1
|
Petculescu I, Hynds P, Brown RS, Boudou M, McDermott K, Majury A. Development of a "big data" groundwater microbial contamination index and spatial comparisons with enteric infection rates in southern Ontario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174408. [PMID: 38972407 DOI: 10.1016/j.scitotenv.2024.174408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024]
Abstract
Big data have become increasingly important for policymakers and scientists but have yet to be employed for the development of spatially specific groundwater contamination indices or protecting human and environmental health. The current study sought to develop a series of indices via analyses of three variables: Non-E. coli coliform (NEC) concentration, E. coli concentration, and the calculated NEC:E. coli concentration ratio. A large microbial water quality dataset comprising 1,104,094 samples collected from 292,638 Ontarian wells between 2010 and 2021 was used. Getis-Ord Gi* (Gi*), Local Moran's I (LMI), and space-time scanning were employed for index development based on identified cluster recurrence. Gi* and LMI identify hot and cold spots, i.e., spatially proximal subregions with similarly high or low contamination magnitudes. Indices were statistically compared with mapped well density and age-adjusted enteric infection rates (i.e., campylobacteriosis, cryptosporidiosis, giardiasis, verotoxigenic E. coli (VTEC) enteritis) at a subregional (N = 298) resolution for evaluation and final index selection. Findings suggest that index development via Gi* represented the most efficacious approach. Developed Gi* indices exhibited no correlation with well density, implying that indices are not biased by rural population density. Gi* indices exhibited positive correlations with mapped infection rates, and were particularly associated with higher bacterial (Campylobacter, VTEC) infection rates among younger sub-populations (p < 0.05). Conversely, no association was found between developed indices and giardiasis rates, an infection not typically associated with private groundwater contamination. Findings suggest that a notable proportion of bacterial infections are associated with groundwater and that the developed Gi* index represents an appropriate spatiotemporal reflection of long-term groundwater quality. Bacterial infection correlations with the NEC:E. coli ratio index (p < 0.001) were markedly different compared to correlations with the E. coli index, implying that the ratio may supplement E. coli monitoring as a groundwater assessment metric capable of elucidating contamination mechanisms. This study may serve as a methodological blueprint for the development of big data-based groundwater contamination indices across the globe.
Collapse
Affiliation(s)
- Ioan Petculescu
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada.
| | - Paul Hynds
- Technological University Dublin, Park House, 191 N Circular Rd, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada.
| | - Martin Boudou
- Technological University Dublin, Park House, 191 N Circular Rd, Dublin, Ireland
| | | | - Anna Majury
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada; Public Health Ontario, 181 Barrie St, Kingston, ON, Canada.
| |
Collapse
|
2
|
Mooney S, Lavallee S, O'Dwyer J, Majury A, O'Neill E, Hynds PD. Private groundwater contamination and risk management: A comparative scoping review of similarities, drivers and challenges across two socio-economically developed regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171112. [PMID: 38387579 DOI: 10.1016/j.scitotenv.2024.171112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Consolidation of multi-domain risk management research is essential for strategies facilitating the concerted government (educational) and population-level (behavioural) actions required to reduce microbial private groundwater contamination. However, few studies to date have synthesised this literature or sought to ascertain the causal generality and extent of supply contamination and preventive responses. In light of the Republic of Ireland (ROI) and Ontario's high reliance and research focus on private wells and consequent utility for empirical comparison, a scoping review of pertinent literature (1990-2022) from both regions was undertaken. The SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) method was employed to inform literature searches, with Scopus and Web of Science selected as primary databases for article identification. The review identified 65 relevant articles (Ontario = 34, ROI = 31), with those investigating well user actions (n = 22) and groundwater quality (n = 28) the most frequent. A markedly higher pooled proportion of private supplies in the ROI exhibited microbial contamination (38.3 % vs. 4.1 %), despite interregional similarities in contamination drivers (e.g., weather, physical supply characteristics). While Ontarian well users demonstrated higher rates of historical (≥ 1) and annual well testing (90.6 % vs. 71.1 %; 39.1 % vs. 8.6 %) and higher rates of historical well treatment (42.3 % vs. 24.3 %), interregional levels of general supply knowledge were analogous (70.7 % vs. 71.0 %). Financial cost, organoleptic properties and residence on property during supply construction emerged as predictors of cognition and behaviour in both regions. Review findings suggest broad interregional similarities in drivers of supply contamination and individual-level risk mitigation, indicating that divergence in contamination rates may be attributable to policy discrepancies - particularly well testing incentivisation. The paucity of identified intervention-oriented studies further highlights the importance of renewed research and policy agendas for improved, targeted well user outreach and incentivised, convenience-based services promoting routine supply maintenance.
Collapse
Affiliation(s)
- S Mooney
- School of Architecture, Planning & Environmental Policy, University College Dublin, Ireland.
| | - S Lavallee
- Center for Tobacco and the Environment, San Diego State University, San Diego, CA, United States
| | - J O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University of Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland
| | - A Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - E O'Neill
- School of Architecture, Planning & Environmental Policy, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - P D Hynds
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland; Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Walsh JF, Scher DP, de Lambert JR, Anderson AC. Risk factors for Cryptosporidium contamination in Minnesota public supply wells. JOURNAL OF WATER AND HEALTH 2024; 22:612-626. [PMID: 38557575 DOI: 10.2166/wh.2024.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
In a recent monitoring study of Minnesota's public supply wells, Cryptosporidium was commonly detected with 40% of the wells having at least one detection. Risk factors for Cryptosporidium occurrence in drinking water supply wells, beyond surface water influence, remain poorly understood. To address this gap, physical and chemical factors were assessed as potential predictors of Cryptosporidium occurrence in 135 public supply wells in Minnesota. Univariable analysis, regression techniques, and classification trees were used to analyze the data. Many variables were identified as significant risk factors in univariable analysis and several remained significant throughout the succeeding analysis techniques. These factors fell into general categories of well use and construction, aquifer characteristics, and connectedness to the land surface, well capture zones, and land use therein, existence of potential contaminant sources within 200-feet of the well, and variability in the chemical and isotopic parameters measured during the study. These risk categories, and the specific variables and threshold values we have identified, can help guide future research on factors influencing Cryptosporidium contamination of wells and can be used by environmental health programs to develop risk-based sampling plans and design interventions that reduce associated health risks.
Collapse
Affiliation(s)
- James F Walsh
- Minnesota Department of Health (retired), Saint Paul, MN 55164-0975, USA
| | - Deanna P Scher
- Minnesota Department of Health, Saint Paul, MN 55164-0975, USA E-mail:
| | | | | |
Collapse
|
4
|
Wilson W, Yeboah B, Govender P. Evaluation of the suitability of integrated bone char- and biochar-treated groundwater for drinking using single-factor, Nemerow, and heavy metal pollution indexes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:647. [PMID: 37154981 DOI: 10.1007/s10661-023-11249-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
The treatment of contaminated groundwater using integrated bone char and biochar beds has been studied. The bone char and biochar were made in a locally built double-barrel retort utilising cow bones, coconut husks, bamboo, neem trees, and palm kernel shells at 450 °C and were graded into 0.05- and 0.315-mm sizes. Eight groundwater treatment experiments (BF2-BF9) were performed in columns with bed heights of 8.5-16.5 cm to remove nutrients, heavy metals, microorganisms, and interfering ions from groundwater using bone char, biochar, and a combination of bone and biochar. The water samples were analysed for twenty-one water quality parameters including pH, total dissolved solids, conductivity, turbidity, fluoride, chloride, sodium, and potassium. The rest were total coliforms, faecal coliforms, total heterotrophic bacteria, Escherichia coli, manganese, and total iron. The effectiveness of the treatment processes was assessed using the Ghana standard authority and the World Health Organisation's recommended values for drinking water quality. The results were shared using a simplified single-factor index, Nemerow's pollution index, and a heavy metal pollution index with decision-makers as a technology for groundwater treatment in rural communities in Africa. Bone char was more effective in removing total heterotrophic bacteria than any of the other treatment agents tested. This is because of its compact nature and small particle size. The quality of water treated by BF3, BF5, BF6, BF7, BF8, and BF9 was fit for drinking based on the single-factor and heavy-metal pollution evaluation because they have the lowest level of pollution. However, Nemerow pollution analysis found only BF5 to be the most suitable for public use.
Collapse
Affiliation(s)
- William Wilson
- Faculty of Science, Department of Chemical Sciences-DFC, University of Johannesburg, P. O. Box 17011, Johannesburg, South Africa.
- CSIR-Water Research Institute, Environmental Chemistry and Sanitation Engineering Division, P.O. Box AH 38, Achimota-Accra, Ghana.
| | - Boniface Yeboah
- CSIR-Institute of Industrial Research, Materials and Manufacturing Division, P. O. Box LG 576, Legon-Accra, Ghana
| | - Poomani Govender
- Faculty of Science, Department of Chemical Sciences-DFC, University of Johannesburg, P. O. Box 17011, Johannesburg, South Africa
| |
Collapse
|
5
|
Burke LP, Chique C, Fitzhenry K, Chueiri A, O'Connor L, Hooban B, Cahill N, Brosnan E, Olaore L, Sullivan E, Reilly L, Morris D, Hynds P, O'Dwyer J. Characterization of Shiga toxin-producing Escherichia coli presence, serogroups and risk factors from private groundwater sources in western Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161302. [PMID: 36592918 DOI: 10.1016/j.scitotenv.2022.161302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Over recent years, Ireland has reported the highest crude incidence rates of Shiga toxin-producing Escherichia coli (STEC) enteritis in Europe. Unregulated private groundwater sources have emerged as an important potential transmission route for STEC, with up to 750,000 Irish residents reliant on these sources for domestic waters. This study aimed to investigate the prevalence and serogroup profile of STEC contamination from domestic private wells in western Ireland. Fifty-two groundwater sources were analysed during two sampling campaigns in the autumn (September/October) of 2019 (n = 21) and 2021 (n = 31). Untreated groundwater samples (30 L) were collected and analysed using the "CapE" (capture, amplify, extract) method. Extracted DNA was tested using multiplex real-time PCR for Shiga toxin stx1 and/or stx2 and eae genes. STEC positive DNA samples were tested for clinically relevant serogroups by real-time PCR. Data relating to 27 potential groundwater contamination risk factors were geospatially linked to each well and assessed for association with E. coli, stx1 and/or stx2 and eae presence/absence. Overall, 20/52 wells (38.4 %) were positive for E. coli (median concentration 8.5 MPN/100 mL as assessed by Colilert-18 method). Stx1 and/or stx2 was detected in 10/52 (19.2 %) wells overall and 8/20 E. coli positive wells, equating to a STEC to "generic" E. coli detection ratio of 40 %. Six of these wells (30 %) were also positive for eae. One or more serogroup-specific gene targets were identified in all but one stx1 and/or stx2 positive sample, with O145 (n = 6), O157 (n = 5) and O103 (n = 4) most prevalent. STEC presence was significantly associated with decreasing well depth (U = -2.243; p = 0.024) and increasing 30-day mean antecedent rainfall (U = 2.126; p = 0.034). Serogroup O104 was associated with increased sheep density (U = 2.089; p = 0.044) and detection of stx1 and/or stx2 + eae with increased septic tank density (U = 2.246 p = 0.023). Findings indicate high detection rates of clinically relevant STEC in E. coli contaminated groundwater sources in Ireland.
Collapse
Affiliation(s)
- Liam Patrick Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland.
| | - Carlos Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Ellen Brosnan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Lateefat Olaore
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Emma Sullivan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise Reilly
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Andrade L, Chique C, Hynds P, Weatherill J, O'Dwyer J. The antimicrobial resistance profiles of Escherichia coli and Pseudomonas aeruginosa isolated from private groundwater wells in the Republic of Ireland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120817. [PMID: 36481470 DOI: 10.1016/j.envpol.2022.120817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The role of the natural environment in the dissemination of antimicrobial resistant bacteria has been increasingly recognised in the literature. However, knowledge surrounding the critical factors and mechanisms mediating their occurrence is still limited, particularly in relatively 'pristine' groundwater environments. In the Republic of Ireland (RoI), a country characterised by high groundwater reliance, household-based (unregulated) wells provide drinking water to 11% of the population. These private wells are generally located in rural areas, where the risk of microbiological contamination is high due to intensive agricultural practices and high reliance on domestic wastewater treatment systems; both of which are also potential sources of antimicrobials and antimicrobial resistant bacteria. Accordingly, the current research sought to elucidate current rates of antimicrobial resistant bacteria and the principal factors associated with their presence in private wells in the RoI. A total of 250 samples (from 132 wells nationwide) were assessed for the presence of faecal (Escherichia coli) and environmental (Pseudomonas aeruginosa) bacteria, with single isolates from each contaminated sample tested phenotypically against 18 and 9 antimicrobials, respectively. Findings show that while 16.7% of E. coli (n = 8/48) were categorically resistant to ≥1 antimicrobial, with a further 79.2% classified as intermediately resistant, no categorical resistance was found among P. aeruginosa isolates (n = 0/6), with just one intermediately resistant isolate detected. Multivariate regression modelling indicates significantly higher odds of resistant E. coli detection in concurrence with elevated cattle density (OR = 1.028, p = 0.032), aligning with findings of highest resistance rates to veterinary antimicrobials (e.g., streptomycin = 14.6%, tetracycline = 12.5%, and ampicillin = 12.5%). Multivariate model results also suggest overland flow culminating in direct wellhead ingress as a primary ingress mechanism for resistant E. coli. Study findings may inform groundwater source protection initiatives and antimicrobial resistance surveillance moving forward.
Collapse
Affiliation(s)
- Luisa Andrade
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Carlos Chique
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; UNEP GEMS/Water Capacity Development Centre, University College Cork, Cork, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
| | - John Weatherill
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Petculescu I, Hynds P, Brown RS, McDermott K, Majury A. An assessment of total coliforms and associated thresholds as water quality indicators using a large Ontario private drinking water well dataset. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157478. [PMID: 35868388 DOI: 10.1016/j.scitotenv.2022.157478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A spatiotemporally static total coliform (TC) concentration threshold of five colony-forming units (CFU) per 100 mL is used in Ontario to determine whether well water is of acceptable quality for drinking. The current study sought to assess the role of TC and associated thresholds as microbial water quality parameters as the authors hypothesized that, since static TC thresholds are not evidence-based, they may not be appropriate for all well water consumers. A dataset containing the microbial water quality information of 795,023 samples (including TC and Escherichia coli (E. coli) counts) collected from 253,136 private wells in Ontario between 2010 and 2017 was used. To accurately assess the relationship between E. coli and non-E. coli TC, "non-E. coli coliform" (NEC) counts were calculated from microbial water quality data and replaced TC throughout analyses. This study analysed NEC and E. coli detection rates to determine differences between the two, and NEC:E. coli concentration ratios to assess links, if any, between NEC and E. coli contamination. Study findings suggest that spatiotemporally static NEC thresholds are not appropriate because seasonal, spatial, and well-specific susceptibility factors are associated with distinct contamination trends. For example, NEC detection rates exhibited bimodality, with summer (29.4 %) and autumn (30.2 %) detection rates being significantly higher (p < 0.05) than winter (21.9 %) and spring (19.9 %). E. coli detection rates also varied seasonally, but peaked in summer rather than autumn. As such, it is recommended that these factors be considered during the development of private well water guidelines and that static thresholds be avoided. Furthermore, the authors propose that, because NEC:E. coli concentration ratios change in the context of the aforementioned factors, they may have a role in inferring groundwater contamination mechanisms, with high ratios being associated with generalized aquifer contamination mechanisms and low ratios with localized contamination mechanisms.
Collapse
Affiliation(s)
- Ioan Petculescu
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada.
| | - Paul Hynds
- Technological University Dublin, Park House, 191 N Circular Rd, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada.
| | | | - Anna Majury
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada; Public Health Ontario, 181 Barrie St, Kingston, ON, Canada.
| |
Collapse
|
8
|
Andrade L, Boudou M, Hynds P, Chique C, Weatherill J, O'Dwyer J. Spatiotemporal dynamics of Escherichia coli presence and magnitude across a national groundwater monitoring network, Republic of Ireland, 2011-2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156311. [PMID: 35636550 DOI: 10.1016/j.scitotenv.2022.156311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is a vital drinking water resource and its protection from microbiological contamination is paramount to safeguard public health. The Republic of Ireland (RoI) is characterised by the highest incidence of verocytotoxigenic Escherichia coli (VTEC) enteritis in the European Union (EU), linked to high reliance on unregulated groundwater sources (~16% of the population). Yet, the spatio-temporal factors influencing the frequency and magnitude of microbial contamination remain largely unknown, with past studies typically constrained to spatio-temporally 'limited' sampling campaigns. Accordingly, the current investigation sought to analyse an extensive spatially distributed time-series (2011-2020) of groundwater monitoring data in the RoI. The dataset, compiled by the Environmental Protection Agency (EPA), showed 'high' contamination rates, with 66.7% (88/132) of supplies testing positive for E. coli, and 29.5% (39/132) exceeding concentrations of 10MPN/100 ml (i.e. gross contamination) at least once during the 10-year monitoring period. Seasonal decomposition analyses indicate that E. coli detection rates peak during late autumn/early winter, coinciding with increases in annual rainfall, while gross contamination peaks in spring (May) and late-summer (August), likely reflecting seasonal shifts in agricultural practices. Mixed effects logistic regression modelling indicates that monitoring sources located in karst limestone are statistically associated with E. coli presence (OR = 2.76, p = 0.03) and gross contamination (OR = 2.54, p = 0.037) when compared to poorly productive aquifers (i.e., transmissivity below 10m2/d). Moreover, 5-day and 30-day antecedent rainfall increased the likelihood of E. coli contamination (OR = 1.027, p < 0.001 and OR = 1.005, p = 0.016, respectively), with the former also being associated with gross contamination (OR = 1.042, p < 0.001). As such, it is inferred that preferential flow and direct ingress of surface runoff are the most likely ingress mechanisms associated with E. coli groundwater supply contamination. The results presented are expected to inform policy change around groundwater source protection and provide insight for the development of groundwater monitoring programmes in geologically heterogeneous regions.
Collapse
Affiliation(s)
- Luisa Andrade
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Martin Boudou
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland.
| | - Carlos Chique
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - John Weatherill
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Tropea E, Hynds P, McDermott K, Brown RS, Majury A. Environmental adaptation of E. coli within private groundwater sources in southeastern Ontario: Implications for groundwater quality monitoring and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117263. [PMID: 33940229 DOI: 10.1016/j.envpol.2021.117263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Groundwater quality monitoring typically employs testing for the presence of E. coli as a fecal indicator of recent ingress of human or animal fecal material. The efficacy of fecal indicator organisms is based on the primary criteria that the organism does not reproduce in the aquatic environment. However, recent studies have reported that E. coli may proliferate (i.e., has adapted to) in the external environment, including soil and surface water. To date, the presence of environmentally-adapted E. coli in groundwater has not been examined. The current study employed Clermont phylotyping and the presence of six accessory genes to identify the likely presence of adapted E. coli in private groundwater sources. E. coli isolates (n = 325) from 76 contaminated private water wells located in a southeastern Ontario watershed were compared with geographically analogous human and animal fecal E. coli isolates (n = 234). Cryptic clades III-V, a well-described environmentally-adapted Escherichia population, were identified in three separate groundwater wells, one of which exclusively comprised this adapted population. Dimensionality reduction (via Principal Component Analysis) was used to develop an "E. coli adaptation model", comprising three distinct components (groundwater, animal feces, human feces) and suggests adaptation occurs frequently in the groundwater environment. Model findings indicate that 23/76 (30.3%) wells had an entirely adapted community. Accordingly, the use of E. coli as a FIO returned a false positive result in these instances, while an additional 23/76 (30.3%) wells exhibited some evidence of adaptation (i.e., not all isolates were adapted) representing an over-estimate of the magnitude (concentration) of contamination. Study findings highlight the need to further characterize environmentally-adapted E. coli in the groundwater environment and the potential implications with respect to water quality policy, legislation and determinants of human health risk both regionally and internationally.
Collapse
Affiliation(s)
- Erica Tropea
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland.
| | | | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Boudou M, Cleary E, ÓhAiseadha C, Garvey P, McKeown P, O'Dwyer J, Hynds P. Spatiotemporal epidemiology of cryptosporidiosis in the Republic of Ireland, 2008-2017: development of a space-time "cluster recurrence" index. BMC Infect Dis 2021; 21:880. [PMID: 34454462 PMCID: PMC8401175 DOI: 10.1186/s12879-021-06598-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background Ireland frequently reports the highest annual Crude Incidence Rates (CIRs) of cryptosporidiosis in the EU, with national CIRs up to ten times the EU average. Accordingly, the current study sought to examine the spatiotemporal trends associated with this potentially severe protozoan infection. Methods Overall, 4509 cases of infection from January 2008 to December 2017 were geo-referenced to a Census Small Area (SA), with an ensemble of geo-statistical approaches including seasonal decomposition, Local Moran’s I, and space–time scanning used to elucidate spatiotemporal patterns of infection. Results One or more confirmed cases were notified in 3413 of 18,641 Census SAs (18.3%), with highest case numbers occurring in the 0–5-year range (n = 2672, 59.3%). Sporadic cases were more likely male (OR 1.4) and rural (OR 2.4), with outbreak-related cases more likely female (OR 1.4) and urban (OR 1.5). Altogether, 55 space–time clusters (≥ 10 confirmed cases) of sporadic infection were detected, with three “high recurrence” regions identified; no large urban conurbations were present within recurrent clusters. Conclusions Spatiotemporal analysis represents an important indicator of infection patterns, enabling targeted epidemiological intervention and surveillance. Presented results may also be used to further understand the sources, pathways, receptors, and thus mechanisms of cryptosporidiosis in Ireland. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06598-3.
Collapse
Affiliation(s)
- M Boudou
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Greenway Hub, Grangegorman, Dublin 7, D07 H6K8, Republic of Ireland.
| | - E Cleary
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Greenway Hub, Grangegorman, Dublin 7, D07 H6K8, Republic of Ireland
| | - C ÓhAiseadha
- Department of Public Health, Health Service Executive (HSE), Dr. Steevens' Hospital, Dublin 8, Republic of Ireland
| | - P Garvey
- Health Protection Surveillance Centre, 25 Middle Gardiner Street, Dublin 1, Republic of Ireland
| | - P McKeown
- Health Protection Surveillance Centre, 25 Middle Gardiner Street, Dublin 1, Republic of Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute (ERI), University College Cork, Cork, Republic of Ireland.,Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin 4, Republic of Ireland
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Greenway Hub, Grangegorman, Dublin 7, D07 H6K8, Republic of Ireland. .,Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin 4, Republic of Ireland.
| |
Collapse
|
11
|
Mooney S, O'Dwyer J, Lavallee S, Hynds PD. Private groundwater contamination and extreme weather events: The role of demographics, experience and cognitive factors on risk perceptions of Irish private well users. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147118. [PMID: 33901952 DOI: 10.1016/j.scitotenv.2021.147118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Extreme weather events (EWEs) may significantly increase pathogenic contamination of private (unregulated) groundwater supplies. However, due to the paucity of protective guidance, private well users may be ill-equipped to undertake adaptive actions. With rising instances of waterborne illness documented in groundwater-dependent, developed regions such as the Republic of Ireland, a better understanding of well user risk perceptions pertaining to EWEs is required to establish appropriate educational interventions. To this end, the current study employed an online and physical questionnaire to identify current risk perceptions and correspondent predictors among Irish private well users concerning extreme weather. Respondents were elicited via purposive sampling, with 515 private well users elucidating perceived supply contamination risk in the wake of five EWEs between the years 2013-2018 including drought and pluvial flooding. A novel scoring protocol was devised to quantify overall risk perception (i.e. perceived likelihood, severity and consequences) of extreme weather impacts. Overall risk perception of EWEs was found to demonstrate a significant relationship with gender (p = 0.017) and event experience (p < 0.001), with female respondents and those reporting prior event experience exhibiting higher median risk perception scores. Risk perception was additionally mediated by perceived self-efficacy in undertaking supply maintenance (p = 0.001), as well users citing confidence in ability scored significantly lower than those citing no confidence. Two-step cluster analysis identified three distinct respondent subsets based on risk perception of EWEs (high, moderate and low perception), with female respondents and those with a third-level education significantly more likely to fall within the high perception cluster. Study findings affirm that certain demographic, experiential and cognitive factors exert a significant influence on private well user risk perceptions of EWE impacts and highlight potential focal points for future educational interventions seeking to reduce the risk of human infection associated with groundwater and extreme weather.
Collapse
Affiliation(s)
- S Mooney
- Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| | - J O'Dwyer
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University of Cork, Cork, Ireland
| | - S Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - P D Hynds
- Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
White K, Dickson-Anderson S, Majury A, McDermott K, Hynds P, Brown RS, Schuster-Wallace C. Exploration of E. coli contamination drivers in private drinking water wells: An application of machine learning to a large, multivariable, geo-spatio-temporal dataset. WATER RESEARCH 2021; 197:117089. [PMID: 33836295 DOI: 10.1016/j.watres.2021.117089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Groundwater resources are under increasing threats from contamination and overuse, posing direct threats to human and environmental health. The purpose of this study is to better understand drivers of, and relationships between, well and aquifer characteristics, sampling frequencies, and microbiological contamination indicators (specifically E. coli) as a precursor for improving knowledge and tools to assess aquifer vulnerability and well contamination within Ontario, Canada. A dataset with 795, 023 microbiological testing observations over an eight-year period (2010 to 2017) from 253,136 unique wells across Ontario was employed. Variables in this dataset include date and location of test, test results (E. coli concentration), well characteristics (well depth, location), and hydrogeological characteristics (bottom of well stratigraphy, specific capacity). Association rule analysis, univariate and bivariate analyses, regression analyses, and variable discretization techniques were utilized to identify relationships between E. coli concentration and the other variables in the dataset. These relationships can be used to identify drivers of contamination, their relative importance, and therefore potential public health risks associated with the use of private wells in Ontario. Key findings are that: i) bedrock wells completed in sedimentary or igneous rock are more susceptible to contamination events; ii) while shallow wells pose a greater risk to consumers, deep wells are also subject to contamination events and pose a potentially unanticipated risk to health of well users; and, iii) well testing practices are influenced by results of previous tests. Further, while there is a general correlation between months with the greatest testing frequencies and concentrations of E. coli occurring in samples, an offset in this timing is observed in recent years. Testing remains highest in July while peaks in adverse results occur up to three months later. The realization of these trends prompts a need to further explore the bases for such occurrences.
Collapse
Affiliation(s)
- Katie White
- Department of Civil Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, L8S 4L8, Canada
| | - Sarah Dickson-Anderson
- Department of Civil Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, L8S 4L8, Canada; Department of Geography and Planning and Global Institute for Water Security, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada.
| | - Anna Majury
- Public Health Ontario, 181 Barrie St, Kingston, Ontario, K7L 3K2, Canada; Department of Biology and Molecular Sciences, Department of Public Health Sciences, School of Environmental Studies, Queen's University, 99 University Ave, Kingston, Ontario, K7L 3N6, Canada
| | - Kevin McDermott
- Public Health Ontario, 181 Barrie St, Kingston, Ontario, K7L 3K2, Canada
| | - Paul Hynds
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman Dublin 7, Republic of Ireland
| | - R Stephen Brown
- Department of Chemistry and School of Environmental Studies, Queen's University, 99 University Ave, Kingston, Ontario, K7L 3N6, Canada
| | - Corinne Schuster-Wallace
- Department of Civil Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, L8S 4L8, Canada; Department of Geography and Planning and Global Institute for Water Security, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada
| |
Collapse
|
13
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
14
|
Borchardt MA, Stokdyk JP, Kieke BA, Muldoon MA, Spencer SK, Firnstahl AD, Bonness DE, Hunt RJ, Burch TR. Sources and Risk Factors for Nitrate and Microbial Contamination of Private Household Wells in the Fractured Dolomite Aquifer of Northeastern Wisconsin. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67004. [PMID: 34160249 PMCID: PMC8221036 DOI: 10.1289/ehp7813] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Groundwater quality in the Silurian dolomite aquifer in northeastern Wisconsin, USA, has become contentious as dairy farms and exurban development expand. OBJECTIVES We investigated private household wells in the region, determining the extent, sources, and risk factors of nitrate and microbial contamination. METHODS Total coliforms, Escherichia coli, and nitrate were evaluated by synoptic sampling during groundwater recharge and no-recharge periods. Additional seasonal sampling measured genetic markers of human and bovine fecal-associated microbes and enteric zoonotic pathogens. We constructed multivariable regression models of detection probability (log-binomial) and concentration (gamma) for each contaminant to identify risk factors related to land use, precipitation, hydrogeology, and well construction. RESULTS Total coliforms and nitrate were strongly associated with depth-to-bedrock at well sites and nearby agricultural land use, but not septic systems. Both human wastewater and cattle manure contributed to well contamination. Rotavirus group A, Cryptosporidium, and Salmonella were the most frequently detected pathogens. Wells positive for human fecal markers were associated with depth-to-groundwater and number of septic system drainfield within 229m. Manure-contaminated wells were associated with groundwater recharge and the area size of nearby agricultural land. Wells positive for any fecal-associated microbe, regardless of source, were associated with septic system density and manure storage proximity modified by bedrock depth. Well construction was generally not related to contamination, indicating land use, groundwater recharge, and bedrock depth were the most important risk factors. DISCUSSION These findings may inform policies to minimize contamination of the Silurian dolomite aquifer, a major water supply for the U.S. and Canadian Great Lakes region. https://doi.org/10.1289/EHP7813.
Collapse
Affiliation(s)
- Mark A. Borchardt
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| | - Joel P. Stokdyk
- Upper Midwest Water Science Center, U.S. Geological Survey, Marshfield, Wisconsin, USA
| | - Burney A. Kieke
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Maureen A. Muldoon
- Wisconsin Geological and Natural History Survey, Madison, Wisconsin, USA
| | - Susan K. Spencer
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| | - Aaron D. Firnstahl
- Upper Midwest Water Science Center, U.S. Geological Survey, Marshfield, Wisconsin, USA
| | - Davina E. Bonness
- Kewaunee County Department of Land and Water Conservation, Luxemburg, Wisconsin, USA
| | - Randall J. Hunt
- Upper Midwest Water Science Center, U.S. Geological Survey, Middleton, Wisconsin, USA
| | - Tucker R. Burch
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| |
Collapse
|
15
|
Socio-economic factors associated with the incidence of Shiga-toxin producing Escherichia coli (STEC) enteritis and cryptosporidiosis in the Republic of Ireland, 2008–2017. Epidemiol Infect 2021. [PMCID: PMC8365853 DOI: 10.1017/s0950268821001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Republic of Ireland (ROI) currently reports the highest incidence rates of Shiga-toxin producing Escherichia coli (STEC) enteritis and cryptosporidiosis in Europe, with the spatial distribution of both infections exhibiting a clear urban/rural divide. To date, no investigation of the role of socio-demographic profile on the incidence of either infection in the ROI has been undertaken. The current study employed bivariate analyses and Random Forest classification to identify associations between individual components of a national deprivation index and spatially aggregated cases of STEC enteritis and cryptosporidiosis. Classification accuracies ranged from 78.2% (STEC, urban) to 90.6% (cryptosporidiosis, rural). STEC incidence was (negatively) associated with a mean number of persons per room and percentage of local authority housing in both urban and rural areas, addition to lower levels of education in rural areas, while lower unemployment rates were associated with both infections, irrespective of settlement type. Lower levels of third-level education were associated with cryptosporidiosis in rural areas only. This study highlights settlement-specific disparities with respect to education, unemployment and household composition, associated with the incidence of enteric infection. Study findings may be employed for improved risk communication and surveillance to safeguard public health across socio-demographic profiles.
Collapse
|
16
|
Chique C, Hynds PD, Andrade L, Burke L, Morris D, Ryan MP, O'Dwyer J. Cryptosporidium spp. in groundwater supplies intended for human consumption - A descriptive review of global prevalence, risk factors and knowledge gaps. WATER RESEARCH 2020; 176:115726. [PMID: 32247994 DOI: 10.1016/j.watres.2020.115726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidiosis is one of the leading causes of diarrhoeal illness and mortality induced by protozoan pathogens worldwide. As a largely waterborne disease, emphasis has been given to the study of Cryptosporidium spp. in surface waters, readily susceptible to pathogenic contamination. Conversely, the status of Cryptosporidium in potable groundwater sources, generally regarded as a pristine and "safe" drinking-water supply owing to (sub)-soil protection, remains largely unknown. As such, this investigation presents the first literature review aimed to ascertain the global prevalence of Cryptosporidium in groundwater supply sources intended for human consumption. Thirty-seven peer-reviewed studies were identified and included in the review. Groundwater sample and supply detection rates (estimated 10-20%) indicate Cryptosporidium is frequently present in domestic groundwater sources, representing a latent health concern for groundwater consumers. Specifically, sample (10.4%) and source (19.1%) detection rates deriving from comprehensive "temporal" investigations are put forward as representative of a contamination 'baseline' for Cryptosporidium in 'domestic' groundwater supplies. Proposed 'baseline' prevalence figures are largely applicable in preventive risk-based catchment and groundwater quality management including the formulation of Quantitative Microbial Risk Assessment (QMRA). Notwithstanding, a large geographical disparity in available investigations and lack of standardized reporting restrict the transferability of research findings. Overall, the mechanisms responsible for Cryptosporidium transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between groundwater and public-health sub-disciplines among investigations. Key recommendations and guidelines are provided for prospective studies directed at more integrative and multi-disciplinary research.
Collapse
Affiliation(s)
- C Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P D Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESIH), Technological University Dublin, Ireland.
| | - L Andrade
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland
| | - L Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - M P Ryan
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Marras L, Bertolino G, Sanna A, Pinna A, Carraro V, Schintu M, Coroneo V. Potential issues of well water in domestic use in a retrospective study from 2014 to 2018. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:408. [PMID: 32483673 DOI: 10.1007/s10661-020-08388-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Well water requires chemical, physical-chemical, and microbiological analysis to ensure that the water used for irrigation or for human consumption presents no specific risks. The aim of the present work was to determine the microbiological risk of samples taken from wells in south-central Sardinia. In this survey, 55 water samples were taken from private wells in the period from 2014 to 2018. Quality was assessed through the detection of the parameters required by national law. The analysis of the data showed that only 36.4% of the samples (20 wells) complied with legal limits for water for human consumption. The most isolated species was P. aeruginosa, present in 29.1%; its high concentration and recorded Coliforms suggest that the disinfection of the wells was insufficient or not performed properly if implemented. Such data suggest the need to pay more attention to the waters used not only for human consumption but also for irrigation, since the cultivated vegetables could become a vehicle for potentially pathogenic microorganisms. National legislation sets contamination limits only for water intended for human consumption and not for irrigation water. However, based on these considerations, it appears necessary to develop reference standards for irrigation water.
Collapse
Affiliation(s)
- Luisa Marras
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Giacomo Bertolino
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Adriana Sanna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Pinna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Valentina Carraro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Schintu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Gender-Related Differences in Flood Risk Perception and Behaviours among Private Groundwater Users in the Republic of Ireland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062072. [PMID: 32245013 PMCID: PMC7143730 DOI: 10.3390/ijerph17062072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Extreme weather events including flooding can have severe personal, infrastructural, and economic consequences, with recent evidence pointing to surface flooding as a pathway for the microbial contamination of private groundwater supplies. There is a pressing need for increasingly focused information and awareness campaigns to highlight the risks posed by extreme weather events and appropriate subsequent post-event actions. To date, little is known about the presence, directionality or magnitude of gender-related differences regarding flood risk awareness and behaviour among private groundwater users, a particularly susceptible sub-population due to an overarching paucity of infrastructural regulation across many regions. The current study investigated gender-related differences in flood risk perception and associated mitigation behaviours via a cross-sectional, national survey of 405 (168 female, 237 male) private groundwater supply users. The developed survey instrument assessed socio-demographic profile, previous flood experience, experiential and conjectural health behaviours (contingent on previous experience), and Risk, Attitude, Norms, Ability, Self-regulation (RANAS) framework questions. Statistically significant gender differences were found between both ‘Norm—Descriptive’ and ‘Ability—Self-efficacy’ RANAS elements (p < 0.05). Female respondents reported a lower level of awareness of the need for post-flood action(s) (8.9% vs. 16.5%), alongside a perceived “lack of information” as a reason for not testing their domestic well (4.9% vs. 11.5%). Conversely, male respondents were more likely to report awareness of their well location in relation to possible contamination sources (96.6% vs. 89.9%) and awareness of previous water testing results (98.9% vs. 93.0%). Gender-related gaps exist within the studied private groundwater reliant cohort, a sub-population which has to date remained under-studied within the context of climate change and extreme weather events. Accordingly, findings suggest that gender-focused communication and education may represent an effective tool for protecting current and future generations of global groundwater users.
Collapse
|