CONCLUSION A correlation was observed between antibiotic susceptibility and non-ionizing radiofrequency exposure. Studying the effects of radiofrequency radiation on prokaryotic organisms could clarify more complicated cell structures and organisms, such as eukaryotic. Further experiments, in vitro and in vivo, could provide more information about these outcomes and cause experts to discuss the current guidelines of exposure limits.
Collapse
Affiliation(s)
- Athanasios Pegios
- MD, Pediatric Surgeon, Hippokratio General Hospital, Thessaloniki, Greece
| | - Dimitrios Kavvadas
- PhD Candidate, Histology and Embryology Laboratory, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Konstantinos Ζarras
- MD, Department of Molecular Biology and Genetics, Democritus University of Thrace, Greece
| | - Konstantia Mpani
- MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Prodromos Soukiouroglou
- MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Sofia Charalampidou
- MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Eleni Vagdatli
- PhD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Theodora Papamitsou
- PhD, Histology and Embryology Laboratory, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
7
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
8
|
Pareja-Peña F, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Evidences of the (400 MHz - 3 GHz) radiofrequency electromagnetic field influence on brain tumor induction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:121-130. [PMID: 32149530 DOI: 10.1080/09603123.2020.1738352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Due to the massive increase in non-ionizing radiation emitting devices, the social concern about the possible malignancy to its exposure has increased the research interest. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) included the radiofrequency electromagnetic field (RF-EMF) of mobile phones on the category 2B as 'possibly' carcinogenic to humans. Epidemiological studies noticed a causal association between the exposure to RF-EMF and the incidence of brain neoplasm in different populations, since this is the organ with the highest specific absorption rate. The fact that so many of the ipsilateral tumors found are statistically significant with RF-EMF exposure provides weight suggesting causality. In this way, the higher the exposure (ipsilateral vs contralateral), the longer the cumulative exposure (hours of exposure) and the longer the latency (beyond 10 years); the greater the risk. In addition, considering together all of these parameters suggest a strong causality.
Collapse
Affiliation(s)
- Fernando Pareja-Peña
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
9
|
Srivasatav S, Mishra J, Keshari P, Verma S, Aditi R. Impact of Radiation on Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:71-82. [PMID: 36472817 DOI: 10.1007/978-3-031-12966-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In today's time, environmental aspects, lifestyle changes, and person's health coalesce to form stupendous impact on the fertility. All of us are knowingly or unknowingly exposed to several types of radiation. These can lead to collection of early and delayed adverse effects of which infertility is one. A spurt in the number of cases of male infertility may be attributed to intense exposure to heat, pesticides, radiations, radioactivity, and other hazardous substances. Radiation both ionizing and non-ionizing can lead to adverse effects on spermatogenesis. Though thermal and non-thermal interactions of radiation with biological tissue can't be ruled out, most studies emphasize on the generation of reactive oxygen species (ROS). In addition, radiation pathophysiology also involves the role of kinases in cellular metabolism, endocrine system, genotoxicity, and genomic instability. In this study, we intend to describe a detailed literature on the impact of ionizing and non-ionizing radiation on male reproductive system and understand its consequences leading to the phenomenon of male infertility.
Collapse
Affiliation(s)
- Srijan Srivasatav
- Department of Pathology, Veer Chandra Singh Garhwali Govt, Institute of Medical Sciences and Research, Srinagar, Uttarakhand, India
| | - Jyoti Mishra
- Department of Pathology, School of Medical Sciences and Research, Sharda Hospital, Greater Noida, Uttar Pradesh, India.
| | - Priyanka Keshari
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Shailza Verma
- Department of Pathology, School of Medical Sciences and Research, Sharda Hospital, Greater Noida, Uttar Pradesh, India
| | - Raina Aditi
- Department of Pathology, Saraswathi Institute of Medical Sciences, Anwarpur, Uttar Pradesh, India
| |
Collapse
|
10
|
Rivera González MX, Félix González N, López I, Ochoa Zambrano JS, Miranda Martínez A, Maestú Unturbe C. Compact Exposimeter Device for the Characterization and Recording of Electromagnetic Fields from 78 MHz to 6 GHz with Several Narrow Bands (300 kHz). SENSORS (BASEL, SWITZERLAND) 2021; 21:7395. [PMID: 34770707 PMCID: PMC8588337 DOI: 10.3390/s21217395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
A novel compact device with spectrum analyzer characteristics has been designed, which allows the measuring of the maximum power received in multiple narrow frequency bands of 300 kHz, recording the entire spectrum from 78 MHz to 6 GHz; the device is capable of measuring the entire communications spectrum and detecting multiple sources of electromagnetic fields using the same communications band. The proposed device permits the evaluation of the cross-talk effect that, in conventional exposimeters, generates a mistake estimation of electromagnetic fields. The device was calibrated in an anechoic chamber for far-fields and was validated against a portable spectrum analyzer in a residential area. A strong correlation between the two devices with a confidence higher than 95% was obtained; indicating that the device could be considered as an important tool for electromagnetic field studies.
Collapse
Affiliation(s)
- Marco Xavier Rivera González
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Nazario Félix González
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Isabel López
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | | | - Andrés Miranda Martínez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Ceferino Maestú Unturbe
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
11
|
Abstract
Protection against the electromagnetic fields around high-voltage transmission lines is an issue of great importance, especially in the case of buildings near power lines. Indeed, the developed fields can be harmful for the habitants and electrical/electronic devices, so the implementation of appropriate measures to address the above electromagnetic interference issue is necessary in order to ensure the safety of both human beings and equipment. Several practices have been proposed to reduce the electric and the magnetic fields around overhead and underground transmission lines (minimum distance, shielded cables, anechoic chamber etc.). In this context, the scope of the current paper is the use of highly permeable magnetic sheets for shielding purposes, along with the development of an appropriate procedure, based on finite element analysis (FEA) for the efficient design of passive shielding. The simulation results are compared with laboratory measurements in order to confirm the adequacy of the proposed methodology. The good agreement between the FEA outcomes and the experimental results confirms that the developed FEA tool can be trustfully used for the design of the shielding means in the case of overhead or underground power lines.
Collapse
|
12
|
Sitnikov DS, Ilina IV, Revkova VA, Rodionov SA, Gurova SA, Shatalova RO, Kovalev AV, Ovchinnikov AV, Chefonov OV, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. BIOMEDICAL OPTICS EXPRESS 2021; 12:7122-7138. [PMID: 34858704 PMCID: PMC8606137 DOI: 10.1364/boe.440460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
For the first time, the data have been obtained on the effects of high-intensity terahertz (THz) radiation (with the intensity of 30 GW/cm2, electric field strength of 3.5 MV/cm) on human skin fibroblasts. A quantitative estimation of the number of histone Н2АХ foci of phosphorylation was performed. The number of foci per cell was studied depending on the irradiation time, as well as on the THz pulse energy. The performed studies have shown that the appearance of the foci is not related to either the oxidative stress (the cells preserve their morphology, cytoskeleton structure, and the reactive oxygen species content does not exceed the control values), or the thermal effect of THz radiation. The prolonged irradiation of fibroblasts also did not result in a decrease of their proliferative index.
Collapse
Affiliation(s)
- Dmitry S. Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Inna V. Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Veronika A. Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Sergey A. Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Svetlana A. Gurova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Rimma O. Shatalova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Alexey V. Kovalev
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Andrey V. Ovchinnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Chefonov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A. Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| |
Collapse
|
13
|
Effect of electromagnetic radiation on the liver structure and ultrastructure of in utero irradiated rats. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to observe the influence of electromagnetic radiation (EMR) on the structure and ultrastructure of the rat’s liver. The pregnant rats used in the experiment were exposed to a pulsed microwave radiation (frequency of 2.45 GHz; mean power density of 2.8 mW/cm2) daily for 2 h, throughout their pregnancy. After delivery, the offspring was not exposed to EMR. Samples of the liver of 5-week-old offspring were subjected to histopathological evaluation. They were processed for light and transmission electron microscopy. Our results indicated that EMR did not cause pronounced changes in the structure of the liver of the investigated offspring. The size and shape of liver lobuli was preserved and the amount of connective tissue in the liver parenchyma did not increase. However, electron microscopy revealed changes in the shape and number of microvilli at the vascular pole of hepatocytes, and formation of vesicles of various shapes and sizes. The endothelial cells were swollen with larger fenestrations compared to the control group. The spaces of Disse were irregular and dilated. Even though these changes were only mild, further studies are needed to determine the effect of EMR and clarify its potential risk during pregnancy.
Collapse
|
14
|
Yu G, Bai Z, Song C, Cheng Q, Wang G, Tang Z, Yang S. Current progress on the effect of mobile phone radiation on sperm quality: An updated systematic review and meta-analysis of human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:116952. [PMID: 33862271 DOI: 10.1016/j.envpol.2021.116952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Potential suppression of fertility due to mobile phone radiation remains a focus of researchers. We conducted meta-analyses on the effects of mobile phone radiation on sperm quality using recent evidence and propose some perspectives on this issue. Using the MEDLINE/PubMed, Embase, WOS, CENTRAL, and ClinicalTrials.gov databases, we retrieved and screened studies published before December 2020 on the effects of mobile phone use/mobile phone RF-EMR on sperm quality. Thirty-nine studies were included. Data quality and general information of the studies were evaluated and recorded. Sperm quality data (density, motility, viability, morphology, and DFI) were compiled for further analyses, and we conducted subgroup, sensitivity, and publication bias analyses. The pooled results of human cross-sectional studies did not support an association of mobile phone use and a decline in sperm quality. Different study areas contributed to the heterogeneity of the studies. In East Europe and West Asia, mobile phone use was correlated with a decline in sperm density and motility. Mobile phone RF-EMR exposure could decrease the motility and viability of mature human sperm in vitro. The pooled results of animal studies showed that mobile phone RF-EMR exposure could suppress sperm motility and viability. Furthermore, it reduced sperm density in mice, in rats older than 10 weeks, and in rats restrained during exposure. Differences regarding age, modeling method, exposure device, and exposure time contributed to the heterogeneity of animal studies. Previous studies have extensively investigated and demonstrated the adverse effects of mobile phone radiation on sperm. In the future, new standardized criteria should be applied to evaluate potential effects of mobile phone RF-EMR dosages. Further sperm-related parameters at the functional and molecular levels as well as changes in biological characteristics of germ cells should be evaluated. Moreover, the impact of mobile phone RF-EMR on individual organs should also be examined.
Collapse
Affiliation(s)
- Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China; Haikou Center for Medical Synchrotron Radiation Research, Haikou People's Hospital, Haikou, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Cheng
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Gang Wang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zeping Tang
- Guangdong Environmental Radiation Monitoring Center, Guangzhou, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
A Meta-Integrative Qualitative Study on the Hidden Threats of Smart Buildings/Cities and Their Associated Impacts on Humans and the Environment. BUILDINGS 2021. [DOI: 10.3390/buildings11060251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Smart buildings deploying 5G and the Internet of Things (IoT) are viewed as the next sustainable solution that can be seamlessly integrated in all sectors of the built environment. The benefits are well advertised and range from inducing wellness and monitoring health, amplifying productivity, to energy savings. Comparatively, potential negative risks are less known and mostly relate to cyber-security threats and radiation effects. This meta-integrative qualitative synthesis research sought to determine the possible underlying demerits from developing smart buildings, and whether they outweigh the possible benefits. The study identified five master themes as threats of smart buildings: a surfeit of data centers, the proliferation of undersea cables, the consternation of cyber-security threats, electromagnetic pollution, and E-waste accumulation. Further, the paper discusses the rebound impacts on humans and the environment as smart buildings’ actualization becomes a reality. The study reveals that, although some aspects of smart buildings do have their tangible benefits, the potential repercussions from these not-so-discussed threats could undermine the former when all perspectives and interactions are analyzed collectively rather than in isolation.
Collapse
|
16
|
Seomun G, Lee J, Park J. Exposure to extremely low-frequency magnetic fields and childhood cancer: A systematic review and meta-analysis. PLoS One 2021; 16:e0251628. [PMID: 33989337 PMCID: PMC8121331 DOI: 10.1371/journal.pone.0251628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Extremely low frequency magnetic fields (ELF-MFs) are classified as a possible carcinogenic factor (Group 2B). This study assessed the association between ELF-MFs and childhood cancer through a systematic review and meta-analysis. METHODS Three databases were searched in January 2020. We conducted a meta-analysis for the association between the ELF-MFs exposure level and childhood cancer. RESULTS A total of 33 studies were identified. Thirty studies with 186,223 participants were included in the meta-analysis. Children exposed to 0.2-, 0.3-, and 0.4-μT ELF-MFs had a 1.26 (95% confidence interval [CI] 1.06-1.49), 1.22 (95% CI 0.93-1.61), and 1.72 (95% CI 1.25-2.35) times higher odds of childhood leukemia. In childhood brain tumors, children exposed to 0.2-μT had a 0.95 (95% CI 0.59-1.56) times higher odds, and those exposed to 0.4-μT ELF-MFs had a 1.25 (95% CI 0.93-1.61). Children exposed to 0.2- and 0.4-μT ELF-MFs had a 1.10 (95% CI 0.70-1.75) and 2.01 (95% CI 0.89-4.52) times higher odds of any childhood cancers. CONCLUSIONS Significant associations were observed between exposure to ELF-MFs and childhood leukemia. Furthermore, a possible dose-response effect was also observed.
Collapse
Affiliation(s)
- GyeongAe Seomun
- College of Nursing, Korea University, BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Juneyoung Lee
- Department of Biostatistics, College of Medicine, Korea University, BK21FOUR Program in Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jinkyung Park
- College of Nursing, Chonnam National University, Korea University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Tirpák F, Greifová H, Lukáč N, Stawarz R, Massányi P. Exogenous Factors Affecting the Functional Integrity of Male Reproduction. Life (Basel) 2021; 11:213. [PMID: 33803103 PMCID: PMC8001766 DOI: 10.3390/life11030213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022] Open
Abstract
Natural processes along with increased industrial production and the irresponsible behavior of mankind have resulted in environmental pollution. Environmental pollutants can be categorized based on their characteristics and appearance into the following groups: physical, biological, and chemical. Every single one of them represents a serious threat to the male reproductive tract despite the different modes of action. Male gonads and gametes are especially vulnerable to the effect of exogenous factors; therefore, they are considered a reliable indicator of environmental pollution. The impact of xenobiotics or radiation leads to an irreversible impairment of fertility displayed by histological changes, modulated androgen production, or compromised spermatozoa (or germ cells) quality. The present article reviews the exogenous threats, male reproductive system, the mode of action, and overall impact on the reproductive health of humans and animals.
Collapse
Affiliation(s)
- Filip Tirpák
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifová
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
| | - Norbert Lukáč
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
| | - Robert Stawarz
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland;
| | - Peter Massányi
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland;
| |
Collapse
|
18
|
López I, Félix N, Rivera M, Alonso A, Maestú C. What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid. ENVIRONMENTAL RESEARCH 2021; 194:110734. [PMID: 33434609 DOI: 10.1016/j.envres.2021.110734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure of the general population to electromagnetic radiation emitted by mobile phone base stations is one of the greater concerns of residents affected by the proximity of these structures due to the possible relationship between radiated levels and health indicators. OBJECTIVES This study aimed to find a possible relationship between some health indicators and electromagnetic radiation measurements. METHODS A total of 268 surveys, own design, were completed by residents of a Madrid neighborhood surrounded by nine telephone antennas, and 105 measurements of electromagnetic radiation were taken with a spectrum analyzer and an isotropic antenna, in situ and in real - time, both outside and inside the houses. RESULTS It was shown statistically significant p - values in headaches presence (p = 0.010), nightmares (p = 0.001), headache intensity (p < 0.001), dizziness frequency (p = 0.011), instability episodes frequency (p = 0.026), number of hours that one person sleeps per day (p < 0.001) and three of nine parameters studied from tiredness. Concerning cancer, there are 5.6% of cancer cases in the study population, a percentage 10 times higher than that of the total Spanish population. DISCUSSION People who are exposed to higher radiation values present more severe headaches, dizziness and nightmares. Moreover, they sleep fewer hours.
Collapse
Affiliation(s)
- Isabel López
- Polytechnic University of Madrid, UPM, Madrid, Spain.
| | | | - Marco Rivera
- Biomedical Technology Center, CTB, Madrid, Spain
| | | | - Ceferino Maestú
- Biomedical Technology Center, CTB, Madrid, Spain; CIBER - BBN, Spain
| |
Collapse
|
19
|
Zheng Y, Xia P, Dong L, Tian L, Xiong C. Effects of modulation on sodium and potassium channel currents by extremely low frequency electromagnetic fields stimulation on hippocampal CA1 pyramidal cells. Electromagn Biol Med 2021; 40:274-285. [PMID: 33594919 DOI: 10.1080/15368378.2021.1885433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To investigate the effects of extremely low-frequency electromagnetic fields (ELF-EMFs) stimulation on sodium channel currents (INa), transient outward potassium channel currents (IA) and delayed rectifier potassium channel currents (IK) on hippocampal CA1 pyramidal neurons of young Sprague-Dawley rats. CA1 pyramidal neurons of rat hippocampal slices were subjected to ELF-EMFs stimulation with different frequencies (15 and 50 Hz), intensities (0.5, 1 and 2 mT) and durations (10, 20 and 30 min). The INa, IA and IK of neurons were recorded by a whole-cell patch-clamp method. ELF-EMFs stimulation enhanced INa densities, and depressed IA and IK densities. In detail, INa was more sensitive to the variation of intensities and frequencies of ELF-EMFs, whereas IA and IK were mainly affected by the variation of the duration of ELF-EMFs. ELF-EMFs stimulation altered activation and deactivation properties of INa, IA and IK. ELF-EMFs stimulation plays a role as a regulator rather than an inducer for ion channels. It might change the transition probability of ion channel opening or closing, and might also change the structure and function of the ion channel which need to be proved by the further technical method.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Pei Xia
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Chan Xiong
- The Department of Chemistry, University of Graz, Universitaetplatz, Graz, Austria
| |
Collapse
|
20
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Shih YW, O'Brien AP, Hung CS, Chen KH, Hou WH, Tsai HT. Exposure to radiofrequency radiation increases the risk of breast cancer: A systematic review and meta-analysis. Exp Ther Med 2020; 21:23. [PMID: 33262809 PMCID: PMC7690245 DOI: 10.3892/etm.2020.9455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
The present systematic review and meta-analysis investigated the association between exposure to radiofrequency radiation and the risk of breast cancer. The published studies that were available in PubMed, Embase, Cochrane Library, Ovid MEDLINE, CINAHL Plus, Web of Science, Airiti Library, Networked Digital Library of Theses and Dissertations and ProQuest until May 2020 were investigated. A total of eight studies (four case-control and four cohort studies) were eligible for quantitative analysis. A significant association between radiofrequency radiation exposure and breast cancer risk was detected [pooled relative risk (RR)=1.189; 95% confidence interval (CI), 1.056-1.339]. Subgroup analyses indicated that radiofrequency radiation exposure significantly increased the risk of breast cancer susceptibility among subjects aged ≥50 years (RR=2.179; 95% CI, 1.260-3.770). Pooled estimates revealed that the use of electrical appliances, which emit radiofrequency radiation, such as mobile phones and computers, significantly increased breast cancer development (RR=2.057; 95% CI, 1.272-3.327), while occupational radiofrequency exposure and transmitters did not increase breast cancer development (RR=1.274; 95% CI, 0.956-1.697; RR=1.133; 95% CI, 0.987-1.300, respectively). It was concluded that radiofrequency radiation exposure significantly increased the risk of breast cancer, especially in women aged ≥50 years and in individuals who used electric appliances, such as mobile phones and computers. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-analysis, an evaluation protocol was prepared and registered with the PROSPERO database (registration no. CRD42018087283).
Collapse
Affiliation(s)
- Ya-Wen Shih
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Anthony Paul O'Brien
- Faculty of Health and Medicine, School of Nursing and Midwifery, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taipei 11031, Taiwan R.O.C.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taipei 11031, Taiwan R.O.C
| | - Kee-Hsin Chen
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Evidence-based Knowledge Translation Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Cochrane Taiwan, Taipei 11031, Taiwan R.O.C
| | - Wen-Hsuan Hou
- Cochrane Taiwan, Taipei 11031, Taiwan R.O.C.,Department of Physical Medicine and Rehabilitation/Center of Evidence-Based Medicine in Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan R.O.C.,Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Hsiu-Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| |
Collapse
|
22
|
Grasso R, Pellitteri R, Caravella SA, Musumeci F, Raciti G, Scordino A, Sposito G, Triglia A, Campisi A. Dynamic changes in cytoskeleton proteins of olfactory ensheathing cells induced by radiofrequency electromagnetic fields. J Exp Biol 2020; 223:jeb217190. [PMID: 32041804 DOI: 10.1242/jeb.217190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/02/2020] [Indexed: 01/13/2023]
Abstract
Several evidences have suggested the ability of radiofrequency electromagnetic fields to influence biological systems, even if the action mechanisms are not well understood. There are few data on the effect of radiofrequency electromagnetic fields on self-renewal of neural progenitor cells. A particular glial type that shows characteristics of stem cells is olfactory ensheathing cells (OECs). Herein, we assessed the non-thermal effects induced on OECs through radiofrequency electromagnetic fields changing the envelope of the electromagnetic wave. Primary OEC cultures were exposed to continuous or amplitude-modulated 900 MHz electromagnetic fields, in the far-field condition and at different exposure times (10, 15, 20 min). The expression of OEC markers (S-100 and nestin), cytoskeletal proteins (GFAP and vimentin), apoptotic pathway activation by caspase-3 cleavage and cell viability were evaluated. Our results highlight that 20 min of exposure to continuous or amplitude-modulated 900 MHz electromagnetic fields induced a different and significant decrease in cell viability. In addition, according to the electromagnetic field waveform, diverse dynamic changes in the expression of the analysed markers in OECs and activation of the apoptotic pathway were observed. The data suggest that radiofrequency electromagnetic fields might play different and important roles in the self-renewal of OEC stem cells, which are involved in nervous system repair.
Collapse
Affiliation(s)
- Rosaria Grasso
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126 Catania, Italy
| | | | - Francesco Musumeci
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Antonio Triglia
- Department of Physics and Astronomy 'Ettore Majorana', University of Catania, 95123 Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| |
Collapse
|
23
|
Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett 2020; 323:35-40. [PMID: 31991167 DOI: 10.1016/j.toxlet.2020.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
This article identifies adverse effects of non-ionizing non-visible radiation (hereafter called wireless radiation) reported in the premier biomedical literature. It emphasizes that most of the laboratory experiments conducted to date are not designed to identify the more severe adverse effects reflective of the real-life operating environment in which wireless radiation systems operate. Many experiments do not include pulsing and modulation of the carrier signal. The vast majority do not account for synergistic adverse effects of other toxic stimuli (such as chemical and biological) acting in concert with the wireless radiation. This article also presents evidence that the nascent 5G mobile networking technology will affect not only the skin and eyes, as commonly believed, but will have adverse systemic effects as well.
Collapse
Affiliation(s)
- Ronald N Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Georgia, United States.
| | - Paul Heroux
- Toxicology and Health Effects of Electromagnetism, McGill University, Canada
| | - Michael Aschner
- Molecular Pharmacology, Einstein Center of Toxicology, Albert Einstein College of Medicine, United States
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
24
|
Shahab L, Smith SG. Response to letter: Causes of cancer: Perceptions versus the scientific evidence by Bandara and Carpenter. Eur J Cancer 2019; 124:217-218. [PMID: 31718862 DOI: 10.1016/j.ejca.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Lion Shahab
- Department of Behavioural Science and Health, University College London, London, WC1E 6BT, UK.
| | - Samuel G Smith
- Leeds Institute of Health Sciences, University of Leeds, Leeds, LS2 9NL, UK
| |
Collapse
|
25
|
S M J M, S A R M, M H. Evaluation of the Validity of a Nonlinear J-Shaped Dose-Response Relationship in Cancers Induced by Exposure to Radiofrequency Electromagnetic Fields. J Biomed Phys Eng 2019; 9:487-494. [PMID: 31531303 PMCID: PMC6709354 DOI: 10.31661/jbpe.v0i0.771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/20/2017] [Indexed: 12/23/2022]
Abstract
The radiofrequency electromagnetic fields (RF-EMFs) produced by widely used mobile phones are classified as possibly carcinogenic to humans by International Agency for Research on Cancer (IARC). Current data on the relationship between exposure to RF-EMFs generated by commercial mobile phones and brain cancer are controversial. Our studies show that this controversy may be caused by several parameters. However, it seems that the magnitude of exposure to RF-EMFs plays a basic role in RF-induced carcinogenesis. There is some evidence indicating that, in a similar pattern with ionizing radiation, the carcinogenesis of non-ionizing RF-EMF may have a nonlinear dose-response relationship. In this paper, the evidence which supports a nonlinear J-shaped dose-response relationship is discussed.
Collapse
Affiliation(s)
- Mortazavi S M J
- Department of Diagnostic Imaging, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortazavi S A R
- Student research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haghani M
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Shi Z. Geobacter sulfurreducens-inoculated bioelectrochemical system reveals the potential of metabolic current in defining the effect of extremely low-frequency electromagnetic field on living cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:8-14. [PMID: 30743077 DOI: 10.1016/j.ecoenv.2019.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
The effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health has become a worldwide concern, and no molecule/factor has been established as a measurable indicator of this effect. Diseases related to ELF-EMF are generally accompanied with energy metabolic dysfunction, and the energy in metabolism often flows in terms of electrons in all living cells. Hence, this study specifically investigated the relationship between metabolic current and ELF-EMF. By applying 0-128 Gauss ELF-EMFs to Geobacter sulfurreducens-inoculated bioelectrochemical systems, we found that metabolic current was increased and oscillated in ELF-EMF-exposed G. sulfurreducens. All effects were exposure dose dependent. Moreover, the oscillation amplitude varied linearly with the ELF-EMF strength. These results reveal that metabolic current can be used as a dosimetric indicator of the effect of ELF-EMF on living organisms, including human beings.
Collapse
Affiliation(s)
- Zhenhua Shi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
27
|
Zendehdel R, Yu IJ, Hajipour-Verdom B, Panjali Z. DNA effects of low level occupational exposure to extremely low frequency electromagnetic fields (50/60 Hz). Toxicol Ind Health 2019; 35:424-430. [PMID: 31138035 DOI: 10.1177/0748233719851697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Exposure to extremely low frequency magnetic fields (ELF-MF) occurs from natural and artificial sources. Although ELF-MF has been classified as a suspected humans carcinogen agent by the International Agency for Research on Cancer, little is known of the effects of ELF-MF at lower exposure levels of the recommended range. In the present study, DNA damage in the peripheral blood cells of power line workers was investigated. MATERIALS AND METHODS Occupational exposure to ELF-MF in a power plant was measured using the National Institute for Occupational Safety and Health (NIOSH) manual. Single-strand breaks (SSBs) in DNA were evaluated in 29 male utility workers as the exposed population and 28 male support personnel as the control subjects using the comet assay. Effects of ELF-MF on subjects were evaluated using DNA percent in tails, tail length, olive length, and tail moment. RESULTS Occupational exposure levels to ELF-MF in the utility workers were less than the threshold limit values (TLV) recommended by the American Conference of Government Industrial Hygienist (ACGIH). The median value of the magnetic field at the working sites was 0.85 µT. Induction of DNA damage was observed for the exposed workers compared with the controls. Olive length, tail moment, and tail DNA percent increased significantly (p < 0.05) in the utility workers. CONCLUSIONS Exposure to ELF-MF at levels less than the ACGIH exposure limit can produce DNA strand breaks.
Collapse
Affiliation(s)
- Rezvan Zendehdel
- 1 Environmental and Occupational Hazard Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Il Je Yu
- 2 HCTm, Co. Ltd., Icheon, Republic of Korea
| | - Behnam Hajipour-Verdom
- 3 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Panjali
- 4 Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ghazikhanlou-Sani K, Rahimi A, Poorkaveh M, Eynali S, Koosha F, Shoja M. Evaluation of the electromagnetic field intensity in operating rooms and estimation of occupational exposures of personnel. Interv Med Appl Sci 2019; 10:121-126. [PMID: 30713749 PMCID: PMC6343582 DOI: 10.1556/1646.10.2018.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Operating rooms in hospitals are facilitated with different types of electronic systems, which produce electromagnetic waves. High intensities of magnetic waves may have harmful effects on biological environments. This study aims to evaluate the electromagnetic field intensity at different parts of operating rooms at the first stage and estimate the occupational exposure to operating room personnel at the next phase. Materials and methods At this cross-sectional study, the magnetic field intensity was evaluated using teslameter at several parts of operating rooms, during operating procedures, while electrical instruments were working. Background electromagnetic field intensity was measured when all the electrical systems were idle. Statistical analysis was performed using SPSS software. The results were compared with ICNIRP standards. Results The maximum intensity of magnetic field was measured around high-voltage systems at the distance of 50 cm in the personnel’s standing area at DCR and PCNL operating procedures were 5.9 and 5.6, respectively. The number of on-mode electrical systems was inconsistent with the intensity of electromagnetic fields at the standing area of operating room personnel’s. The intensity of magnetic fields around high-voltage systems, which was about 46.75 mG at the distance of 10 cm, was the highest among measured electromagnetic fields. Conclusions The highest magnetic field intensity measured in this study was related to high-voltage systems and is lower than advised intensity by ICNIRP for occupational exposure. Based on this study, it can be concluded that there are no considerable risks of electromagnetic exposure for operating room personnels.
Collapse
Affiliation(s)
- Karim Ghazikhanlou-Sani
- Department of Radiology, Paramedical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Azizollah Rahimi
- Faculty of Medicine, Department of Medical Physics, Ahvaz Judishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Poorkaveh
- Department of Radiology, Paramedical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samira Eynali
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Faculty of Medicine, Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shoja
- Department of Radiology, School of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
29
|
Luo J, Deziel NC, Huang H, Chen Y, Ni X, Ma S, Udelsman R, Zhang Y. Cell phone use and risk of thyroid cancer: a population-based case-control study in Connecticut. Ann Epidemiol 2018; 29:39-45. [PMID: 30446214 DOI: 10.1016/j.annepidem.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/11/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aims to investigate the association between cell phone use and thyroid cancer. METHODS A population-based case-control study was conducted in Connecticut between 2010 and 2011 including 462 histologically confirmed thyroid cancer cases and 498 population-based controls. Multivariate unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for associations between cell phone use and thyroid cancer. RESULTS Cell phone use was not associated with thyroid cancer (OR: 1.05, 95% CI: 0.74-1.48). A suggestive increase in risk of thyroid microcarcinoma (tumor size ≤10 mm) was observed for long-term and more frequent users. Compared with cell phone nonusers, several groups had nonstatistically significantly increased risk of thyroid microcarcinoma: individuals who had used a cell phone >15 years (OR: 1.29, 95% CI: 0.83-2.00), who had used a cell phone >2 hours per day (OR: 1.40, 95% CI: 0.83-2.35), who had the most cumulative use hours (OR: 1.58, 95% CI: 0.98-2.54), and who had the most cumulative calls (OR: 1.20, 95% CI: 0.78-1.84). CONCLUSIONS This study found no significant association between cell phone use and thyroid cancer. A suggestive elevated risk of thyroid microcarcinoma associated with long-term and more frequent uses warrants further investigation.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Huang Huang
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Yingtai Chen
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ni
- Department of Otorhinolaryngology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Robert Udelsman
- Endocrine Neoplasm Institute, Miami Cancer Institute, Miami, FL
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine, New Haven, CT; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT.
| |
Collapse
|
30
|
Tirpak F, Slanina T, Tomka M, Zidek R, Halo M, Ivanic P, Gren A, Formicki G, Stachanczyk K, Lukac N, Massanyi P. Exposure to non-ionizing electromagnetic radiation of public risk prevention instruments threatens the quality of spermatozoids. Reprod Domest Anim 2018; 54:150-159. [PMID: 30192989 DOI: 10.1111/rda.13338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023]
Abstract
The use of artificial insemination in cattle breeding has evolved to global extent, and insemination doses are often shipped via air transport which requires strict radiation-based examinations. For the determination of effect of non-ionizing radiation (NIR), to which are beings frequently exposed due to protection of airport or cultural event security, freshly ejaculated and cryopreserved bovine spermatozoa were used as experimental model. Following radiation with hand-held metal detector in various exposition times (0, 10 s, 15, 30 and 60 min-groups FR, FR10, FR15, FR30 and FR60) the spermatozoa underwent motility and DNA fragmentation analyses. Study on cryoconserved semen treated with NIR was performed in time intervals 0, 10 s, 1 and 5 min (insemination doses radiated before cryoconservation-CB, CB10, CB1, CB5; samples radiated after freezing-CA, CA10, CA1 and CA5). Fresh semen and insemination doses radiated after cryoconservation showed significantly lower total and progressive motility. No effect on motility parameters was detected in semen extended with cryopreservative medium and radiated prior to freezing. Surprisingly, NIR showed a potential to stimulate spermatozoa velocity; however, the effect was modulated throughout the post-thawing incubation. Based on the DNA fragmentation assay, sperm DNA stayed intact. Present study underlines the potential harm of NIR, which is frequently used in everyday life, with overall adverse impact on human and animal reproduction. Current study also points out on interesting short-term spermatozoa stimulation induced by NIR.
Collapse
Affiliation(s)
- Filip Tirpak
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marian Tomka
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Radoslav Zidek
- Department of Hygiene and Food Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marko Halo
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Ivanic
- Slovak Biological Services, Banska Bystrica, Slovak Republic
| | - Agnieszka Gren
- Institute of Biology, Pedagogical University of Krakow, Krakow, Poland
| | - Grzegorz Formicki
- Institute of Biology, Pedagogical University of Krakow, Krakow, Poland
| | | | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.,Institute of Biology, Pedagogical University of Krakow, Krakow, Poland
| |
Collapse
|
31
|
Advances in Residential Design Related to the Influence of Geomagnetism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020387. [PMID: 29473902 PMCID: PMC5858456 DOI: 10.3390/ijerph15020387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022]
Abstract
Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.
Collapse
|
32
|
Meijer DKF, Geesink HJH. Favourable and Unfavourable EMF Frequency Patterns in Cancer: Perspectives for Improved Therapy and Prevention. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jct.2018.93019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
de Oliveira F, Carmona A, Ladeira C. Is mobile phone radiation genotoxic? An analysis of micronucleus frequency in exfoliated buccal cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 822:41-46. [DOI: 10.1016/j.mrgentox.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
|
34
|
Bellés M, Gonzalo S, Serra N, Esplugas R, Arenas M, Domingo JL, Linares V. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice. ENVIRONMENTAL RESEARCH 2017; 156:291-296. [PMID: 28371757 DOI: 10.1016/j.envres.2017.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium (137Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation (137Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137Cs). Further investigations are required to clarify the mechanisms involved in the internal IR-induced nephrotoxicity.
Collapse
Affiliation(s)
- Montserrat Bellés
- Physiology Unit, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Sergio Gonzalo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Noemí Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Roser Esplugas
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Meritxell Arenas
- Radiation Oncology Department, Sant Joan University Hospital, IISPV, Rovira i Virgili University, Reus, Spain
| | - José Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain
| | - Victoria Linares
- Physiology Unit, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Virgili University, Reus, Spain.
| |
Collapse
|