1
|
Amarandei C, Negru AG, Iancu C, Olariu RI, Arsene C. Seasonality, sources apportionment, human health risks assessments, and potential implications on the atmospheric chemistry of polycyclic aromatic hydrocarbons in size-segregated aerosols from a Romanian metropolitan area. CHEMOSPHERE 2024; 368:143738. [PMID: 39542375 DOI: 10.1016/j.chemosphere.2024.143738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Urbanization and industrialization are important transformations shaping the current statement of the society, enhancing significantly the combustion emissions which are threatening the global climate system, air quality, and human health. These emissions contain polycyclic aromatic hydrocarbons (PAHs) which are well known for their high toxicity. The present study is the first assessing the seasonal variation of 17 PAHs in size segregated fractions of atmospheric aerosol particles from a Romanian metropolitan area. In addition to sources apportionment and health risks, the potential role of PAHs on the atmospheric chemistry in the area was also addressed. Higher PAHs concentrations were determined in winter season, the highest values being quantified for benzo[b]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene. Each analyzed PAH exhibited a dominant peak in the accumulation mode (0.1-1.0 μm), with maxima at 381 nm. Gasoline combustion was identified as a significant contributor to the PAHs levels in the atmospheric aerosols from the area. Biomass-burning contributions were highlighted during the winter and autumn seasons. The positive matrix factorization (PMF) model apportioned four PAHs sources, as follows: vehicular (31%), mixed combustion (33%), biomass and wood burning (19%), and coal and natural gas combustion (18%) sources. Concentration-weighted trajectory (CWT) analysis method revealed clear contributions to PAHs abundances from local and regional air masses. Alveolar region of adults seems to have the highest susceptibility for PAHs deposition. Values exceeding acceptable limits for carcinogenic risk throughout the year are associated with benzo[a]pyrene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]anthracene etc. The present study can be considered as a reference in the region in order measures of mitigation and control for PAHs emission sources to be introduced.
Collapse
Affiliation(s)
- Cornelia Amarandei
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania
| | - Alina Giorgiana Negru
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania
| | - Cristina Iancu
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania
| | - Romeo Iulian Olariu
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania
| | - Cecilia Arsene
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania.
| |
Collapse
|
2
|
Moniruzzaman M, Shaikh MAA, Saha B, Shahrukh S, Jawaa ZT, Khan MF. Seasonal changes and respiratory deposition flux of PM 2.5 and PM 10 bound metals in Dhaka, Bangladesh. CHEMOSPHERE 2022; 309:136794. [PMID: 36220426 DOI: 10.1016/j.chemosphere.2022.136794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Due to rapid urbanization and fast economic development, aerosol pollution is a serious environmental issue, especially in Bangladesh. Based on bioaccessibility and respiratory deposition doses (RDD), health risks of PM2.5 and PM10 bound 15 (fifteen) metals were investigated at fourteen urban sites (roadside, marketplace, industrial, and commercial areas). Sampling campaigns were conducted over four seasons (winter, summer, rainy, and autumn) from December 2020 to November 2021. A beta attenuation mass analyzer measured particulate matter concentrations in ambient air. The metals in PM fractions were analyzed by X-ray fluorescence spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The airborne trace metals (Cd, As, Zn, Pb, Cr, Cu, Ni) with high enrichment factors indicate anthropogenic sources. The positive matrix factorization (PMF) categorized these elements as originating from automobile exhaust, industrial emissions, and solid waste/coal combustion, whereas the geologic elements came from earth crust/soil dust. During the winter, most of the air mass trajectories arrived from India across the land (82%) and Indo Gangetic Plain (IGP) region to the sampling sites, which may have aided in the transport of pollutants. The deposition flux of metals illustrated that compared to PM2.5, PM10 deposited a higher amount of metals in the upper airways (81.96%). In comparison, PM2.5 accumulates more elevated amounts of metals in alveolar regions (11.77%), due to the ability of fine particles to penetrate deeper into the lower pulmonary region. Among age groups, an adult inhales a higher amount of metals than a child, on average 0.103 mg and 0.08 mg of metals per day via PM2.5, respectively. Acute health impacts are caused by the deposited cancer-causing metals in alveolar tissue, which circulates through the bloodstream and affects several organs. Prolonged exposure to these carcinogenic metals poses significant health risks.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Badhan Saha
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Saif Shahrukh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh; Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zarin Tasneem Jawaa
- Department of Environmental Science and Management, North South University, Dhaka, 1229, Bangladesh
| | - Md Firoz Khan
- Department of Environmental Science and Management, North South University, Dhaka, 1229, Bangladesh; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
3
|
An F, Liu J, Lu W, Jareemit D. Comparison of exposure to traffic-related pollutants on different commuting routes to a primary school in Jinan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43319-43340. [PMID: 35091940 PMCID: PMC8799450 DOI: 10.1007/s11356-021-18362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Traffic-related pollutants seriously affect human health, and the commute time to and from school is the time when students are exposed greatest to traffic pollution sources. Field measurements were conducted with hand-held instruments while walking along two selected commuting routes in winter and spring. The measured data were then compared with background monitoring data, and the respiratory deposition dose (RDD) was calculated to assess the exposure risk. Particulate matter intake from 2018 to 2020 was calculated. In winter, the average concentrations of PM2.5 and PM10 were higher in the afternoon than in the morning. The highest concentration was 2.94 times greater than the background value. The low-concentration distribution area of the low-traffic route that is off the main road (route B) was more significant than that of the high-traffic route that is near the main road (route A). Moreover, the RDD of route B was consistently lower than that of route A, while the average annual amount of PM2.5 inhalation on route B in 3 years was 16.3% lower than that on route A. Overall, route B is more suitable than route A for students to commute on foot. Based on the findings, a walking route located within a community is a good choice.
Collapse
Affiliation(s)
- Farun An
- School of Thermal Engineering, Shandong Jianzhu University, #1000 Fengming Road, Jinan, 250101, China
| | - Jiying Liu
- School of Thermal Engineering, Shandong Jianzhu University, #1000 Fengming Road, Jinan, 250101, China.
- Shandong GRAD Group, Built Environment Design and Research Institute, Dezhou, 253000, China.
| | - Wanpeng Lu
- School of Thermal Engineering, Shandong Jianzhu University, #1000 Fengming Road, Jinan, 250101, China
| | - Daranee Jareemit
- Faculty of Architecture and Planning, Thammasat University (Rangsit Campus), Khlong Nueng, 12121, Pathum Thani, Thailand
| |
Collapse
|
4
|
Fatima S, Ahlawat A, Mishra SK, Soni VK, Guleria R. Respiratory Deposition Dose of PM2.5 and PM10 Before, During and After COVID-19 Lockdown Phases in Megacity-Delhi, India. MAPAN 2022. [PMCID: PMC9081966 DOI: 10.1007/s12647-022-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Considerable changes in particulate matter (PM) during COVID-19 lockdown in major cities around the World demand changes in exposure assessment studies of PM. The present study shows variations in respiratory deposition dose (RDD) of both fine (PM2.5) and coarse (PM10) particles before, during and after Covid-19 lockdown phases at three sites (with different pollution signatures) in Delhi—Alipur, Okhla and Pusa Road. Exposure assessment study showed mean PM2.5 RDD (± S.D.) (µg/min) for walk and sit mode during before lockdown (BL) as 2.41(± 1.20) and 0.84(± 0.42) for Alipur, 2.71(± 1.60) and 0.94(± 0.56) for Okhla, and 2.54(± 1.28) and 0.88(± 0.44) for Pusa road, which decreased drastically during Lockdown 1(L1) as 0.85(± 0.35) and 0.30(± 0.12) for Alipur, 0.83(± 0.33) and 0.29(± 0.11) for Okhla, and 0.68(± 0.28) and 0.23(± 0.10) for Pusa road, respectively. Mean PM10 RDD (± S.D.) (µg/min) for walk and sit mode during before lockdown (BL) as 3.90 (± 1.73) and 1.36 (± 0.60) for Alipur, 4.74 (± 2.04) and 1.65 (± 0.71) for Okhla, and 4.25 (± 1.69) and 1.48 (± 0.59) for Pusa Road, respectively which decreased drastically during Lockdown 1(L1) as 2.19 (± 0.95) and 0.76 (± 0.33) for Alipur, 1.73 (± 0.67) and 0.60 (± 0.23) for Okhla and, 1.45 (± 0.50) and 0.50 (± 0.17) for Pusa Road, respectively. Significant decrease in RDD concentrations (Both PM2.5 and PM10) than that of BL phase have been found during Lockdown 1(L1) phase and other successive lockdown and unlock phases—Lockdown 2(L2), Lockdown 3(L3), Lockdown 4(L4) and Unlock1 (UL1) phases. Changes in RDD values during lockdown phases were affected by lesser traffic emission, minimized industrial activities, biomass burning activities, precipitation activities, etc. Seasonal variations of RDD showed Delhites are found exposed to more fine and coarse particles’ RDD (walk and sit modes) before and after lockdown, i.e. during normal days than during lockdown phases showing potential health effects. People in sit condition found less exposed to fine and coarse RDD comparison to those in walk condition both during normal and lockdown days.
Collapse
Affiliation(s)
- Sadaf Fatima
- CSIR-National Physical Laboratory, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ajit Ahlawat
- Leibniz Institute for Tropospheric Research (TROPOS), 04318 Permoserstraße, Leipzig, Germany
| | - Sumit Kumar Mishra
- CSIR-National Physical Laboratory, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vijay Kumar Soni
- India Meteorological Department, Ministry of Earth Sciences, New Delhi, 110003 India
| | - Randeep Guleria
- All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
5
|
Seasonal Changes in Urban PM2.5 Hotspots and Sources from Low-Cost Sensors. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PM2.5 concentrations in urban areas are highly variable, both spatially and seasonally. To assess these patterns and the underlying sources, we conducted PM2.5 exposure measurements at the adult breath level (1.6 m) along three ~5 km routes in urban districts of Mainz (Germany) using portable low-cost Alphasense OPC-N3 sensors. The survey took place on five consecutive days including four runs each day (38 in total) in September 2020 and March 2021. While the between-sensor accuracy was tested to be good (R² = 0.98), the recorded PM2.5 values underestimated the official measurement station data by up to 25 µg/m3. The collected data showed no consistent PM2.5 hotspots between September and March. Whereas during the fall, the pedestrian and park areas appeared as hotspots in >60% of the runs, construction sites and a bridge with high traffic intensity stuck out in spring. We considered PM2.5/PM10 ratios to assign anthropogenic emission sources with high apportionment of PM2.5 in PM10 (>0.6), except for the parks (0.24) where fine particles likely originated from unpaved surfaces. The spatial PM2.5 apportionment in PM10 increased from September (0.56) to March (0.76) because of a pronounced cooler thermal inversion accumulating fine particles near ground. Our results showed that highly resolved low-cost measurements can help to identify PM2.5 hotspots and be used to differentiate types of particle sources via PM2.5/PM10 ratios.
Collapse
|
6
|
Gao J, Qiu Z, Cheng W, Gao HO. Children's exposure to BC and PM pollution, and respiratory tract deposits during commuting trips to school. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113253. [PMID: 35121261 DOI: 10.1016/j.ecoenv.2022.113253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Although children have been identified as a vulnerable group highly susceptible to traffic-related air pollution, their exposure during school commutes to traffic-related pollutants and the relevant health impact is rarely studied. In this study, we measured black carbon (BC) and particulate matter (PM: PM1, PM2.5, and PM10) concentrations that children are exposed to during their multi-modal (walking, private cars, and e-bikes) commuting trips to schools in Xi'an, China. A multi-parameter inhalation rate assessment model was developed in combination with the Multi-Path Particle Dosimetry (MPPD) model to quantify the deposition dose in different parts of children's respiratory system (head, tracheobronchial (TB), pulmonary (PUL)). Results show that walking to school exposed children to the lowest PM1, PM2.5, and BC concentrations, whereas riding an e-bike led to significantly elevated exposure to PM1 and BC than the other two modes. This is due to children's closer proximity to vehicle tail pipe emissions when they bike to school on road or roadside. The PM and BC concentrations showed remarkable increases in comparison to background concentrations during children's school commutes. Urban background (UB) concentration, traffic volume (TV), time of day, and meteorological parameters could influence a child's personal exposure, and the impact of each factor vary across different transportation modes. Particle size of the pollutant affects its deposition site in the respiratory system. Deposition fractions (DFs) and deposition doses in the head region (DF > 50%) were the highest for PM and BC, for which fine particles (BC, PM1, and PM2.5) were then most easily deposited in the PUL region while coarse particles rarely reach PUL. Children inhaled higher doses of polluted air during active commuting (walking) than passive commuting (private cars, e-bikes), due to longer times of exposure coupled with more active breathing.
Collapse
Affiliation(s)
- Jingwen Gao
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| | - Wen Cheng
- China National Heavy Duty Truck Group Co., Ltd. (SINOTRUK), Huaao Road, Jinan, 250101 Shandong, PR China
| | - H Oliver Gao
- School of Civil and Environmental Engineering, Cornell University 468 Hollister Hall, Ithaca, 14853 NY, USA
| |
Collapse
|
7
|
Fatima S, Ahlawat A, Mishra SK, Maheshwari M, Soni VK. Variations and Source Apportionment of PM2.5 and PM10 Before and During COVID-19 Lockdown Phases in Delhi, India. MAPAN 2022. [PMCID: PMC8785379 DOI: 10.1007/s12647-021-00506-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major cities across the globe including megacity Delhi have experienced considerable lower levels of air pollutants including particulate matter (PM) during COVID-19 lockdown. This study explores pre-lockdown and during lockdown air quality changes in PM2.5, PM10, PM2.5/PM10 ratio along with meteorological effects. Selected sites with different pollution signatures in Delhi including Alipur (residential), Okhla (industrial) and Pusa Road (traffic) have experienced mean (S.D.) PM2.5 as 87.56(± 54.06), 124.45(± 73.49) and 62.14(± 58.64) µg/m3 and PM10 as 163.01(± 77.37), 217.71(± 93.94) and 135.15(± 77.90) µg/m3 before lockdown (BL), while for Lockdown 1 (L1), PM2.5 concentrations decreased drastically as 39.26(± 16.31), 38.01(± 15.16) and 31.03(± 12.79) µg/m3 and for PM10 as 100.76(± 43.71), 79.47(± 30.97) and 66.53(± 22.78) µg/m3, respectively, with gradual increase in both pollutants during successive lockdown phase—Lockdown 2, Lockdown 3, Lockdown 4 and Unlock phase 1. The percentage (%) decrease in PM2.5 (69.46%) and PM10 (63.49%) during lockdown was found well correlated with people mobility (Google and Apple mobility reports), as outdoor activities showed 70–80% decrease in L1 from BL phase. Source apportionment studies suggested both local and regional pollution contribution in Delhi. Comparison of PM2.5 and PM10 concentrations for the year 2020 with that of 2018 and 2019 and study on diurnal variations of PM2.5 and PM10 have been discussed.
Collapse
Affiliation(s)
- Sadaf Fatima
- CSIR-National Physical Laboratory, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Ajit Ahlawat
- Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße, 04318 Leipzig, Germany
| | - Sumit Kumar Mishra
- CSIR-National Physical Laboratory, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | | | - Vijay Kumar Soni
- India Meteorological Department, Ministry of Earth Sciences, New Delhi, 110003 India
| |
Collapse
|
8
|
Kitagawa YKL, Kumar P, Galvão ES, Santos JM, Reis NC, Nascimento EGS, Moreira DM. Exposure and dose assessment of school children to air pollutants in a tropical coastal-urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149747. [PMID: 34487895 DOI: 10.1016/j.scitotenv.2021.149747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This study estimates exposure and inhaled dose to air pollutants of children residing in a tropical coastal-urban area in Southeast Brazil. For that, twenty-one children filled their time-activities diaries and wore the passive samplers to monitor NO2. The personal exposure was also estimated using data provided by the combination of WRF-Urban/GEOS-Chem/CMAQ models, and the nearby monitoring station. Indoor/outdoor ratios were used to consider the amount of time spent indoors by children in homes and schools. The model's performance was assessed by comparing the modelled data with concentrations measured by urban monitoring stations. A sensitivity analyses was also performed to evaluate the impact of the model's height on the air pollutant concentrations. The results showed that the mean children's personal exposure to NO2 predicted by the model (22.3 μg/m3) was nearly twice to those measured by the passive samplers (12.3 μg/m3). In contrast, the nearest urban monitoring station did not represent the personal exposure to NO2 (9.3 μg/m3), suggesting a bias in the quantification of previous epidemiological studies. The building effect parameterisation (BEP) together with the lowering of the model height enhanced the air pollutant concentrations and the exposure of children to air pollutants. With the use of the CMAQ model, exposure to O3, PM10, PM2.5, and PM1 was also estimated and revealed that the daily children's personal exposure was 13.4, 38.9, 32.9, and 9.6 μg/m3, respectively. Meanwhile, the potential inhalation daily dose was 570-667 μg for PM2.5, 684-789 μg for PM10, and 163-194 μg for PM1, showing to be favourable to cause adverse health effects. The exposure of children to air pollutants estimated by the numerical model in this work was comparable to other studies found in the literature, showing one of the advantages of using the modelling approach since some air pollutants are poorly spatially represented and/or are not routinely monitored by environmental agencies in many regions.
Collapse
Affiliation(s)
- Yasmin Kaore Lago Kitagawa
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Centro Integrado de Manufatura e Tecnologia (SENAI CIMATEC), Salvador, Bahia, Brazil.
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Elson Silva Galvão
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Jane Meri Santos
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Neyval Costa Reis
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | | | - Davidson Martins Moreira
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil; Centro Integrado de Manufatura e Tecnologia (SENAI CIMATEC), Salvador, Bahia, Brazil
| |
Collapse
|
9
|
Kumar P, Zavala-Reyes JC, Tomson M, Kalaiarasan G. Understanding the effects of roadside hedges on the horizontal and vertical distributions of air pollutants in street canyons. ENVIRONMENT INTERNATIONAL 2022; 158:106883. [PMID: 34583097 DOI: 10.1016/j.envint.2021.106883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/28/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Built-up environments limit air pollution dispersion in street canyons and lead to complex trade-offs between green infrastructure (GI) usage and its potential to reduce near-road exposure. This study evaluated the effects of an evergreen hedge on the distribution of particulate matter (PM1, PM2.5, PM10), black carbon (BC) and particle number concentrations (PNCs) in a street canyon in West London. Instrumentation was deployed around the hedge at 13 fixed locations to assess the impact of the hedge on vertical and horizontal concentration distributions. Changes in concentrations behind the hedge were measured with reference to the corresponding sampling point in front of the hedge for all sets of measurements. Results showed a significant reduction in vertical concentrations between 1 and 1.7 m height, with maximum reductions of -16% (PM1 and PM10) and -17% (PM2.5) at ∼1 m height. Horizontal concentrations revealed two zones between the building façade and the hedge, with opposite trends: (i) close to hedge (within 0.2 m), where a reduction of PM1 and PM2.5 was observed, possibly due to dilution, deposition and the barrier effect; and (ii) 0.2-3 m from the hedge, showing an increase of 13-37% (PM1) and 7-21% (PM2.5), possibly due to the blockage effect of the building, restricting dispersion. BC showed a significant reduction at breathing height (1.5 m) of between -7 and -50%, followed by -15% for PNCs in the 0.02-1 µm size range. The ELPI + analyser showed a peak of ∼30 nm. The presence of the hedge led to a ∼39 ± 32% decrease in total PNCs (0.006-10 µm), suggesting a greater removal in different modes, such as a 83 ± 12% reduction in nucleation mode (0.006-0.030 µm), 74 ± 15% in ultrafine (≤0.1 µm), and 34 ± 30% in accumulation mode (0.03-0.3 µm). These findings indicate graded filtering of particles by GI in a near-road street canyon environment. This insight will guide the improved design of GI barriers and the validation of microscale dispersion models.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom.
| | - Juan C Zavala-Reyes
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Mamatha Tomson
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Gopinath Kalaiarasan
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| |
Collapse
|
10
|
Tran PTM, Adam MG, Balasubramanian R. Assessment and mitigation of toddlers' personal exposure to black carbon before and during the COVID-19 pandemic: A case study in Singapore. ENVIRONMENTAL RESEARCH 2021; 202:111711. [PMID: 34280416 PMCID: PMC9749899 DOI: 10.1016/j.envres.2021.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/17/2023]
Abstract
Black carbon (BC), an important indicator of traffic-related air pollution (TRAP) in urban environments, is receiving increased attention because of its adverse health effects. Personal exposure (PE) of adults to BC has been widely studied, but little is known about the exposure of young children (toddlers) to BC in cities. We carried out a pilot study to investigate the integrated daily PE of toddlers to BC in a city-state with a high population density (Singapore). We studied the impact of urban traffic on the PE of toddlers to BC by comparing and contrasting on-road traffic flow (i.e., volume and composition) in Singapore in 2019 (before the COVID-19 pandemic) and in 2020 (during the COVID-19 pandemic). Our observations indicate that the daily BC exposure levels and inhaled doses increased by about 25% in 2020 (2.9 ± 0.3 μg m-3 and 35.5 μg day-1) compared to that in 2019 (2.3 ± 0.4 μg m-3 and 28.5 μg day-1 for exposure concentration and inhaled dose, respectively). The increased BC levels were associated with the increased traffic volume on both weekdays and weekends in 2020 compared to the same time period in 2019. Specifically, we observed an increase in the number of trucks as well as cars/taxis and motorcycles (private transport) and a decline in the number of buses (public transport) in 2020. The implementation of lockdown measures in 2020 resulted in significant changes in the time, place and duration of PE of toddlers to BC. The recorded daily time-activity patterns indicated that toddlers spent almost all the time in indoor environments during the measurement period in 2020. When we compared different ventilation options (natural ventilation (NV), air conditioning (AC), and portable air cleaner (PAC)) for mitigation of PE to BC in the home environment, we found a significant decrease (>30%) in daily BC exposure levels while using the PAC compared to the NV scenario. Our case study shows that the PE of toddlers to BC is of health concern in indoor environments in 2020 because of the migration of the increased TRAP into naturally ventilated residential homes and more time spent indoors than outdoors. Since toddlers' immune system is weak, technological intervention is necessary to protect their health against inhalation exposure to air pollutants.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
11
|
Air Flow Experiments on a Train Carriage—Towards Understanding the Risk of Airborne Transmission. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of experiments was undertaken on an intercity train carriage aimed at providing a “proof of concept” for three methods in improving our understanding of airflow behaviour and the accompanied dispersion of exhaled droplets. The methods used included the following: measuring CO2 concentrations as a proxy for exhaled breath, measuring the concentrations of different size fractions of aerosol particles released from a nebuliser, and visualising the flow patterns at cross-sections of the carriage by using a fog machine and lasers. Each experiment succeeded in providing practical insights into the risk of airborne transmission. For example, it was shown that the carriage is not well mixed over its length, however, it is likely to be well mixed along its height and width. A discussion of the suitability of the fresh air supply rates on UK train carriages is also provided, drawing on the CO2 concentrations measured during these experiments.
Collapse
|
12
|
Rafiepourgatabi M, Woodward A, Salmond JA, Dirks KN. The Effect of Route Choice in Children's Exposure to Ultrafine Particles Whilst Walking to School. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157808. [PMID: 34360102 PMCID: PMC8345797 DOI: 10.3390/ijerph18157808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Children walking to school are at a high risk of exposure to air pollution compared with other modes because of the time they spend in close proximity to traffic during their commute. The aim of this study is to investigate the effect of a walker's route choice on their exposure to ultrafine particles (UFP) on the walk to school. During morning commutes over a period of three weeks, exposure to UFP was measured along three routes: two routes were alongside both sides of a busy arterial road with significantly higher levels of traffic on one side compared to the other, and the third route passed through quiet streets (the background route). The results indicate that the mean exposure for the pedestrian walking along the background route was half the exposure experienced on the other two routes. Walkers on the trafficked side were exposed to elevated concentrations (>100,000 pt/cc) 2.5 times longer than the low-trafficked side. However, the duration of the elevated exposure for the background route was close to zero. Public health officials and urban planners may use the results of this study to promote healthier walking routes to schools, especially those planned as part of organized commutes.
Collapse
Affiliation(s)
- Mehrdad Rafiepourgatabi
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Correspondence:
| | - Alistair Woodward
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Jennifer A. Salmond
- School of Environment, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand;
| | - Kim Natasha Dirks
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
13
|
Pinto JA, Kumar P, Alonso MF, Andreão WL, Pedruzzi R, Ibarra-Espinosa S, Maciel FM, de Almeida Albuquerque TT. Coupled models using radar network database to assess vehicular emissions in current and future scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143207. [PMID: 33221009 DOI: 10.1016/j.scitotenv.2020.143207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Vehicles are one of the most significant sources of air pollutant emissions in urban areas, and their real contribution always needs to be updated to predict impacts on air quality. Radar databases and traffic counts using statistical modeling is an alternative and low-cost approach to produce traffic activities data in each urban street to be used as input to predict vehicular emissions. In this work, we carried out a spatial statistical analysis of local radar data and calculated traffic flow using local radar data combined with different statistical models. Future scenarios about vehicle emission inventory to define public policies were also proposed and analyzed for Belo Horizonte (BH), a Brazilian State capital, with the third-largest metropolitan region in the country. The Normal-Neighborhood Model (i.e., the mixed effect model with random effect in the neighborhood, radar type, and in the regional area) was used to calculate traffic flow in each urban street. Results showed average reductions in CO (4.5%), NMHC (3.0%), NOx (3.0%) and PM2.5 (6.2%) emissions even with an increase in fleet composition (25% in average). The decrease is a result of the implementation of emission control programs by the government, improvements vehicles technologies, and the quality of fuels. Prediction of traffic data from radar databases has proven to be useful for avoiding the high costs of performing origin-destination surveys and traffic modeling using commercial software. Radar databases can provide many potential benefits for research and analysis in environmental and transportation planning. These findings can be incorporated in future investigations to implement public policies on vehicular emission reduction in urban areas and to advance environmental health effects research and human health risk assessment.
Collapse
Affiliation(s)
- Janaina Antonino Pinto
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil; Institute of Integrated Engineering, Federal University of Itajubá, Itabira 35903-087, Brazil; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Marcelo Félix Alonso
- Department of Meteorology, Federal University of Pelotas, Pelotas 96001-970, Brazil
| | - Willian Lemker Andreão
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Rizzieri Pedruzzi
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Sérgio Ibarra-Espinosa
- Departament of Atmospheric Sciences, Sao Paulo University, Brazil; Key Laboratory of Wetland Ecology and Environment, Chinese Academy of Science, PR China
| | - Felipe Marinho Maciel
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Taciana Toledo de Almeida Albuquerque
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil; Department of Environmental Engineering, Federal University of Espírito Santo, Vitória 29060-970, Brazil.
| |
Collapse
|
14
|
Kumar P, Hama S, Nogueira T, Abbass RA, Brand VS, Andrade MDF, Asfaw A, Aziz KH, Cao SJ, El-Gendy A, Islam S, Jeba F, Khare M, Mamuya SH, Martinez J, Meng MR, Morawska L, Muula AS, Shiva Nagendra SM, Ngowi AV, Omer K, Olaya Y, Osano P, Salam A. In-car particulate matter exposure across ten global cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141395. [PMID: 32858288 DOI: 10.1016/j.scitotenv.2020.141395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Cars are a commuting lifeline worldwide, despite contributing significantly to air pollution. This is the first global assessment on air pollution exposure in cars across ten cities: Dhaka (Bangladesh); Chennai (India); Guangzhou (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Blantyre (Malawi); and Dar-es-Salaam (Tanzania). Portable laser particle counters were used to develop a proxy of car-user exposure profiles and analyse the factors affecting particulate matter ≤2.5 μm (PM2.5; fine fraction) and ≤10 μm (PM2.5-10; coarse fraction). Measurements were carried out during morning, off- and evening-peak hours under windows-open and windows-closed (fan-on and recirculation) conditions on predefined routes. For all cities, PM2.5 and PM10 concentrations were highest during windows-open, followed by fan-on and recirculation. Compared with recirculation, PM2.5 and PM10 were higher by up to 589% (Blantyre) and 1020% (São Paulo), during windows-open and higher by up to 385% (São Paulo) and 390% (São Paulo) during fan-on, respectively. Coarse particles dominated the PM fraction during windows-open while fine particles dominated during fan-on and recirculation, indicating filter effectiveness in removing coarse particles and a need for filters that limit the ingress of fine particles. Spatial variation analysis during windows-open showed that pollution hotspots make up to a third of the total route-length. PM2.5 exposure for windows-open during off-peak hours was 91% and 40% less than morning and evening peak hours, respectively. Across cities, determinants of relatively high personal exposure doses included lower car speeds, temporally longer journeys, and higher in-car concentrations. It was also concluded that car-users in the least affluent cities experienced disproportionately higher in-car PM2.5 exposures. Cities were classified into three groups according to low, intermediate and high levels of PM exposure to car commuters, allowing to draw similarities and highlight best practices.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Sarkawt Hama
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Thiago Nogueira
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Departamento de Saúde Ambiental - Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil; Departamento de Ciências Atmosféricas - Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG, Universidade de São Paulo, São Paulo, Brazil
| | - Rana Alaa Abbass
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Veronika S Brand
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Departamento de Ciências Atmosféricas - Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG, Universidade de São Paulo, São Paulo, Brazil
| | - Maria de Fatima Andrade
- Departamento de Ciências Atmosféricas - Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG, Universidade de São Paulo, São Paulo, Brazil
| | - Araya Asfaw
- Physics Department, Addis Ababa University, Ethiopia
| | - Kosar Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani, Kurdistan Region, Iraq
| | - Shi-Jie Cao
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; School of Architecture, Southeast University, Nanjing 21009, China; Academy of Building Energy Efficiency, School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ahmed El-Gendy
- Department of Construction Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shariful Islam
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Farah Jeba
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mukesh Khare
- Department of Civil Engineering, Indian Institute of Technology Delhi, India
| | - Simon Henry Mamuya
- Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Jenny Martinez
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Universidad Nacional de Colombia, Colombia
| | - Ming-Rui Meng
- Academy of Building Energy Efficiency, School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lidia Morawska
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | | | - S M Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, India
| | - Aiwerasia Vera Ngowi
- Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Khalid Omer
- Department of Chemistry, College of Science, University of Sulaimani, Kurdistan Region, Iraq
| | - Yris Olaya
- Universidad Nacional de Colombia, Colombia
| | | | - Abdus Salam
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
15
|
Kumar P, Omidvarborna H, Pilla F, Lewin N. A primary school driven initiative to influence commuting style for dropping-off and picking-up of pupils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138360. [PMID: 32498201 DOI: 10.1016/j.scitotenv.2020.138360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The use of cars for drop-off and pick-up of pupils from schools is a potential cause of pollution hotspots at school premises. Employing a joint execution of smart sensing technology and citizen science approach, a primary school took an initiative to co-design a study with local community and researchers to generate data and provide information to understand the impact on pollution levels and identify possible mitigation measures. This study was aimed to assess the hotspots of vehicle-generated particulate matter ≤2.5 μm (PM2.5) and ≤10 μm (PM10) at defined drop-off/pick-up points and its ingress into a nearby naturally ventilated primary school classroom. Five different locations were selected inside school premises for measurements during two peak hours: morning (MP; 0730-0930 h; local time), evening (EP; 1400-1600 h), and off-peak (OP; 1100-1300 h) hours for comparison. These represent PM measurements at the main road, pick-up point at the adjoining road, drop-off point, a classroom, and the school playground. Additional measurements of carbon dioxide (CO2) were taken simultaneously inside and outside (drop-off point) the classroom to understand its build-up and ingress of outdoor PM. The results demonstrated nearly a three-fold increase in the concentrations of fine particles (PM2.5) during drop-off hours compared to off-peak hours indicated the dominant contribution of car queuing in the school premises. Coarse particles (PM2.5-10) were prevalent in the school playground, while the contribution of fine particles as a result of traffic congestion became more pronounced during drop-off hours. In the naturally ventilated classroom, the changes in indoor PM2.5 concentrations during both peak hours (0.58 < R2 < 0.67) were followed by the outdoor concentration at the drop-off point. This initiative resulted in valuable information that might be used to influence school commuting style and raise other important issues such as the generally fairly high PM2.5 concentrations in the playground and future classroom ventilation plans.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Hamid Omidvarborna
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Francesco Pilla
- Department of Planning and Environmental Policy, University College Dublin, Dublin D14, Ireland
| | - Neil Lewin
- St Thomas of Canterbury Catholic Primary School, Guildford GU1 2SX, United Kingdom
| |
Collapse
|
16
|
Sharma A, Kumar P. Quantification of air pollution exposure to in-pram babies and mitigation strategies. ENVIRONMENT INTERNATIONAL 2020; 139:105671. [PMID: 32278197 DOI: 10.1016/j.envint.2020.105671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 03/16/2020] [Indexed: 05/02/2023]
Abstract
Young children are particularly vulnerable to air pollution exposure during their early childhood development, yet research on exposure to in-pram babies in different types of single/double prams is limited. This work aims to mimick their exposure to multiple air pollutants - particulate matter ≤10 µm in aerodynamic diameter (PM10), ≤2.5 µm (PM2.5; fine particles), ≤1 µm (PM1), ≤0.10 µm (measured as particle number concentration, PNC) - in three different types of prams (single pram facing the road; single pram facing parents; double pram facing the road). We also assessed the differences in exposure concentrations between typical adult and in-pram baby breathing height via simultaneous measurements besides assessing their physico-chemical properties (morphology and elemental composition). In addition, we analysed the impact of pram covers in mitigating in-pram exposure concentrations of selected pollutants. We carried out a total of 89 single runs, repeating on a 2.1 km long pre-defined route between an origin-destination pair (the University of Surrey to a local school) during the morning (08:00-10:00 h; local time) and afternoon (15:00-17:00 h) hours. These run simulated morning drop-off and afternoon pick-off times of school children. Overall, the experimental runs took about 66 h and covered the total length of 145 km. Substantial variability is observed in measured concentrations of different pollutants within each run (e.g., up to 290-times for PNC) and between different runs performed during different times of the day (e.g., ~62% variability in average PNC; ~7% for PM1 and 8% for PM2.5 during morning versus afternoon). The average in-pram concentration of fine particles was always higher by up to 44% compared with adult breathing height during both morning and afternoon runs. The comparison of exposure concentrations at two different sitting heights of double pram showed that PNC concentrations were higher by about 72% at the bottom seat compared to the top seat. Scanning electron microscope (SEM) analysis of PM2.5-10 revealed traces of brake wear, tyre wear and re-suspended dust minerals with the predominance of brake and tyre wear emissions at baby height compared with a relatively larger share of earth crust elements at adult height. For mitigation measures, pram covers reduced concentrations of small-sized particles by as much as 39% (fine particles) and 43% (coarse particles). Our results reinforce the need for mitigating exposures to in-pram babies, especially at urban pollution hotspots such as busy congested roads, bus stops, and traffic intersections.
Collapse
Affiliation(s)
- Ashish Sharma
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
17
|
García-Hernández C, Ferrero A, Estarlich M, Ballester F. Exposure to ultrafine particles in children until 18 years of age: A systematic review. INDOOR AIR 2020; 30:7-23. [PMID: 31692140 DOI: 10.1111/ina.12620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Airborne ultrafine particles (UFP) have been related to adverse health effects, but exposure in vulnerable population groups such as children is still not well understood. We aim to review the scientific literature regarding personal exposure to UFP in different microenvironments in populations until 18 years of age. The bibliographical search was carried out in July 2019 using the online database PubMed and was completed with references in articles found in the search. We selected the studies that used continuous counters and measured UFP levels in both specific microenvironment (houses, schools, transport, etc) and personal exposure. Finally, 32 studies fulfilled the criteria: of these, 10 analyzed personal exposure and 22 examined UFP levels in the microenvironment (especially in schools or nurseries (18/22)) and five in various microenvironments (including dwellings and means of transport, where exposure levels were higher). The characteristics of the microenvironments with the greatest levels of UFP were being close to heavy traffic or near cooking and cleaning activities. This review revealed the wide differences in exposure assessment methodologies that could lead to a lack of uniform and comparable information about the real UFP exposure in children.
Collapse
Affiliation(s)
- Celia García-Hernández
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
| | - Amparo Ferrero
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marisa Estarlich
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Nursing School, Universitat de València, Valencia, Spain
| | - Ferran Ballester
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Nursing School, Universitat de València, Valencia, Spain
| |
Collapse
|
18
|
Urban Aerosol Particle Size Characterization in Eastern Mediterranean Conditions. ATMOSPHERE 2019. [DOI: 10.3390/atmos10110710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Characterization of urban particle number size distribution (PNSD) has been rarely reported/performed in the Middle East. Therefore, we aimed at characterizing the PNSD (0.01–10 µm) in Amman as an example for an urban Middle Eastern environment. The daily mean submicron particle number concentration (PNSub) was 6.5 × 103–7.7 × 104 cm−3 and the monthly mean coarse mode particle number concentration (PNCoarse) was 0.9–3.8 cm−3 and both had distinguished seasonal variation. The PNSub also had a clear diurnal and weekly cycle with higher concentrations on workdays (Sunday–Thursday; over 3.3 × 104 cm−3) than on weekends (below 2.7 × 104 cm−3). The PNSub constitute of 93% ultrafine fraction (diameter < 100 nm). The mean particle number size distributions was characterized with four well-separated submicron modes (Dpg,I, Ni): nucleation (22 nm, 9.4 103 cm−3), Aitken (62 nm, 3.9 103 cm−3), accumulation (225 nm, 158 cm−3), and coarse (2.23 µm, 1.2 cm−3) in addition to a mode with small geometric mean diameter (GMD) that represented the early stage of new particle formation (NPF) events. The wind speed and temperature had major impacts on the concentrations. The PNCoarse had a U-shape with respect to wind speed and PNSub decreased with wind speed. The effect of temperature and relative humidity was complex and require further investigations.
Collapse
|
19
|
da Costa E Oliveira JR, Base LH, de Abreu LC, Filho CF, Ferreira C, Morawska L. Ultrafine particles and children's health: Literature review. Paediatr Respir Rev 2019; 32:73-81. [PMID: 31427160 DOI: 10.1016/j.prrv.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022]
Abstract
The aim of this study was to review and synthesize the existing knowledge of the effects of ultrafine particles [UFPs] with a specific focus on children's health. An extensive literature search identified 16 studies fulfilling the criteria set for the review. One of the most important findings of the review was that, in general, there is an association between children's health and exposure to UFPs, especially among children with respiratory diseases, who commonly experience alterations in inflammatory biomarkers and deterioration in lung function as a result of UFP exposure. Notably, the health effects of UFPs are related to their ability to penetrate through different systems of the body due to their small size.
Collapse
Affiliation(s)
- Juliana Regis da Costa E Oliveira
- Departamento de Medicina, Disciplina de Cardiologia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo 04024002, SP, Brazil.
| | - Luis Henrique Base
- Departamento de Medicina, Disciplina de Cardiologia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo 04024002, SP, Brazil
| | - Luiz Carlos de Abreu
- Faculdade de Medicina do ABC, Laboratório de Delineamento de Estudos e Escrita Científica, 2000 Lauro Gomes Av, Santo André, SP 09060-870, Brazil
| | - Celso Ferreira Filho
- Departamento de Medicina, Disciplina de Cínica Médica, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo 04024002, SP, Brazil
| | - Celso Ferreira
- Departamento de Medicina, Disciplina de Cardiologia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, 715 Napoleão de Barros St, São Paulo 04024002, SP, Brazil
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Qld 4001, Australia
| |
Collapse
|
20
|
Tiwari A, Kumar P, Baldauf R, Zhang KM, Pilla F, Di Sabatino S, Brattich E, Pulvirenti B. Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:410-426. [PMID: 30965257 PMCID: PMC7236027 DOI: 10.1016/j.scitotenv.2019.03.350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 05/05/2023]
Abstract
Green infrastructure (GI) in urban areas may be adopted as a passive control system to reduce air pollutant concentrations. However, current dispersion models offer limited modelling options to evaluate its impact on ambient pollutant concentrations. The scope of this review revolves around the following question: how can GI be considered in readily available dispersion models to allow evaluation of its impacts on pollutant concentrations and health risk assessment? We examined the published literature on the parameterisation of deposition velocities and datasets for both particulate matter and gaseous pollutants that are required for deposition schemes. We evaluated the limitations of different air pollution dispersion models at two spatial scales - microscale (i.e. 10-500 m) and macroscale (i.e. 5-100 km) - in considering the effects of GI on air pollutant concentrations and exposure alteration. We conclude that the deposition schemes that represent GI impacts in detail are complex, resource-intensive, and involve an abundant volume of input data. An appropriate handling of GI characteristics (such as aerodynamic effect, deposition of air pollutants and surface roughness) in dispersion models is necessary for understanding the mechanism of air pollutant concentrations simulation in presence of GI at different spatial scales. The impacts of GI on air pollutant concentrations and health risk assessment (e.g., mortality, morbidity) are partly explored. The i-Tree tool with the BenMap model has been used to estimate the health outcomes of annually-averaged air pollutant removed by deposition over GI canopies at the macroscale. However, studies relating air pollution health risk assessments due to GI-related changes in short-term exposure, via pollutant concentrations redistribution at the microscale and enhanced atmospheric pollutant dilution by increased surface roughness at the macroscale, along with deposition, are rare. Suitable treatments of all physical and chemical processes in coupled dispersion-deposition models and assessments against real-world scenarios are vital for health risk assessments.
Collapse
Affiliation(s)
- Arvind Tiwari
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Richard Baldauf
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA; (d)U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Ann Arbor, MI, USA
| | - K Max Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Francesco Pilla
- Department of Planning and Environmental Policy, University College Dublin, Dublin D14, Ireland
| | - Silvana Di Sabatino
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Brattich
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Beatrice Pulvirenti
- Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations. ATMOSPHERE 2019. [DOI: 10.3390/atmos10060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a paucity of comprehensive air quality data from urban areas in the Middle East. In this study, portable instrumentation was used to measure size-fractioned aerosol number, mass, and black carbon concentrations in Amman and Zarqa, Jordan. Submicron particle number concentrations at stationary urban background sites in Amman and Zarqa exhibited a characteristic diurnal pattern, with the highest concentrations during traffic rush hours (2–5 × 104 cm−3 in Amman and 2–7 × 104 cm−3 in Zarqa). Super-micron particle number concentrations varied considerably in Amman (1–10 cm−3). Mobile measurements identified spatial variations and local hotspots in aerosol levels within both cities. Walking paths around the University of Jordan campus showed increasing concentrations with proximity to main roads with mean values of 8 × 104 cm−3, 87 µg/m3, 62 µg/m3, and 7.7 µg/m3 for submicron, PM10, PM2.5, and black carbon (BC), respectively. Walking paths in the Amman city center showed moderately high concentrations (mean 105 cm−3, 120 µg/m3, 85 µg/m3, and 8.1 µg/m3 for submicron aerosols, PM10, PM2.5, and black carbon, respectively). Similar levels were found along walking paths in the Zarqa city center. On-road measurements showed high submicron concentrations (>105 cm−3). The lowest submicron concentration (<104 cm−3) was observed near a remote site outside of the cities.
Collapse
|
22
|
Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motivated by public interest, the Clean Air and Urban Landscapes (CAUL) hub deployed instrumentation to measure air quality at a roadside location in Sydney. The main aim was to compare concentrations of fine particulate matter (PM2.5) measured along a busy road section with ambient regional urban background levels, as measured at nearby regulatory air quality stations. The study also explored spatial and temporal variations in the observed PM2.5 concentrations. The chosen area was Randwick in Sydney, because it was also the subject area for an agent-based traffic model. Over a four-day campaign in February 2017, continuous measurements of PM2.5 were made along and around the main road. In addition, a traffic counting application was used to gather data for evaluation of the agent-based traffic model. The average hourly PM2.5 concentration was 13 µg/m3, which is approximately twice the concentrations at the nearby regulatory air quality network sites measured over the same period. Roadside concentrations of PM2.5 were about 50% higher in the morning rush-hour than the afternoon rush hour, and slightly lower (reductions of <30%) 50 m away from the main road, on cross-roads. The traffic model under-estimated vehicle numbers by about 4 fold, and failed to replicate the temporal variations in traffic flow, which we assume was due to an influx of traffic from outside the study region dominating traffic patterns. Our findings suggest that those working for long hours outdoors at busy roadside locations are at greater risk of suffering detrimental health effects associated with higher levels of exposure to PM2.5. Furthermore, the worse air quality in the morning rush hour means that, where possible, joggers and cyclists should avoid busy roads around these times.
Collapse
|
23
|
Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, Sahani M, Wahab MIA, Yusup Y, Maulud KNA, Yusoff MF, Amin N, Akhtaruzzaman M, Kindzierski W, Kumar P. Airborne particles in the city center of Kuala Lumpur: Origin, potential driving factors, and deposition flux in human respiratory airways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1195-1206. [PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 05/28/2023]
Abstract
Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
Collapse
Affiliation(s)
- Md Firoz Khan
- Center for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Ahmad Hazuwan Hamid
- Center for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Md Aynul Bari
- School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada; Department of Environmental & Sustainable Engineering, College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Abdul Basit Ahmad Tajudin
- Environmental Health and Industrial Safety Program, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50586 Kuala Lumpur, Malaysia
| | - Mohd Talib Latif
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4300 Bangi, Selangor, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- Center for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4300 Bangi, Selangor, Malaysia
| | - Mazrura Sahani
- Environmental Health and Industrial Safety Program, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50586 Kuala Lumpur, Malaysia.
| | - Muhammad Ikram A Wahab
- Environmental Health and Industrial Safety Program, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50586 Kuala Lumpur, Malaysia
| | - Yusri Yusup
- Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Khairul Nizam Abdul Maulud
- Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Smart & Sustainable Township Research Centre, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohd Famey Yusoff
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4300 Bangi, Selangor, Malaysia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - Md Akhtaruzzaman
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Warren Kindzierski
- School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Prashant Kumar
- Global Center for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| |
Collapse
|
24
|
Sharma A, Kumar P. A review of factors surrounding the air pollution exposure to in-pram babies and mitigation strategies. ENVIRONMENT INTERNATIONAL 2018; 120:262-278. [PMID: 30103125 DOI: 10.1016/j.envint.2018.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Air pollution exposure to in-pram babies poses a serious threat to their early childhood development, necessitating a need for effective mitigation measures. We reviewed the scientific and grey literature on in-pram babies and their personal exposure to traffic generated air pollutants such as particulate matter ≤10 μm (PM10), ≤2.5 μm (PM2.5), ≤0.10 μm (ultrafine particles) in size, black carbon and nitrogen oxides and potential mitigation pathways. In-pram babies can be exposed up to ~60% higher average concentrations depending on the pollutant types compared with adults. The air within the first few meters above the road level is usually most polluted. Therefore, we classified various pram types based on criteria such as height, width and the seating capacity (single versus twin) and assessed the breathing heights of sitting babies in various pram types available in the market. This classification revealed the pram widths between 0.56 and 0.82 m and top handle heights up to ~1.25 m as opposed to breathing height between 0.55 and 0.85 m, suggesting that the concentration within the first meter above the road level is critical for exposure to in-pram babies. The assessment of flow features around the prams suggests that meteorological conditions (e.g., wind speed and direction) and traffic-produced turbulence affect the pollution dispersion around them. A survey of the physicochemical properties of particles from roadside environment demonstrated the dominance of toxic metals that have been shown to damage their frontal lobe as well as cognition and brain development when inhaled by in-pram babies. We then assessed a wide range of active and passive exposure mitigation strategies, including a passive control at the receptor such as the enhanced filtration around the breathing zone and protection of prams via covers. Technological solutions such as creating a clean air zone around the breathing area can provide instant solutions. However, a holistic approach involving a mix of innovative technological solutions, community empowerment and exposure-centric policies are needed to help limit personal exposure of in-pram babies.
Collapse
Affiliation(s)
- Ashish Sharma
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
25
|
Deng Q, Ou C, Chen J, Xiang Y. Particle deposition in tracheobronchial airways of an infant, child and adult. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:339-346. [PMID: 28854390 DOI: 10.1016/j.scitotenv.2017.08.240] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Particle deposition in human airways is important for assessing both health effects of inhaled particles and therapeutic efficacy of inhaled drug aerosols, but is not well understood for infants and children. OBJECTIVE We investigate particle deposition in infants and children by using computational fluid dynamics (CFD), and compare this with particle deposition in adults. METHODS We chose three population age groups: 7-month infant, 4-year old child, and 20-year old adult. Both airway structures and breathing conditions are considered to vary as a human grows from infancy to adulthood. We investigated deposition of micron-size particles (1-10μm) in both the upper (G3-G6) and lower (G9-G12) tracheobronchial (TB) airways under sedentary conditions. RESULTS We found that particle deposition in both upper and lower airways is the highest in an infant, next in a child, and lowest in an adult. As age increases, particle deposition decreases in the upper airways but increases in the lower. For infants, inertial impaction is the dominant deposition mechanism, thus particles are deposited more in the upper airways than in the lower. However, particles are deposited more in the lower airways than in the upper in adults, as gravitational sedimentation is the dominant deposition mechanism. CONCLUSION Given the differences in the airway structure and particle deposition mechanisms, particle deposition in infants and children differs from that in adults, not only in the efficiency of deposition but also in the site. Our findings provide evidence that "children are not small adults".
Collapse
Affiliation(s)
- Qihong Deng
- School of Energy Science and Engineering, Central South University, Changsha, China; XiangYa School of Public Health, Central South University, Changsha, China.
| | - Cuiyun Ou
- School of Energy Science and Engineering, Central South University, Changsha, China
| | - Jiao Chen
- School of Energy Science and Engineering, Central South University, Changsha, China
| | - Yuguang Xiang
- School of Energy Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
26
|
Kumar P, Gulia S, Harrison RM, Khare M. The influence of odd-even car trial on fine and coarse particles in Delhi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:20-30. [PMID: 28343101 DOI: 10.1016/j.envpol.2017.03.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 05/02/2023]
Abstract
The odd-even car trial scheme, which reduced car traffic between 08.00 and 20.00 h daily, was applied from 1 to 15 January 2016 (winter scheme, WS) and 15-30 April 2016 (summer scheme, SS). The daily average PM2.5 and PM10 exceeded national standards, with highest concentrations (313 μg m-3 and 639 μg m-3, respectively) during winter and lowest (53 μg m-3 and 130 μg m-3) during the monsoon (June-August). PM concentrations during the trials can be interpreted either as reduced or increased, depending on the periods used for comparison purposes. For example, hourly average net PM2.5 and PM10 (after subtracting the baseline concentrations) reduced by up to 74% during the majority (after 1100 h) of trial hours compared with the corresponding hours during the previous year. Conversely, daily average PM2.5 and PM10 were higher by up to 3-times during the trial periods when compared with the pre-trial days. A careful analysis of the data shows that the trials generated cleaner air for certain hours of the day but the persistence of overnight emissions from heavy goods vehicles into the morning odd-even hours (0800-1100 h) made them probably ineffective at this time. Any further trial will need to be planned very carefully if an effect due to traffic alone is to be differentiated from the larger effect caused by changes in meteorology and especially wind direction.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Environmental Flow (EnFlo) Research Centre, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Sunil Gulia
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Presently at: CSIR-National Environmental Engineering and Research Institute, Delhi Zonal Centre, India
| | - Roy M Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Department of Environmental Sciences/Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mukesh Khare
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|