1
|
Chen A, Zhang T, Cheng F, Yang H, Guo Z, Zhao S, Zhang YN, Qu J. Comprehensive analysis and risk assessment of Antibiotic contaminants, antibiotic-resistant bacteria, and resistance genes: Patterns, drivers, and implications in the Songliao Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124852. [PMID: 39216670 DOI: 10.1016/j.envpol.2024.124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10-2 16S rRNA-1 and antibiotic-resistant bacteria (ARB) up to 5.76 log10 CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO₃⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R2 = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.
Collapse
Affiliation(s)
- Anjie Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhengfeng Guo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
2
|
Lei L, Xiong P, Yan Z, Zhang Y, Wu Y, Chen G, Song H, Zhang R. Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Enterobacterales isolated from wild animals in captivity. SCIENCE IN ONE HEALTH 2024; 3:100069. [PMID: 39077391 PMCID: PMC11262279 DOI: 10.1016/j.soh.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
Background Over the past few decades, antimicrobial resistance (AMR) has emerged as a global health challenge in human and veterinary medicine. Research on AMR genes in captive wild animals has increased. However, the presence and molecular characteristics of tet(X)-carrying bacteria in these animals remain unknown. Methods Eighty-four samples were collected from captive wild animals. tet(X) variants were detected using polymerase chain reaction and the isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. All isolated strains were subjected to antimicrobial susceptibility testing and whole-genome sequencing. The virulence of an Escherichia coli strain carrying enterotoxin genes was assessed using a Galleria mellonella larval model. Results We isolated two tet(X4)-positive E. coli strains and one tet(X4)-positive Raoultella ornithinolytica strain. Antimicrobial susceptibility tests revealed that all three tet(X4)-carrying bacteria were sensitive to the 13 tested antimicrobial agents, but exhibited resistance to tigecycline. Notably, one tet(X4)-carrying E. coli strain producing an enterotoxin had a toxic effect on G. mellonella larvae. Whole-genome sequencing analysis showed that the two tet(X4)-carrying E. coli strains had more than 95% similarity to tet(X4)-containing E. coli strains isolated from pigs and humans in China. Conclusion The genetic environment of tet(X4) closely resembled that of the plasmid described in previous studies. Our study identified tet(X4)-positive strains in wildlife and provided valuable epidemiological data for monitoring drug resistance. The identification of enterotoxin-producing E. coli strains also highlights the potential risks posed by virulence genes.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zelin Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
3
|
Li T, Ouyang W, Lin C, Wang J, Cui X, Li Y, Guo Z, Zhu W, He M. Occurrence, distribution, and potential ecological risks of antibiotics in a seasonal freeze-thaw basin. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132301. [PMID: 37597389 DOI: 10.1016/j.jhazmat.2023.132301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Antibiotics have gained increasing attention as pharmaceuticals widely existing in human society. Under low temperature conditions, antibiotics tend to have higher environmental persistence, which poses a potential threat to ecological environment, but research on antibiotics in low-temperature basins is still lacking. Therefore, for investigating occurrence, spatio-temporal distributions, and ecological risks of antibiotics in a seasonal freeze-thaw basin, rivers in Tumen River basin were selected and sampled, including 25 samples during the river-freezing season and 27 samples during the non-freezing season. Overall, climate characteristics of different latitudes and renewal frequency of antibiotics are important factors that lead to diversity of antibiotics in basins. Eleven target antibiotics were detected and their average concentrations during the river-freezing season (0.83-27.5 ng L-1) were lower than that during the non-freezing season (2.80-45.30 ng L-1), severely impacted by river flow, ice sealed-melting, and local feeding practices. In addition, total antibiotic concentrations are usually highest in downstream areas of human settlements, receiving input from husbandry and sewage, respectively. Through ecological risk assessment, norfloxacin and amoxicillin posed high risks to algae, which were identified as high-risk pollutants in basin.
Collapse
Affiliation(s)
- Tianzhi Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiamei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xintong Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yun Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zewei Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Weihong Zhu
- Key Laboratory of Wetland Ecological Functions and Ecological Security, School of Geographic and Ocean Sciences, Yanbian University, Yanji, Jilin 133000, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Ye M, Zhou H, Xu X, Pang L, Xu Y, Zhang J, Li D. Membrane separation of antibiotics predicted with the back propagation neural network. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:538-549. [PMID: 37073451 DOI: 10.1080/10934529.2023.2200719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the R2 of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.
Collapse
Affiliation(s)
- Mixuan Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinxuan Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Lidan Pang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Yunjia Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingyuan Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Danyan Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Zhu Y, Shen J, Guo M, Zheng H, Cao Y. Nitrogen-doped magnetic porous carbon material from low-cost anion-exchange resin as an efficient adsorbent for tetracyclines in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27315-27327. [PMID: 36378367 DOI: 10.1007/s11356-022-24093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, nitrogen-doped magnetic porous carbon material (N-MPC) was prepared through the high-temperature calcination of low-cost [Fe(CN)6]3--loaded anion-exchange resin, which was experimentally demonstrated to have significant adsorption performance for tetracycline (TC) in water. The N-MPC adsorbent with a large specific surface area (781.1 m2 g-1) was able to maintain excellent performance in a wide pH range from 4 to 10 or in high ionic strength solution. The adsorption of TC on N-MPC was found to be more consistent with the pseudo-second-order model and Langmuir adsorption model, and the maximum adsorption capacity (qm, cal) was calculated to be 603.4 mg g-1. As a recoverable magnetic adsorbent, the N-MPC remained a TC removal rate higher than 70% after four adsorption cycles. The adsorption mechanism was speculated on the basis of characterizations, where pore filling, hydrogen bonding interaction, and π-π electron donor-acceptor (EDA) interaction were crucial adsorption mechanisms. A variety of antibiotics were selected for adsorption, and excellent performance was found especially for TCs, indicating that the N-MPC can be used for the efficient removal of TCs from water.
Collapse
Affiliation(s)
- Yating Zhu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jia Shen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Haoling Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
6
|
Lv C, Shang J, Zhang W, Sun B, Li M, Guo C, Zhou N, Guo X, Huang S, Zhu Y. Dynamic antimicrobial resistant patterns of Escherichia coli from healthy poultry and swine over 10 years in Chongming Island, Shanghai. Infect Dis Poverty 2022; 11:98. [PMID: 36114584 PMCID: PMC9482194 DOI: 10.1186/s40249-022-01025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the greatest threats to animal and public health. Here, we conducted a dynamic surveillance of Escherichia coli on Chongming Island in Shanghai during 2009-2021 to identify the characteristics and trends of Chongming's AMR pandemic. METHODS Rectal (cloaca) swabs from four poultry and nine swine farms (Chongming Island, 2009-2021) were collected for E. coli strains acquisition. The micro-broth dilution method was used to test antimicrobial susceptibility of E. coli isolates against 10 antimicrobial classes including 15 antimicrobials. Utilizing generalized linear mixed models (GLMMs) and co-occurrence analyses, we further explored the multiple-drug-resistance (MDR) combinations and dynamic patterns of E. coli over 10 years in two food animals. RESULTS Total of 863 MDR isolates were found among 945 collected E. coli isolates, 337 from poultry and 608 from swine. Both isolates exhibited high resistant rates (> 70%) to tetracyclines, phenicols, sulfonamides, penicillins, and aminoglycosides (only in swine). The resistant rates of swine isolates to penicillins, aminoglycosides, tetracyclines, phenicols, and polymyxins were significantly higher than those of poultry isolates, whereas resistance to fluoroquinolones was reversed. Resistance to polymyxins decreased similarly in swine (42.4% in 2009 to 0.0% in 2021) and poultry isolates (from 16.5% to 0.0%). However, resistance to other seven antimicrobial classes (excluding carbapenems and penicillins) declined dramatically in swine isolates, particularly fluoroquinolones (from 80.5% to 14.4%), and tendencies of resistance to the seven classes showed markedly divergent patterns in poultry isolates. Using Poisson GLMMs, the AMR carriage since 2016 was significantly lower than that of 2009 (odds ratio < 1), indicating a decline in the risk of MDR emergence. Furthermore, despite the highly diverse MDR profiles, co-occurrence analysis identified two prominent MDR clusters of penicillins-phenicols-fluoroquinolones in poultry and aminoglycosides-tetracyclines-sulfonamides-phenicols in swine. CONCLUSIONS Our study uncovered vastly distinct AMR patterns and dynamic tendencies of poultry and swine E. coli isolates from Chongming. Meanwhile, Chongming's AMR status has ameliorated, as indicated by the decline in antimicrobials prevalence (particularly in swine), lower likelihood of MDR emergence and low carbapenem-, cephalosporin-, and polymyxin resistance. Importantly, this surveillance results are the vital basis for future policy development in Chongming and Shanghai.
Collapse
Affiliation(s)
- Chao Lv
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Jun Shang
- Shanghai Center for Animal Disease Prevention and Control, Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai, 201103, China
| | - Wengang Zhang
- Shanghai Center for Animal Disease Prevention and Control, Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai, 201103, China
| | - Bingqing Sun
- Shanghai Center for Animal Disease Prevention and Control, Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai, 201103, China
| | - Min Li
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Chaoyi Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Nan Zhou
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Xiaokui Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China.
| | - Shixin Huang
- Shanghai Center for Animal Disease Prevention and Control, Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai, 201103, China.
| | - Yongzhang Zhu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China.
| |
Collapse
|
7
|
Tang Y, Lou X, Yang G, Tian L, Wang Y, Huang X. Occurrence and human health risk assessment of antibiotics in cultured fish from 19 provinces in China. Front Cell Infect Microbiol 2022; 12:964283. [PMID: 35982779 PMCID: PMC9378958 DOI: 10.3389/fcimb.2022.964283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
The occurrence of antibiotics and potential health risk of 300 cultured fish samples from 19 provinces in China were investigated. The levels of 28 antibiotics (15 fluoroquinolones, 4 tetracyclines, 8 macrolides and rifampin) in 8 fish species were measured through liquid chromatography electrospray tandem mass spectrometry. As a result, 10 antibiotics were detected with an overall detection frequency of 24.3%, and the individual detection frequency of antibiotics ranged from 0.33 to 16.7%. The extremely high concentrations (above 100 µg/kg) of doxycycline and erythromycin were found in the samples. Antibiotics with high detection frequency was noticed in largemouth bass (41.2%), followed by snakehead (34.4%) and bream (31.2%). Specifically, Heilongjiang, Xinjiang, Qinghai and Gansu presented high detection frequency values of more than 60%. Moreover, the highest mean concentration was observed in Shandong, and the concentration covered from 34.8 µg/kg to 410 µg/kg. Despite the high detection frequency and levels of antibiotics were found in samples, ingestion of cultured fish was not significantly related to human health risks in China, according to the calculated estimated daily intakes and hazard quotients. These results provided us the actual levels of antibiotics in cultured fish and human health risk assessment of consuming fishery products.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuanyun Huang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
8
|
Occurrence, Comparison and Priority Identification of Antibiotics in Surface Water and Sediment in Urbanized River: A Case Study of Suzhou Creek in Shanghai. SUSTAINABILITY 2022. [DOI: 10.3390/su14148757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics in water have attracted increasing attention due to their potential threat to aquatic ecosystems and public health. Most previous studies have focused on heavily polluted environments, while ignoring urbanized rivers with high population density. Taking Suzhou Creek in Shanghai as an example, this study attempted to explore the antibiotic pollution characteristics of typical urbanized rivers. Further, it screened out priority antibiotics so as to provide reference for the regular monitoring of antibiotics in urban surface water in the study’s later stage. Four classes of 27 antibiotics in surface water samples and sediment samples were detected and analyzed by SPE-UPLC-MS/MS under both wet season and dry season. Results demonstrate that the total amount of antibiotics detected reached 1936.9 ng/L and 337.3 ng/g in water samples and sediment samples, respectively. Through Pearson correlation analysis, it can be shown that there is a very significant correlation between a variety of antibiotics in water and sediment. The results of ecological risk assessment based on risk quotient (RQ) show that certain antibiotics presented high and medium risk to the surrounding ecosystem. Finally, the priority antibiotics selected by optimized priority screening method were EM, SPD, CLR and RTM. Therefore, we have proven that the antibiotics being discharged in urbanized rivers show different types of antibiotics, while presenting a toxicological risk to certain species.
Collapse
|
9
|
Zhou S, Xiong C, Su Y, Wang Y, Gao Y, Tang Z, Liu B, Wu Y, Duan Y. Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119158. [PMID: 35304179 DOI: 10.1016/j.envpol.2022.119158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 102-5.18 × 105 colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 104-1.86 × 107 copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Cong Xiong
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Boyang Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Yin Z. Distribution and ecological risk assessment of typical antibiotics in the surface waters of seven major rivers, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1088-1100. [PMID: 34292285 DOI: 10.1039/d1em00079a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The consumption and production of antibiotics in China rank highest in the world. As such, the occurrence of antibiotics in environmental media of China has raised significant concerns. Rivers play an important role in the sustainable development of China's economy and society, possibly causing high levels and detection frequencies of antibiotics in the aquatic environment of rivers in China. Therefore, it is necessary to understand the distribution and risk level of antibiotics in rivers. From south to north, China has seven major rivers vertically and horizontally. They are Yangtze River, Yellow River, Hai River, Liao River, Huai River, Songhua River and Pearl River. In this review, we made an extensive literature survey and published all studies on antibiotic concentrations in seven river systems of China from 2010 to 2020 were sorted out to provide a clear draw of the distribution characteristics of antibiotics. We found that 70 antibiotics have been detected in the seven major river systems. 13 typical antibiotics in surface waters of seven river systems were systematically reviewed and ecological risk assessment was conducted. The occurrence frequencies of high-risk antibiotics in surface waters followed the rank order: ETM-H2O > CIP > OFX > SMX > NOR. The RQs values of seven rivers decreased in the order of Hai River (1.58-18 094.3) > Liao River (1.14-290.23) > Pearl River (2.11-118.25) > Yangtze River (0.3-64.78) > Yellow River (7.56-35.45) > Songhua River (0.03-22.26) > Huai River (1.87-20.83).
Collapse
Affiliation(s)
- Zhizhen Yin
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, Yili Normal University, Yining 835000, China.
| |
Collapse
|
11
|
Paruch L, Paruch AM, Iordache TV, Olaru AG, Sarbu A. Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Polymers (Basel) 2021; 13:polym13101593. [PMID: 34063382 PMCID: PMC8157218 DOI: 10.3390/polym13101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Wastewater (WW) has been widely recognized as the major sink of a variety of emerging pathogens (EPs), antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which may disseminate and impact wider environments. Improving and maximizing WW treatment efficiency to remove these microbial hazards is fundamentally imperative. Despite a variety of physical, biological and chemical treatment technologies, the efficiency of ARG removal is still far from satisfactory. Within our recently accomplished M-ERA.NET project, novel functionalized nanomaterials, i.e., molecularly imprinted polymer (MIP) films and quaternary ammonium salt (QAS) modified kaolin microparticles, were developed and demonstrated to have significant EP removal effectiveness on both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) from WW. As a continuation of this project, we took the further step of exploring their ARG mitigation potential. Strikingly, by applying MIP and QAS functionalized kaolin microparticles in tandem, the ARGs prevalent in wastewater treatment plants (WWTPs), e.g., blaCTXM, ermB and qnrS, can be drastically reduced by 2.7, 3.9 and 4.9 log (copies/100 mL), respectively, whereas sul1, tetO and mecA can be eliminated below their detection limits. In terms of class I integron-integrase I (intI1), a mobile genetic element (MGE) for horizontal gene transfer (HGT), 4.3 log (copies/100 mL) reduction was achieved. Overall, the novel nanomaterials exhibit outstanding performance on attenuating ARGs in WW, being superior to their control references. This finding provides additional merit to the application of developed nanomaterials for WW purification towards ARG elimination, in addition to the proven bactericidal effect.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens 43, 1433 Aas, Norway;
- Correspondence:
| | - Adam M. Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens 43, 1433 Aas, Norway;
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; (T.-V.I.); (A.S.)
| | | | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; (T.-V.I.); (A.S.)
| |
Collapse
|
12
|
Pérez-Valdespino A, Pircher R, Pérez-Domínguez CY, Mendoza-Sanchez I. Impact of flooding on urban soils: Changes in antibiotic resistance and bacterial community after Hurricane Harvey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142643. [PMID: 33077230 DOI: 10.1016/j.scitotenv.2020.142643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Major perturbations in soil and water quality are factors that can negatively impact human health. In soil environments of urban areas, changes in antibiotic-resistance profiles may represent an increased risk of exposure to antibiotic-resistant bacteria via oral, dermal, or inhalation routes. We studied the perturbation of antibiotic-resistance profiles and microbial communities in soils following a major flooding event in Houston, Texas, caused by Hurricane Harvey. The main objective of this study was to examine the presence of targeted antibiotic-resistance genes and changes in the diversity of microbial communities in soils a short time (3-5 months) and a long time (18 months) after the catastrophic flooding event. Using polymerase chain reaction, we surveyed fourteen antibiotic-resistance elements: intI1, intI2, sul1, sul2, tet(A) to (E), tet(M), tet(O), tet(W), tet(X), and blaCMY-2. The number of antibiotic-resistance genes detected were higher in short-time samples compared to samples taken a long time after flooding. From all the genes surveyed, only tet(E), blaCMY-2, and intI1 were prevalent in short-time samples but not observed in long-time samples; thus, we propose these genes as indicators of exogenous antibiotic resistance in the soils. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene was used to find that flooding may have affected bacterial community diversity, enhanced differences among bacterial lineages profiles, and affected the relative abundance of Actinobacteria, Verrucomicrobia, and Gemmatimonadetes. A major conclusion of this study is that antibiotic resistance profiles of soil bacteria are impacted by urban flooding events such that they may pose an enhanced risk of exposure for up to three to five months following the hurricane. The occurrence of targeted antibiotic-resistance elements decreased eighteen months after the hurricane indicating a reduction of the risk of exposure long time after Harvey.
Collapse
Affiliation(s)
- Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ryan Pircher
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, United States of America
| | - Citlali Y Pérez-Domínguez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itza Mendoza-Sanchez
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, United States of America.
| |
Collapse
|
13
|
Fang L, Huang Z, Fan L, Hu G, Qiu L, Song C, Chen J. Health risks associated with sulfonamide and quinolone residues in cultured Chinese mitten crab (Eriocheir sinensis) in China. MARINE POLLUTION BULLETIN 2021; 165:112184. [PMID: 33621905 DOI: 10.1016/j.marpolbul.2021.112184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of 27 antibiotics (18 sulfonamides and 9 quinolones) in 92 samples of cultured Chinese mitten crab (Eriocheir sinensis) from three provinces (Anhui, Jiangsu and Liaoning) was investigated. These 21 antibiotics were detected at least once in crabs from these provinces with detection frequencies of 3.70-90.91%. Sulfonamides were detected in 53.7% of the samples at concentrations of 0.1-10 μg/kg in Jiangsu, while quinolones were detected with 90.9% of samples containing concentrations of 1-100 μg/kg in Liaoning province. Enroflxacin, ciprofloxacin, sulfaquinoxaline, sulfameter, sulfadoxine, and sulfamethoxazole were the mainly used antibiotics and enroflxacin were present at a high concentration (>100 μg/kg). Dietary assessments showed that residual antibiotics in crabs from China were far below the maximum residue limit (MRL) of total sulfonamides and quinolones, and there was almost no risk associated with crab consumption. These results will provide meaningful indications for the safety of crab consumption.
Collapse
Affiliation(s)
- Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China
| | - Zhuyu Huang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, PR China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|
14
|
Wang G, Zhou S, Han X, Zhang L, Ding S, Li Y, Zhang D, Zarin K. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122110. [PMID: 31978820 DOI: 10.1016/j.jhazmat.2020.122110] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, the occurrence of 14 antibiotics, four corresponding antibiotic resistance genes (ARGs) and two microbial source tracker (MST) indicators were analyzed in two rivers of Chongqing city, southwest China. The results showed that 13 antibiotics were detected in all 12 sites and their detection frequencies were much higher in September, but concentrations were lower than that in March. Of them, erythromycin (ETM) and ofloxacin (OFL) were the predominant antibiotics in both seasons. The remarkably higher concentration of antibiotics in sediments of these rivers than those in other rivers were found. Environmental risk assessment found that four antibiotics posed high risk toward some sensitive algae. For ARGs, their relative abundances were higher in waters than those in sediments, higher in March than in September. Correlation analysis showed that antibiotics were not the exclusive selective pressure of ARGs; many environmental factors like dry matter contents on a mass basis, organic matter, total organic carbon, dissolved organic carbon, temperature, oxidation reduction potential and nitrite could affect the occurrence of ARGs. MST indicators analysis demonstrated that this river basin was largely polluted by human and pig feces, and human feces might be one main source of the four ARGs and five antibiotics.
Collapse
Affiliation(s)
- Gangan Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shaohong Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xinkuan Han
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Kinza Zarin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| |
Collapse
|
15
|
Paulus GK, Hornstra LM, Medema G. International tempo-spatial study of antibiotic resistance genes across the Rhine river using newly developed multiplex qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135733. [PMID: 31818563 DOI: 10.1016/j.scitotenv.2019.135733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to capture and explain changes in antibiotic resistance gene (ARG) presence and concentration internationally across the Rhine river. Intl1 concentrations and national antibiotic usage were investigated as proxies to predict anthropogenic ARG pollution. Newly-developed multiplex qPCR assays were employed to investigate ARG profiles across 8 locations (L1-L8) in three countries (Switzerland, Germany, the Netherlands) and to detect potential regional causes for variation. Two of these locations were further monitored, over the duration of one month. A total of 13 ARGs, Intl1 and 16S rRNA were quantified. ARG presence and concentrations initially increased from L1(Diepoldsau) to L3(Darmstadt). A continuous increase could not be observed at subsequent locations, with the large river volume likely being a major contributing factor for stability. ARG presence and concentrations fluctuated widely across different locations. L2(Basel) and L3 were the two most polluted locations, coinciding with these locations being well-developed pharmaceutical production locations. We draw attention to the characteristic, clearly distinct ARG profiles, with gene presence being consistent and gene concentrations varying significantly less over time than across different locations. Five genes were Rhine-typical (ermB, ermF, Intl1, sul1 and tetM). Intl1 and sul1 were the genes with highest and second-highest concentration, respectively. Aph(III)a and blaOXA were permanently introduced downstream of L1, indicating no source of these genes prior to L1. We highlight that correlations between Intl1 and ARG concentrations (R2 = 0.72) were driven by correlations to sul1 and disappeared when excluding sul1 from the analysis (R2 = 0.05). Intl1 therefore seems to be a good proxy for sul1 concentrations but not necessarily for overall (anthropogenic) ARG pollution. Aminoglycoside usage per country correlated with concentrations of aph(III)a and several unrelated antibiotic resistance genes (blaOXA,ermB, ermF and tetM). This correlation can be explained by co-resistance caused by mobile genetic elements (MGEs), such as Tn1545.
Collapse
Affiliation(s)
- Gabriela K Paulus
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands.
| | - Luc M Hornstra
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Gertjan Medema
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands
| |
Collapse
|
16
|
Wu X, Gu Y, Wu X, Zhou X, Zhou H, Amanze C, Shen L, Zeng W. Construction of a Tetracycline Degrading Bacterial Consortium and Its Application Evaluation in Laboratory-Scale Soil Remediation. Microorganisms 2020; 8:microorganisms8020292. [PMID: 32093355 PMCID: PMC7074960 DOI: 10.3390/microorganisms8020292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
As an environmental pollutant, tetracycline (TC) can persist in the soil for years and damage the ecosystem. So far, many methods have been developed to handle the TC contamination. Microbial remediation, which involves the use of microbes to biodegrade the pollutant, is considered cost-efficient and more suitable for practical application in soil. This study isolated several strains from TC-contaminated soil and constructed a TC-degrading bacterial consortium containing Raoultella sp. XY-1 and Pandoraea sp. XY-2, which exhibited better growth and improved TC degradation efficiency compared with single strain (81.72% TC was biodegraded within 12 days in Lysogeny broth (LB) medium). Subsequently, lab-scale soil remediation was conducted to evaluate its effectiveness in different soils and the environmental effects it brought. Results indicated that the most efficient TC degradation was recorded at 30 °C and in soil sample Y which had relatively low initial TC concentration (around 35 mg/kg): TC concentration decreased by 43.72% within 65 days. Soil properties were affected, for instance, at 30 °C, the pH value of soil sample Y increased to near neutral, and soil moisture content (SMC) of both soils declined. Analysis of bacterial communities at the phylum level showed that Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi were the four dominant phyla, and the relative abundance of Proteobacteria significantly increased in both soils after bioremediation. Further analysis of bacterial communities at the genus level revealed that Raoultella sp. XY-1 successfully proliferated in soil, while Pandoraea sp. XY-2 was undetectable. Moreover, bacteria associated with nitrogen cycling, biodegradation of organic pollutants, soil biochemical reactions, and plant growth were affected, causing the decline in soil bacterial diversity. Variations in the relative abundance of tetracycline resistance genes (TRGs) and mobile gene elements (MGEs) were investigated, the results obtained indicated that tetD, tetG, tetX,intI1, tnpA-04, and tnpA-05 had higher relative abundance in original soils, and the relative abundance of most TRGs and MGEs declined after the microbial remediation. Network analysis indicated that tnpA may dominate the transfer of TRGs, and Massilia, Alkanibacter, Rhizomicrobium, Xanthomonadales, Acidobacteriaceae, and Xanthomonadaceae were possible hosts of TRGs or MGEs. This study comprehensively evaluated the effectiveness and the ecological effects of the TC-degrading bacterial consortium in soil environment.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yichao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Xiangyu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Han Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
- Correspondence: ; Tel.: +86-0731-88877472
| |
Collapse
|
17
|
Li Q, Cheng B, Liu S, Zhang Y, Zhou L, Guo J. Assessment of the Risks of the Major Use Antibiotics in China's Surface Waters Using a Probabilistic Approach. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:43-52. [PMID: 31393058 DOI: 10.1002/ieam.4204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The occurrence of antibiotics in China's surface waters is an emerging concern. Although the ecological risk assessment for a small number of antibiotics is available in some regions, no attempt has been made to assess their risks at a national scale. The present work therefore proposed a probabilistic approach to characterize the ecological risks of 26 major use antibiotics, including sulfonamides, tetracyclines, beta-lactams, fluoroquinolones, and macrolides, in China's surface waters. Initially we performed exposure and hazard assessment for these substances by synthesizing and interpreting the available occurrence and ecotoxicity data. For 22 antibiotics with sufficient ecotoxicity data, we assessed their risks by constructing joint probability curves (JPCs), from which their expected ecological risk (EER) estimates were less than 1%; for all the 26 antibiotics, in conjunction with the exposure distribution curves (EDCs), an assessment factor (AF) approach was applied and the potential risks were only detected for amoxicillin, ciprofloxacin, and penicillin with risk quotients (RQs) of 1.04, 1.54, and 5.83, respectively. These results indicated that the ecological risks of most major use antibiotics posed to nontarget organisms in China's aquatic environment seem to be low. Nevertheless, there are large uncertainties in the risk characterization processes, likely because of the significant data gaps in the understanding of exposure and hazards of these antibiotics. Integr Environ Assess Manag 2019;00:1-10. © 2019 SETAC.
Collapse
Affiliation(s)
- Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Bo Cheng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Shan Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Yibo Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Li Zhou
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| |
Collapse
|
18
|
Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, Chai LC. Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1335-1347. [PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
Collapse
Affiliation(s)
- Ying Ling Lye
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chui Wei Bong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Choon Weng Lee
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rui Jie Zhang
- School of Marine Sciences, Guang Xi University, Nanning 530004, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, The Chinese Academy of Sciences, Guangzhou 510640, China
| | - Satoru Suzuki
- Leading Academia in Marine and Environment Pollution Research (LaMer), Center for Marine Environmental Studies (CMES), Ehime University, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|