1
|
Tan WF, Deng ZW, Lv JW, Tang DS, Li JX, Pang C. The effect of bacteria on uranium sequestration stability by different forms of phosphorus. ENVIRONMENTAL TECHNOLOGY 2024:1-9. [PMID: 38962999 DOI: 10.1080/09593330.2024.2372050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/24/2024] [Indexed: 07/05/2024]
Abstract
Immobilisation of uranium (U (VI)) by direct precipitation of uranyl phosphate (U-P) exhibits a great potential application in the remediation of U (VI)-contaminated environments. However, phosphorus, vital element of bacteria's decomposition, absorption and transformationmay affect the stability of U (VI) with ageing time. The main purpose of this work is to study the effect of bacteria on uranium sequestration mechanism and stability by different forms of phosphorus in a water sedimentary system. The results showed that phosphate effectively enhanced the removal of U (VI), with 99.84%. X-Ray Diffraction (XRD), Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS), and X-ray Photoelectron Spectroscopy (XPS) analyses imply that U (VI) and U (IV) co-exist on the surface of the samples. Combined with BCR results, it demonstrated that bacteria and phosphorus have a synergistic effect on the removal of U (VI), realising the immobilisation of U (VI) from a transferable phase to a stable phase. However, from a long-term perspective, the redissolution and release of uranium immobilisation of U (VI) by pure bacteria with ageing time are worthy of attention, especially in uranium mining environments rich in sensitive substances. This observation implies that the stability of the uranium may be impacted by the prevailing environmental conditions. The novel findings could provide theoretical evidence for U (VI) bio-immobilisation in U (VI)-contaminated environments.
Collapse
Affiliation(s)
- Wen-Fa Tan
- Environmental Protection and Safety Engineering, University of South China, Hengyang, People's Republic of China
| | - Zhi-Wen Deng
- Environmental Protection and Safety Engineering, University of South China, Hengyang, People's Republic of China
| | - Jun-Wen Lv
- Environmental Protection and Safety Engineering, University of South China, Hengyang, People's Republic of China
| | - Dong-Shan Tang
- Environmental Protection and Safety Engineering, University of South China, Hengyang, People's Republic of China
| | - Jia-Xiang Li
- College of Environment and Ecology, Chongqing University, Chongqing, People's Republic of China
| | - Chao Pang
- Environmental Protection and Safety Engineering, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
2
|
Tan W, Wu H, Huang C, Lv J, Yu H. Utilization of nickel-graphite electrode as an electron donor for high-efficient microbial removal of solved U(VI) mediated by Leifsonia sp. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 273:107398. [PMID: 38346378 DOI: 10.1016/j.jenvrad.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Enzymatically catalyzed reduction of metals by bacteria has potential application value to uranium-mine wastewater. However, its practical implementation has long been restricted by its intrinsic drawbacks such as low efficiency and long treatment-time. This study aims to explore the effect of electrodes on U (VI) removal efficiency by a purified indigenous bacteria isolated from a uranium mining waste pile in China. The effects of current intensity, pH, initial U (Ⅵ) concentration, initial dosage of bacteria and contact time on U (Ⅵ) removal efficiency were investigated via static experiments. The results show that U(VI) removal rate was stabilized above 90% and the contact time sharply shortened within 1 h when utilized nickel-graphite electrode as an electron donor. Over the treatment ranges investigated maximum removal of U (Ⅵ) was 96.04% when the direct current was 10 mA, pH was 5, initial U (Ⅵ) concentration was 10 mg/L, and dosage of Leifsonia sp. was 0.25 g/L. In addition, it is demonstrated that U (VI) adsorption by Leifsonia sp. is mainly chemisorption and/or reduction as the quasi-secondary kinetics is more suitable for fitting the process. FTIR results indicated that amino, amide, aldehyde and phosphate -containing groups played a role in the immobilization of U (VI) more or less. SEM and EDS measurements revealed that U appeared to be more obviously aggregated on the surface of cells. A plausible explanation for this, supported by XPS, is that U (VI) was partially reduced to U (IV) by direct current then precipitated on the cells surface. These observations reveal that Nickel-graphite electrode exhibited good electro-chemical properties and synergistic capacity with Leifsonia sp. which potentially provides a new avenue for uranium enhanced removal/immobilization by indigenous bacteria.
Collapse
Affiliation(s)
- Wenfa Tan
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Han Wu
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Chuqin Huang
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Junwen Lv
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Huang Yu
- Environmental Protection and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Wang Y, Cai W, Xiong L, Pei J, Zhang Z, Xu L, Liu Y, Cao X. Phosphorylated hollow carbon-based material derived from ZIF-8 and its U(VI) adsorptive performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22073-22086. [PMID: 38400975 DOI: 10.1007/s11356-024-32448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Inspired by its large specific surface area, and tunable chemical and physical properties, a hollow carbon-based mater8ial derived from ZIF-8 with phosphate groups (HCM-PO4) was prepared for the elimination of U(VI). The structural and surface features of HCM and HCM-PO4 were thoroughly examined using techniques such as SEM, TEM, and XRD. The resulting carbon material, HCM-PO4, exhibits a higher BET surface area of 571.2 m2·g-1, featuring a hollow structure. The removal procedure of HCM-PO4 for U(VI) aligns with the quasi-secondary kinetic model. Furthermore, the theoretical sorption capacity of HCM-PO4 was found to be 482.30 mg·g-1 at 298.15 K. The results obtained from XPS, FT-IR, and EDS analysis of HCM-PO4 after adsorption revealed the coordination of the phosphate group for U(VI), contributing significantly to the adsorption process. In brief, the HCM-PO4 demonstrates excellent adsorptive ability, positioning it as a hopeful expectant to remove U(VI) from wastewater.
Collapse
Affiliation(s)
- Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Weiqian Cai
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Lingshan Xiong
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Jiaying Pei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
| | - Lin Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Engineering Research Center of Nuclear Technology Application (East, China University of Technology), Ministry of Education, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
4
|
Fang Q, Tan Y, Yan R, Zhang D, Li M, Wu X, Hua Y, Xue W, Wang R. Insights into the long-term immobilization performances and mechanisms of CMC-Fe 0/FeS with different sulfur sources for uranium under anoxic and oxic aging. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120157. [PMID: 38295639 DOI: 10.1016/j.jenvman.2024.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale zerovalent iron (Fe0)-based materials have been demonstrated to be a effective method for the U(VI) removal. However, limited research has been conducted on the long-term immobilization efficiency and mechanism of Fe0-based materials for U(VI), which are essential for achieving safe handling and disposal of U(VI) on a large scale. In this study, the prepared carboxymethyl cellulose (CMC) and sulfurization dual stabilized Fe0 (CMC-Fe0/FeS) exhibited excellent long-term immobilization performances for U(VI) under both anoxic and oxic conditions, with the immobilization efficiencies were respectively reached over 98.0 % and 94.8 % after 180 days of aging. Most importantly, different from the immobilization mechanisms of the fresh CMC-Fe0/FeS for U(VI) (the adsorption effect of -COOH and -OH groups, coordination effect with sulfur species, as well as reduction effect of Fe0), the re-mobilized U(VI) were finally re-immobilized by the formed FeOOH and Fe3O4 on the aged CMC-Fe0/FeS. Under anoxic conditions, more Fe3O4 was produced, which may be the main reason for the long-term immobilization U(VI). Under oxic conditions, the production of Fe3O4 and FeOOH were relatively high, which both played significant roles in re-immobilizing U(VI) through surface complexation, reduction and incorporation effects.
Collapse
Affiliation(s)
- Qi Fang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yanling Tan
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Ran Yan
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - De Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Wu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yilong Hua
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Pang C, Li Y, Wu H, Deng Z, Yuan S, Tan W. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107367. [PMID: 38171110 DOI: 10.1016/j.jenvrad.2023.107367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Immobilization of uranyl by indigenous microorganisms has been proposed as an economic and clean in-situ approach for removal of uranium, but the potential mechanisms of the process and the stability of precipitated uranium in the presence of widespread Fe(III) (hydr)oxides remain elusive. The potential of iron to serve as a reductant and/or an oxidant of uranium indicates that bioemediation strategies which mainly rely on the reduction of highly soluble U(VI) to poorly soluble U(IV) minerals to retard uranium transport in groundwater may be enhanced or hindered under different environmental conditions. This study purposes to determine the effect of ubiquitous Fe(III) (hydr)oxides (two-line ferrihydrite, hematite and goethite) on the removal of U(VI) by Leifsonia sp. isolated from an acidic tailings pond in China. The removal mechanism was elucidated via SEM-EDS, XPS and Mössbauer. The results show that the removal of U(VI) was retarded by Fe(III) (hydr)oxides when the initial concentration of U(VI) was 10 mg/L, pH was 6, temperature was 25 °C. Particularly, the retardatory effect of hematite on U(VI) removal was blindingly obvious. Also, it is worth noting that the U(VI) in the precipitate slow-released in the Fe(III) (hydrodr) oxide treatment groups, accompanied by an increase in Fe(II) concentration. SEM-EDS results demonstrated that the ferrihydrite converted to goethite may be the reason for U(VI) release in the process of 15 days culture. Mössbauer spectra fitting results further imply that the metastable iron oxides were transformed into stable Fe3O4 state. XPS measurements results showed that uranium product is most likely a mixture of Iron-U(IV) and Iron-U(VI), which indicated that the hexavalent uranium was converted into tetravalent uranium. These observations imply that the stability of the uranium in groundwater may be impacted on the prevailing environmental conditions, especially the solid-phase Fe(III) (hydr)oxide in groundwater or sediment.
Collapse
Affiliation(s)
- Chao Pang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Yuan Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Han Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Zhiwen Deng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Shanlin Yuan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenfa Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Schommer VA, Nazari MT, Melara F, Braun JCA, Rempel A, Dos Santos LF, Ferrari V, Colla LM, Dettmer A, Piccin JS. Techniques and mechanisms of bacteria immobilization on biochar for further environmental and agricultural applications. Microbiol Res 2024; 278:127534. [PMID: 37944206 DOI: 10.1016/j.micres.2023.127534] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Bacteria immobilization on biochar is a promising approach to achieve high concentration and stability of microbial cells for several applications. The present review addressed the techniques utilized for bacteria immobilization on biochar, discussing the mechanisms involved in this process, as well as the further utilization in bioremediation and agriculture. This article presents three immobilization techniques, which vary according to their procedures and conditions, including cell growth, adsorption, and adaptation. The mechanisms for cell immobilization are primarily adsorption and biofilm formation on biochar. The favorable characteristics of biochar immobilization depend on the pyrolysis methods, raw materials, and properties of biochar, such as surface area, pore size, pH, zeta potential, hydrophobicity, functional groups, and nutrients. Scanning electron microscope (SEM) and colony forming unit (CFU) are the analyses commonly carried out to verify the efficiency of bacteria immobilization. The benefits of applying biochar-immobilized bacteria include soil decontamination and quality improvement, which can improve plant growth and crop yield. Therefore, this emerging technology represents a promising solution for environmental and agricultural purposes. However, it is important to evaluate the potential adverse impacts on native microbiota by introducing exogenous microorganisms.
Collapse
Affiliation(s)
- Vera Analise Schommer
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Flávia Melara
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Julia Catiane Arenhart Braun
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Alan Rempel
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Lara Franco Dos Santos
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Aline Dettmer
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
7
|
Zhao B, Chen X, Chen H, Zhang L, Li J, Guo Y, Liu H, Zhou Z, Ke P, Sun Z. Biomineralization of uranium by Desulfovibrio desulfuricans A3-21ZLL under various hydrochemical conditions. ENVIRONMENTAL RESEARCH 2023; 237:116950. [PMID: 37660876 DOI: 10.1016/j.envres.2023.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Uranium pollution in groundwater environment has become an important issue of global concern. In this study, a strain of Desulfovibrio desulfuricans was isolated from the tailings of acid heap leaching, and was shown to be able to remove uranium from water via biosorption, bio-reduction, passive biomineralization under uranium stress, and active metabolically dependent bioaccumulation. This research explored the effects of nutrients, pH, initial uranium and sulfate concentration on the functional groups, uranium valence, and crystal size and morphology of uranium immobilization products. Results showed that tetravalent and hexavalent phosphorus-containing uranium minerals was both formed. In sulfate-containing water where Desulfovibrio desulfuricans A3-21ZLL can grow, the sequestration of uranium by bio-reduction was significantly enhanced compared to that with no sulfate loading or no growth. Ungrown Desulfovibrio desulfuricans A3-21ZLL or dead ones released inorganic phosphate group in response to the stress of uranium, which associated with soluble uranyl ion to form insoluble uranium-containing precipitates. This study revealed the influence of hydrochemical conditions on the mineralogy characteristics and spatial distribution of microbial uranium immobilization products. This study is conducive to the long-term and stable bioremediation of groundwater in decommissioned uranium mining area.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Xin Chen
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Hongliang Chen
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Linlin Zhang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Jiang Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, Jiangxi, China
| | - Yadan Guo
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Haiyan Liu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Zhongkui Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Pingchao Ke
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; China University of Geosciences (Beijing), Beijing 100083, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Petit P, Hayoun K, Alpha-Bazin B, Armengaud J, Rivasseau C. First Isolation and Characterization of Bacteria from the Core's Cooling Pool of an Operating Nuclear Reactor. Microorganisms 2023; 11:1871. [PMID: 37630434 PMCID: PMC10456712 DOI: 10.3390/microorganisms11081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial life can thrive in the most inhospitable places, such as nuclear facilities with high levels of ionizing radiation. Using direct meta-analyses, we have previously highlighted the presence of bacteria belonging to twenty-five different genera in the highly radioactive water of the cooling pool of an operating nuclear reactor core. In the present study, we further characterize this specific environment by isolating and identifying some of these microorganisms and assessing their radiotolerance and their ability to decontaminate uranium. This metal is one of the major radioactive contaminants of anthropogenic origin in the environment due to the nuclear and mining industries and agricultural practices. The microorganisms isolated when sampling was performed during the reactor operation consisted mainly of Actinobacteria and Firmicutes, whereas Proteobacteria were dominant when sampling was performed during the reactor shutdown. We investigated their tolerance to gamma radiation under different conditions. Most of the bacterial strains studied were able to survive 200 Gy irradiation. Some were even able to withstand 1 kGy, with four of them showing more than 10% survival at this dose. We also assessed their uranium uptake capacity. Seven strains were able to remove almost all the uranium from a 5 µM solution. Four strains displayed high efficiency in decontaminating a 50 µM uranium solution, demonstrating promising potential for use in bioremediation processes in environments contaminated by radionuclides.
Collapse
Affiliation(s)
- Pauline Petit
- Université Grenoble Alpes, CEA, CNRS, IRIG, F-38000 Grenoble, France;
| | - Karim Hayoun
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (K.H.); (B.A.-B.); (J.A.)
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, F-30207 Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (K.H.); (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (K.H.); (B.A.-B.); (J.A.)
| | - Corinne Rivasseau
- Université Grenoble Alpes, CEA, CNRS, IRIG, F-38000 Grenoble, France;
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Zhang Y, Mei B, Shen B, Jia L, Liao J, Zhu W. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr Polym 2023; 312:120834. [PMID: 37059560 DOI: 10.1016/j.carbpol.2023.120834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Binhao Shen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| |
Collapse
|
10
|
Li M, Xu W, Wu X, Zhang X, Fang Q, Cai T, Yang J, Hua Y. Enhanced mechanism of calcium towards uranium incorporation and stability in magnetite during electromineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131641. [PMID: 37329595 DOI: 10.1016/j.jhazmat.2023.131641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/19/2023]
Abstract
Doping uranium into a room-temperature stable Fe3O4 lattice structure effectively reduces its migration. However, the synergistic or competitive effects of coexisting ions in an aqueous solution directly affect the uranium mineralization efficiency and the structural stability of uranium-bearing Fe3O4. The effects of calcium, carbonate, and phosphate on uranium electromineralization were investigated via batch experiments and theoretical calculations. Calcium incorporated into the Fe3O4 lattice increased the level and stability of doped uranium in Fe3O4. Uranium and calcium occupied the octahedral and tetrahedral sites of Fe3O4, respectively; the formation energy was only -10.23 eV due to strong hybridization effects between Fe1s, U4f, O2p, and Ca3d orbitals. Compared to the uranium-doped Fe3O4, uranium leaching ratios decreased by 19.2 % and 48.9 % under strongly acidic and alkaline conditions after 120 days. However, high concentrations of phosphate inhibited Fe3O4 crystallization. These results should provide new avenues for the development of multi-metal co-doping technologies and mineralization optimization to treat uranium-containing complex wastewater.
Collapse
Affiliation(s)
- Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Wanqin Xu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaoyan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiaowen Zhang
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jianping Yang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yilong Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Tang Z, Dai Z, Gong M, Chen H, Zhou X, Wang Y, Jiang C, Yu W, Li L. Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40478-40489. [PMID: 36609758 DOI: 10.1007/s11356-022-25124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is an important strategic resource as well as a heavy metal element with both chemical and radiotoxicity. At present, the rapid and efficient removal of uranium from wastewater remains a huge challenge for environmental protection and ecological security. In this paper, phosphate-modified biochar supporting nano zero-valent iron (PBC/nZVI) was triumphantly prepared and fully characterized. The introduction of polyphosphate can greatly increase the specific surface area of biochar pores, and then the zero-valent iron can be evenly distributed on the surface of material, thus leading to excellent removal performance of the PBC/nZVI for U(VI). The theoretical maximum U(VI) removal capacity of PBC/nZVI was up to 967.53 mg/g at pH 5. The results of adsorption kinetics, isotherm, and thermodynamics showed that the adsorption of uranium by PBC/nZVI was a monolayer physical adsorption and endothermic reaction. And the PBC/nZVI has favorable selectivity toward uranium against the interference of coexisting metal ions. Further mechanism studies show that the excellent uranium removal performance of PBC/nZVI is mainly attributed to the synergistic effect of physical adsorption and chemical reduction. This work proves that the PBC/nZVI has a wide application prospect in the field of uranium wastewater treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhongran Dai
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mi Gong
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hong Chen
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiayu Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yating Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Cong Jiang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wanying Yu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Le Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Cheang T, Zhou H, Lin W, Zheng J, Yu L, Zhang Y. Construction of an egg-like DTAB/SiO 2 composite for the enhanced removal of uranium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63294-63303. [PMID: 35449334 DOI: 10.1007/s11356-022-20260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
For the past few years, the environmental safety problems of radioactive nuclides caused wide public concern. In this work, the dodecyl trimethyl ammonium bromide-modified silicon dioxide composite (DTAB/SiO2) was synthesized for the elimination of uranium. The dodecyl trimethyl ammonium bromide can decorate the surface of the silicon dioxide and change its surface topography, which can offer more active sites and functional groups for the combination of U(VI). The removal capacity of U(VI) on DTAB/SiO2 reached 78.1 mg/g, which was greater than that of the silicon dioxide nanopowder. In the adsorption process, the surface oxygen-containing functional groups formed surface complexation with uranium. The results may provide helpful content to eliminate U(VI) and expand the application of surfactant in radioactive nuclide cleanup.
Collapse
Affiliation(s)
- Tuckyun Cheang
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutics University, Guangdong, 510080, China
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China
| | - Weihao Lin
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China
| | - JiaJun Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutics University, Guangdong, 510080, China
| | - Liang Yu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangdong, 510080, China.
| |
Collapse
|
13
|
Wang Q, Huang T, Du J, Zhou L. Enhancement of Uranium Recycling from Tailings Caused by the Microwave Irradiation-Induced Composite Oxidation of the Fe-Mn Binary System. ACS OMEGA 2022; 7:24574-24586. [PMID: 35874237 PMCID: PMC9301716 DOI: 10.1021/acsomega.2c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extraction of uranium (U)-related minerals from raw ore sands via a leaching procedure would produce enormous amounts of tailings, not only causing radioactivity contamination to surroundings but also wasting the potential U utilization. Effective recycling of U from U tailings is propitious to the current issues in U mining industries. In this study, the influence of the composite oxidation of Fe(III) and Mn(VII) intensified by microwave (MW) irradiation on the acid leaching of U from tailings was comprehensively explored in sequential and coupling systems. The U leaching activities from the tailing specimens were explicitly enhanced by MW irradiation. The composite oxidation caused by Fe(III) and Mn(VII) further facilitated the leaching of U ions from the tailing under MW irradiation in two systems. Maximum leaching efficiencies of 84.61, 80.56, and 92.95% for U ions were achieved in the Fe(III)-, Mn(VII)-, and Fe(III)-Mn(VII)-participated coupling systems, respectively. The inappropriateness of the shrinking core model (SCM) demonstrated by the linear fittings and analysis of variance (ANOVA) for the two systems explained a reverse increase of solid cores in the later stage of leaching experiments. The internal migration of oxidant ions into the particle cores enhanced by MW accelerated the dissolution of Al, Fe, and Mn constituents under acidic conditions, which further strengthened U extraction from tailing specimens.
Collapse
Affiliation(s)
- Qingxiang Wang
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
| | - Tao Huang
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
- Suzhou
Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China
| | - Jing Du
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
| | - Lulu Zhou
- School
of Materials Engineering, Changshu Institute
of Technology, Suzhou 215500, China
| |
Collapse
|
14
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
15
|
Research on the effect of Deinococcus radiodurans transformed by dsrA-flr-2 double gene on the enrichment performance of uranium(VI). J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Yu S, Wu X, Ye J, Li M, Zhang Q, Zhang X, Lv C, Xie W, Shi K, Liu Y. Dual Effect of Acetic Acid Efficiently Enhances Sludge-Based Biochar to Recover Uranium From Aqueous Solution. Front Chem 2022; 10:835959. [PMID: 35273949 PMCID: PMC8902313 DOI: 10.3389/fchem.2022.835959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Excess sludge (ES) treatment and that related to the uranium recovery from uranium-containing wastewater (UCW) are two hot topics in the field of environmental engineering. Sludge-based biochar (SBB) prepared from ES was used to recover uranium from UCW. Excellent effects were achieved when SBB was modified by acetic acid. Compared with SBB, acetic acid-modified SBB (ASBB) has shown three characteristics deserving interest: 1) high sorption efficiency, in which the sorption ratio of U(VI) was increased by as high as 35.0%; 2) fast sorption rate, as the equilibrium could be achieved within 5.0 min; 3) satisfied sorption/desorption behavior; as a matter of fact, the sorption rate of U(VI) could still be maintained at 93.0% during the test cycles. In addition, based on the test conditions and various characterization results, it emerged as a dual effect of acetic acid on the surface of SBB, i.e., to increase the porosity and add (−COOH) groups. It was revealed that U(VI) and −COO− combined in the surface aperture of ASBB via single-dentate coordination. Altogether, a new utilization mode for SBB is here proposed, as a means of efficient uranium sorption from UCW.
Collapse
Affiliation(s)
- Shoufu Yu
- University of South China, Hengyang, China
| | - Xiaoyan Wu
- University of South China, Hengyang, China
- Hengyang Key Laboratory of Soil Contamination Control and Remediation, University of South China, Hengyang, China
- Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, China
- *Correspondence: Xiaoyan Wu, ; Yong Liu,
| | - Jian Ye
- University of South China, Hengyang, China
- Hengyang Key Laboratory of Soil Contamination Control and Remediation, University of South China, Hengyang, China
- Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, China
| | - Mi Li
- University of South China, Hengyang, China
- Hengyang Key Laboratory of Soil Contamination Control and Remediation, University of South China, Hengyang, China
- Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, China
| | - Qiucai Zhang
- University of South China, Hengyang, China
- Decommissioning Engineering Technology Research Center of Hunan Province Uranium Tailings Reservoir, University of South China, Hengyang, China
| | - Xiaowen Zhang
- University of South China, Hengyang, China
- Hengyang Key Laboratory of Soil Contamination Control and Remediation, University of South China, Hengyang, China
- Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, China
| | - Chunxue Lv
- University of South China, Hengyang, China
| | - Wenjie Xie
- University of South China, Hengyang, China
| | - Keyou Shi
- University of South China, Hengyang, China
| | - Yong Liu
- University of South China, Hengyang, China
- Decommissioning Engineering Technology Research Center of Hunan Province Uranium Tailings Reservoir, University of South China, Hengyang, China
- *Correspondence: Xiaoyan Wu, ; Yong Liu,
| |
Collapse
|
17
|
Fan M, Wang X, Song Q, Zhang L, Ren B, Yang X. Review of biomass-based materials for uranium adsorption. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08003-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Li S, Zhu Q, Luo J, Shu Y, Guo K, Xie J, Xiao F, He S. Application Progress of Deinococcus radiodurans in Biological Treatment of Radioactive Uranium-Containing Wastewater. Indian J Microbiol 2021; 61:417-426. [PMID: 34744197 DOI: 10.1007/s12088-021-00969-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Radioactive uranium wastewater contains a large amount of radionuclide uranium and other heavy metal ions. The radioactive uranium wastewater discharged into the environment will not only pollute the natural environment, but also threat human health. Therefore, the treatment of radioactive uranium wastewater is a current research focus for many researchers. The treatment in radioactive uranium wastewater mainly includes physical, chemical and biological methods. At present, the using of biological treatment to treat uranium in radioactive uranium wastewater has been gradually shown its superiority and advantages. Deinococcus radiodurans is a famous microorganism with the most radiation resistant to ionizing radiation in the world, and can also resist various other extreme pressures. D. radiodurans can be directly used for the adsorption of uranium in radioactive waste water, and it can also transform other functional genes into D. radiodurans to construct genetically engineered bacteria, and then applied to the treatment of radioactive uranium containing wastewater. Radionuclides uranium in radioactive uranium-containing wastewater treated by D. radiodurans involves a lot of mechanisms. This article reviews currently the application of D. radiodurans that directly or construct genetically engineered bacteria in the treatment of radioactive uranium wastewater and discusses the mechanism of D. radiodurans in bioremediation of uranium. The application of constructing an engineered bacteria of D. radiodurans with powerful functions in uranium-containing wastewater is prospected.
Collapse
Affiliation(s)
- Shanshan Li
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Qiqi Zhu
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jiaqi Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Yangzhen Shu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Kexin Guo
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jingxi Xie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Fangzhu Xiao
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Shuya He
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
19
|
Zhang T, Chen J, Xiong H, Yuan Z, Zhu Y, Hu B. Constructing new Fe 3O 4@MnO x with 3D hollow structure for efficient recovery of uranium from simulated seawater. CHEMOSPHERE 2021; 283:131241. [PMID: 34470731 DOI: 10.1016/j.chemosphere.2021.131241] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Enrichment of uranium from seawater is a promising method for addressing the energy crisis. Current technologies are generally not effective for enriching uranium from seawater because its concentration in seawater is low. In this study, new Fe3O4@MnOx with 3D hollow structure, which is capable of enriching low concentration uranium, was prepared via a novel redox etching method. The physicochemical characteristics of Fe3O4@MnOx were studied with TEM, HRTEM, SEAD, FTIR, XRD, and N2 adsorption-desorption analysis. Dynamic kinetic studies of different initial U(VI) concentrations revealed that the pseudo-second-order model fit the sorption process better, and the sorption rates of Fe3O4@MnOx in 1, 10, and 25 mg/L U(VI) solution were 0.0124, 0.00298, and 0.000867 g/mg·min, respectively. Isothermal studies showed that the maximum sorption amounts were 50.09, 56.27, and 64.62 mg/g for 1, 10, and 25 mg/L U(VI), respectively, at pH 5.0 and 313 K, suggesting that Fe3O4@MnOx could effectively enrich low concentration U(VI) from water. The sorption amount of U(VI) did not significantly decrease in the presence of Na+, Mg2+, and Ca2+. HRTEM, FTIR, and XPS results demonstrated that Fe(II) and Mn/Fe-O-H active sites in Fe3O4@MnOx were accounted for the high and specific enrichment efficiency. A column experiment was conducted to evaluate the U(VI) sorption efficiency of Fe3O4@MnOx in simulated seawater. The U(VI) sorption efficiency remained above 80% in 28 days run. Our findings demonstrate that Fe3O4@MnOx has extraordinary potential for the enrichment of uranium from simulated seawater.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China; College of Civil Engineering, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Jiemin Chen
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Huiyan Xiong
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China; College of Civil Engineering, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Zongdi Yuan
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Yuling Zhu
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| | - Baowei Hu
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| |
Collapse
|
20
|
Wu X, Lv C, Ye J, Li M, Zhang X, Lv J, Fang Q, Yu S, Xie W. Glycine-hydrochloric acid buffer promotes simultaneous U(VI) reduction and bioelectricity generation in dual chamber microbial fuel cell. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Enhancement of Cd(II) Adsorption on Microalgae–Montmorillonite Composite. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06063-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Wei H, Yang XY, van der Mei HC, Busscher HJ. X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells. Front Chem 2021; 9:666159. [PMID: 33968904 PMCID: PMC8100684 DOI: 10.3389/fchem.2021.666159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Encapsulation of single microbial cells by surface-engineered shells has great potential for the protection of yeasts and bacteria against harsh environmental conditions, such as elevated temperatures, UV light, extreme pH values, and antimicrobials. Encapsulation with functionalized shells can also alter the surface characteristics of cells in a way that can make them more suitable to perform their function in complex environments, including bio-reactors, bio-fuel production, biosensors, and the human body. Surface-engineered shells bear as an advantage above genetically-engineered microorganisms that the protection and functionalization added are temporary and disappear upon microbial growth, ultimately breaking a shell. Therewith, the danger of creating a "super-bug," resistant to all known antimicrobial measures does not exist for surface-engineered shells. Encapsulating shells around single microorganisms are predominantly characterized by electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, particulate micro-electrophoresis, nitrogen adsorption-desorption isotherms, and X-ray diffraction. It is amazing that X-ray Photoelectron Spectroscopy (XPS) is forgotten as a method to characterize encapsulated yeasts and bacteria. XPS was introduced several decades ago to characterize the elemental composition of microbial cell surfaces. Microbial sample preparation requires freeze-drying which leaves microorganisms intact. Freeze-dried microorganisms form a powder that can be easily pressed in small cups, suitable for insertion in the high vacuum of an XPS machine and obtaining high resolution spectra. Typically, XPS measures carbon, nitrogen, oxygen and phosphorus as the most common elements in microbial cell surfaces. Models exist to transform these compositions into well-known, biochemical cell surface components, including proteins, polysaccharides, chitin, glucan, teichoic acid, peptidoglycan, and hydrocarbon like components. Moreover, elemental surface compositions of many different microbial strains and species in freeze-dried conditions, related with zeta potentials of microbial cells, measured in a hydrated state. Relationships between elemental surface compositions measured using XPS in vacuum with characteristics measured in a hydrated state have been taken as a validation of microbial cell surface XPS. Despite the merits of microbial cell surface XPS, XPS has seldom been applied to characterize the many different types of surface-engineered shells around yeasts and bacteria currently described in the literature. In this review, we aim to advocate the use of XPS as a forgotten method for microbial cell surface characterization, for use on surface-engineered shells encapsulating microorganisms.
Collapse
Affiliation(s)
- Hao Wei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, United States
| | - Henny C. van der Mei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| |
Collapse
|
23
|
Manobala T, Shukla SK, Rao TS, Kumar MD. Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm. CHEMOSPHERE 2021; 269:128722. [PMID: 33189396 DOI: 10.1016/j.chemosphere.2020.128722] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Increasing number of reports on uranium contamination in groundwater bodies is a growing concern. Deinococcus radiodurans biofilm-based U(VI) bioremediation has great potential to provide solution. This study focuses on the kinetic modelling of uranium biosorption by D. radiodurans biofilm biomass and identification of the functional groups involved in the sequestration process. The effect of temperature, pH and amount of biofilm dry mass were studied using two uranyl ion concentrations (100 and 1000 mg/L). D. radiodurans dry biomass showed good affinity for uranyl ion adsorption. The kinetic experiments revealed that the biosorption process was spontaneous and exothermic in nature. The modelling of kinetic adsorption data revealed that U(VI) sorption by D. radiodurans biofilm biomass follows a pseudo-second-order reaction. Mechanism of U(VI) sorption was suggested to follow an intra-particle diffusion model, which includes covalent bonding between U(VI) and functional groups present on the surface of biofilm biomass, and diffusional barrier acts as a rate limiting step. External mass transfer was the rate-limiting step as evident from Boyd and Elovich plot. Chemical modifications in surface functional groups of biofilm biomass, confirmed the involvement of carboxyl, phosphate, and hydroxyl groups in uranium binding as a significant loss in U(VI) sorption capacity was recorded in these chemically modified biomasses. XRD data indicated the formation of metal deposits, predominantly as uranyl phosphates.
Collapse
Affiliation(s)
- T Manobala
- Department of Applied Science and Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sudhir K Shukla
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, 603102, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| | - T Subba Rao
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, 603102, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| | - M Dharmendira Kumar
- Department of Applied Science and Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
24
|
Guilhen SN, Rovani S, Araujo LGD, Tenório JAS, Mašek O. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116022. [PMID: 33221084 DOI: 10.1016/j.envpol.2020.116022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The main aim of this study was to evaluate options for addressing two pressing challenges related to environmental quality and circular economy stemming from wastage or underutilization of abundant biomass residue resources and contamination of water by industrial effluents. In this study we focused on residues (endocarp) from Macaúba palm (Acrocomia aculeata) used for oil production, its conversion to activated biochar, and its potential use in uranium (U) removal from aqueous solutions. Batch adsorption experiments showed a much higher uranyl ions (U(VI)) removal efficiency of activated biochar compared to untreated biochar. As a result of activation, an increase in removal efficiency from 80.5% (untreated biochar) to 99.2% (after activation) was observed for a 5 mg L-1 initial U(VI) concentration solution adjusted to pH 3 using a 10 g L-1 adsorbent dosage. The BET surface area increased from 0.83 to 643 m2 g-1 with activation. Surface topography of the activated biochar showed a very characteristic morphology with high porosity. Activation significantly affected chemical surface of the biochar. FTIR analysis indicated that U(VI) was removed by physisorption from the aqueous solution. The adsorbed U(VI) was detected by micro X-ray fluorescence technique. Adsorption isotherms were employed to represent the results of the U adsorption onto the activated biochar. An estimation of the best fit was performed by calculating different deviation equations, also called error functions. The Redlich-Peterson isotherm model was the most appropriate for fitting the experimental data, suggesting heterogeneity of adsorption sites with different affinities for uranium setting up as a hybrid adsorption. These results demonstrated that physical activation significantly increases the adsorption capacity of macauba endocarp-derived biochar for uranium in aqueous solutions, and therefore open up a potential new application for this type of waste-derived biochar.
Collapse
Affiliation(s)
- Sabine N Guilhen
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, Av. Professor Lineu Prestes, 2242 - 05508-000, São Paulo, Brazil.
| | - Suzimara Rovani
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, Av. Professor Lineu Prestes, 2242 - 05508-000, São Paulo, Brazil.
| | - Leandro G de Araujo
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, Av. Professor Lineu Prestes, 2242 - 05508-000, São Paulo, Brazil.
| | - Jorge A S Tenório
- Depto. de Engenharia Química da Escola Politécnica, Universidade de São Paulo, Rua do Lago, 250 - 05508-080, São Paulo, Brazil.
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Crew Building, EH9 3LA, Edinburgh, UK.
| |
Collapse
|
25
|
Hossain F. Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 225:106423. [PMID: 32992070 DOI: 10.1016/j.jenvrad.2020.106423] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Water-energy nexus in the context of changing climate amplifies the importance of comprehending the transport, fate and recovery of radioisotope. While countries have been more interested for zero/low greenhouse gas emission technologies, energy production from nuclear power plant (NPP) can be a prominent solution. Moreover, radioisotopes are also used for other benefits such as in medical science, industrial activities and many more. These radionuclides are blended accidently or intentionally with water or wastewater because of inefficacious management of the nuclear waste; and therefore, it is an imperative task to manage nuclear waste so that the harmful consequences of the waste on environment, ecology and human health can be dispelled. Due to generation of significant amount of waste throughout its utilization, a noticeable number of physical, chemical and biological processes has been introduced as remediation processes although mechanisms of optimum removal process are still under investigation. Removal mechanisms and influencing factors for radionuclide removal are elucidated in this review so that, further, operation and process development can be promoted. Again, resource recovery, opportunities and challenges are also discussed for elevating the removal rates and minimizing the knowledge gaps existing in development and applications of novel decontamination processes.
Collapse
Affiliation(s)
- Fahim Hossain
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, USA.
| |
Collapse
|
26
|
Ye T, Huang B, Wang Y, Zhou L, Liu Z. Rapid removal of uranium(Ⅵ) using functionalized luffa rattan biochar from aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125480] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Le H, Valenca R, Ravi S, Stenstrom MK, Mohanty SK. Size-dependent biochar breaking under compaction: Implications on clogging and pathogen removal in biofilters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115195. [PMID: 32683234 DOI: 10.1016/j.envpol.2020.115195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Breaking of biochar during compaction of amended soil in roadside biofilters or landfill cover can affect infiltration and pollutant removal capacity. It is unknown how the initial biochar size affects the biochar breaking, clogging potential, and contaminant removal capacity of the biochar-amended soil. We compacted a mixture of coarse sand and biochar with sizes smaller than, similar to, or larger than the sand in columns and applied stormwater contaminated with E. coli. Packing columns with biochar pre-coated with a dye and analyzing the dye concentration in the broken biochar particles eluted from the columns, we proved that biochar predominantly breaks under compaction by disintegration or splitting, not by abrasion. Increases in biochar size decrease the likelihood of biochar breaking. We attribute this result to the effective dissipation of compaction energy through a greater number of contact points between a large biochar particle and the adjacent particles. Most of the broken biochar particles are deposited in the pore spaces of the background geomedia, resulting in an exponential decrease in hydraulic conductivity of amended sand with an increase in suspended sediment loading. The clogging rate was higher in the columns with small biochar. The columns with small biochar also exhibited high E. coli removal capacity, partly because of an increase in bacterial straining at reduced pore size after compaction. These results are useful in selecting appropriate biochar size for its application in soils and roadside biofilters for stormwater treatment.
Collapse
Affiliation(s)
- Huong Le
- Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
| | - Renan Valenca
- Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
| | - Sujith Ravi
- Department of Earth and Environmental Science, Temple University, Philadelphia, USA
| | - Michael K Stenstrom
- Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California, Los Angeles, USA.
| |
Collapse
|
28
|
|
29
|
Sánchez-Castro I, Martínez-Rodríguez P, Jroundi F, Solari PL, Descostes M, Merroun ML. High-efficient microbial immobilization of solved U(VI) by the Stenotrophomonas strain Br8. WATER RESEARCH 2020; 183:116110. [PMID: 32659540 DOI: 10.1016/j.watres.2020.116110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The environmental impact of uranium released during nuclear power production and related mining activity is an issue of great concern. Innovative environmental-friendly water remediation strategies, like those based on U biomineralization through phosphatase activity, are desirable. Here, we report the great U biomineralization potential of Stenotrophomonas sp. Br8 CECT 9810 over a wide range of physicochemical and biological conditions. Br8 cells exhibited high phosphatase activity which mediated the release of orthophosphate in the presence of glycerol-2-phosphate around pH 6.3. Mobile uranyl ions were bioprecipitated as needle-like fibrils at the cell surface and in the extracellular space, as observed by Scanning Transmission Electron Microscopy (STEM). Extended X-Ray Absorption Fine Structure (EXAFS) and X-Ray Diffraction (XRD) analyses showed the local structure of biogenic U precipitates to be similar to that of meta-autunite. In addition to the active U phosphate biomineralization process, the cells interact with this radionuclide through passive biosorption, removing up to 373 mg of U per g of bacterial dry biomass. The high U biomineralization capacity of the studied strain was also observed under different conditions of pH, temperature, etc. Results presented in this work will help to design efficient U bioremediation strategies for real polluted waters.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - Pablo Martínez-Rodríguez
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Fadwa Jroundi
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, MARS beamline, L'Orme des Merisiers, Saint-Aubin BP 48, 91192, Gif-sur-Yvette Cedex, France
| | | | - Mohamed Larbi Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
30
|
Zhang X, Zhang L, Liu Y, Li M, Wu X, Jiang T, Chen C, Peng Y. Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114184. [PMID: 32193078 DOI: 10.1016/j.envpol.2020.114184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Goethite is a common iron hydroxide, which can be substituted by manganese (Mn) in the goethite structure. It is important to investigate the immobilization of uranium(VI) on Mn-substituted goethite (Mn-Goe) to understand the fate and migration of uranium in soils and sediments. In this study, the sorption of uranium(VI) by Mn-Goe was investigated as a function of pH, adsorbent dosage, contact time, and initial uranium concentration in batch experiments. Several material analysis techniques were used to characterize manganese substituted materials. Results indicated that Mn was successfully introduced into the goethite structure, the length of particles increased gradually, the surface clearly exhibited higher roughness with increasing Mn content, and that uranium(VI) sorption of synthetic Mn-Goe appeared to be higher than that of goethite. The sorption kinetics supported the results presented by the pseudo-second-order model. The sorption capacity of uranium on Mn-Goe was circa 77 mg g-1 at pH = 4.0 and 25 °C. Fourier transform-infrared spectroscopy (FT-IR) analyses revealed that uranium ions were adsorbed through functional groups containing oxygen on the Mn-Goe structure. The enhancement of Mn-substitution for the uranium(VI) sorption capacity of goethite was revealed. This study suggests that goethite and Mn-Goe can both play a significant role in controlling the mobility and transport of uranium(VI) in the subsurface environment, which is helpful for material development in environmental remediation.
Collapse
Affiliation(s)
- Xiaowen Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Engineering Research Centre of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Lijiang Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yong Liu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Engineering Research Centre of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang, Hunan, 421001, China.
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Xiaoyan Wu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Tianjiao Jiang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Chen Chen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
31
|
Tan WF, Li Y, Guo F, Wang YC, Ding L, Mumford K, Lv JW, Deng QW, Fang Q, Zhang XW. Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106202. [PMID: 32063554 DOI: 10.1016/j.jenvrad.2020.106202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Uranium mining and milling activities for many years resulted in release of uranium into the adjoining soil in varying degrees. Bioremediation approaches (i.e., immobilization via the action of bacteria) resulting in uranium bearing solid is supposed as an economic and clean in-situ approach for the treatment of uranium contaminated sites. This study purposes to determine the immobilization efficiency of uranium in soil by Leifsonia sp. The results demonstrated that cells have a good proliferation ability under the stress of uranium and play a role in retaining uranium in soil. Residual uranium in active Leifsonia-medium group (66%) was higher than that in the controls, which was 31% in the deionised water control, 46% in the Leifsonia group, and 47% in the medium group, respectively. This indicated that Leifsonia sp. facilitates the immobilization efficiency of uranium in soil by converting part of the reducible and oxidizable fraction of uranium into the residual fraction. X-ray photoelectron fitting results showed that tetravalent states uranium existed in the soil samples, which indicated that the hexavalent uranium was converted into tetravalent by cells. This is the first report of effect of Leifsonia sp. on uranium immobilization in soil. The findings implied that Leifsonia sp. could, to some extent, prevent the migration and diffusion of uranium in soil by changing the chemical states into less toxicity and less risky forms.
Collapse
Affiliation(s)
- Wen-Fa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Yuan Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Feng Guo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ya-Chao Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Lei Ding
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Kathryn Mumford
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Australia
| | - Jun-Wen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qin-Wen Deng
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiao-Wen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
32
|
Xie Y, Fang Q, Li M, Wang S, Luo Y, Wu X, Lv J, Tan W, Wang H, Tan K. Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134827. [PMID: 32000325 DOI: 10.1016/j.scitotenv.2019.134827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Immobilization of U(VI) by naturally ubiquitous ferrous ions (Fe(II)) has been considered as an efficient and ecofriendly method to retard the migration of aqueous U(VI) at many nuclear sites and surface environments. In this study, we conducted Fe-U coprecipitation experiments to investigate the mechanism and stability of uranium (U) precipitation induced by a small quantity of Fe(II) under oxygen-rich conditions. The experimental results suggest that the sedimentation rates of U(VI) by Fe(II) under neutral oxygen-rich conditions are more than 96%, which are about 36% higher than those without Fe(II) and 16% higher than those under oxygen-free conditions. The Fe-U coprecipitates were observed to remain stable under slightly acidic to neutral and oxygen-rich conditions. Fe(II) primarily settles down as low-crystalline iron oxide hydroxide. U(VI) mainly precipitates as three forms: 16-20% of U forms uranyl hydroxide and metaschoepite, which is absorbed on the surface of the solids; 52-56% of U is absorbed as discrete uranyl phases at the internal pores of iron oxide hydroxide; and 27-29% of U is probably incorporated into the FeO(OH) structure as U(V) and U(VI). The U(V) generated via one-electron reduction is somewhat resistant to the oxidation of O2 and the acid dissolution. In addition, nearly 70% of U and only about 15% of Fe could be extracted in 24 h by a hydrochloric acid solution with the H+ concentration ([H+]) of 0.01 M, revealing that U(VI) immobilization by low concentration of Fe(II) combined with O2 has potential applications in the separation and recycling of aqueous uranium.
Collapse
Affiliation(s)
- Yanpei Xie
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China.
| | - Mi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Sainan Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yingfeng Luo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Xiaoyan Wu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Junwen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Wenfa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Hongqiang Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| |
Collapse
|
33
|
Wu X, Lv C, Yu S, Li M, Ye J, Zhang X, Liu Y. Uranium (VI) removal from aqueous solution using iron-carbon micro-electrolysis packing. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116104] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Xie S, Xiao X, Tan W, Lv J, Deng Q, Fang Q. Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe-U precipitates by zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5584-5594. [PMID: 31853852 DOI: 10.1007/s11356-019-07306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Zero-valent iron (ZVI) has been widely applied to the remediation of uranium (U)-contaminated water. Notably, indigenous bacteria may possess potential positive or unfavorable influence on the mechanism and stability of Fe-U precipitates. However, the focus of the researches in this field has mainly been on physical and/or chemical aspects. In this study, batch experiments were conducted to explore the effects of an indigenous bacterium (Leifsonia sp.) on Fe-U precipitates and the corresponding removal efficiency by ZVI under different environmental factors. The results showed that the removal rate and capacity of U(VI) was significantly inhibited and decreased by ZVI when the pH increased to near-neutral level (pH = 6~8). However, in the ZVI + Leifsonia sp. coexistence system, the U(VI) removal efficiency were maintained at high levels (over 90%) within the experimental scope (pH = 3~8). This revealed that Leifsonia sp. had a synergistic effect on U(VI) remove by ZVI. According to scanning electron microscope and energy dispersive X-ray detector (SEM-EDX) analysis, dense scaly uranium-phosphate precipitation was observed on ZVI + Leifsonia sp. surface. The X-photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis indicated that Leifsonia sp. facilitated the generation of U(VI)-phosphates precipitates. The X-ray diffraction (XRD) analyses further revealed that new substances, such as (Fe(II)Fe(III)2(PO4)2(OH)2), Fe(II)(UO2)2(PO4)2·8H2O, Fe(II)Fe(III)5(PO4)4(OH)2·4H2O, etc., were produced in the coexisting system of ZVI and Leifsonia sp. This study provides new insights on the feasibility and validity of site application of ZVI to U(VI)-contaminated subsurface water in situ. Graphical abstract.
Collapse
Affiliation(s)
- Shuibo Xie
- Key Discipline Laboratory for National Defense of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Xue Xiao
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenfa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Junwen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qinwen Deng
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
35
|
Zhang YY, Lv JW, Dong XJ, Fang Q, Tan WF, Wu XY, Deng QW. Influence on Uranium(VI) migration in soil by iron and manganese salts of humic acid: Mechanism and behavior. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113369. [PMID: 31662254 DOI: 10.1016/j.envpol.2019.113369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Soil contains large amounts of humic acid (HA), iron ions and manganese ions, all of which affect U(VI) migration in the soil. HA interacts with iron and manganese ions to form HA salts (called HA-Fe and HA-Mn in this paper); however, the effects of HA-Fe and HA-Mn on the migration of U(VI) is not fully understood. In this study, HA-Fe and HA-Mn were compounded by HA interactions with ferric chloride hexahydrate and manganese chloride tetrahydrate, respectively. The influence of HA, HA-Fe and HA-Mn on U(VI) immobilization and migration was investigated by bath adsorption experiments and adsorption-desorption experiments using soil columns. The results showed that the presence of HA, HA-Fe and HA-Mn retarded the migration of U(VI) in soil. Supported by X-ray photoelectron spectroscopy (XPS) and BCR sequential extraction analyses, a plausible explanation for the retardation was that HA-Fe and HA-Mn could reduce hexavalent uranium to stable tetravalent uranium and increase the specific gravity of Fe/Mn oxide-bound uranium and organic/sulfide-bound uranium, which made it difficult for them to longitudinally migrate in soil. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and surface area and pore size analyses indicated that the complex formed between the hydroxyl, amino and carboxyl groups of HA-Fe and U(VI) increased the crystallinity of HA-Fe. The reaction between U(VI) and the hydroxyl, amino, aldehyde, keto and chlorine-containing groups of HA-Mn had no effect on the crystallinity of HA-Mn. Notably, the column desorption experiment found that the U(VI) immobilized in the soil remigrated under the effect of rain leaching, and acid rain promoted uranium remigration better than neutral rain. The findings provide some guidance for the decommissioning disposal of uranium contaminated site and it's risk assessments.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jun-Wen Lv
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China.
| | - Xue-Jie Dong
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Wen-Fa Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Xiao-Yan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Qin-Wen Deng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| |
Collapse
|
36
|
He YR, Li XL, Li XL, Tan ZY, Zhang D, Chen HB. Aerogel based on melamine-formaldehyde and alginate: Simply removing of uranium from aqueous solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Song S, Wang K, Zhang Y, Wang Y, Zhang C, Wang X, Zhang R, Chen J, Wen T, Wang X. Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:196-205. [PMID: 30995573 DOI: 10.1016/j.envpol.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
In recent years, water pollution caused by radionuclides has become a rising concern, among which uranium is a representative class of actinide element. Since hexavalent uranium, i.e. U(VI), is biologically hazardous with high migration, it's essential to develop efficient adsorbents to minimize the impact on the environment. Towards this end, we have synthesized a novel material (GO/PEDOT:PSS) by direct assembling graphene oxide (GO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) through a facile ball milling method, which shows impressing performance for the immobilization of U(VI). On the basis of the batch experiments, GO/PEDOT:PSS exhibits ionic strength-independent sorption edges and temperature-promoted sorption isotherms, revealing an inner-sphere complexation with endothermic nature. The sorption kinetics can be illustrated by the pseudo-second-order model, yielding a rate constant of 1.09. × 10-2 g mg-1∙min-1, while the sorption isotherms are in coincidence with the Langmuir model, according to which the maximum sorption capacity is measured to be 384.51 mg g-1 at pH 4.5 under 298 K, indicating a monolayer sorption mechanism. In the light of the FT-IR and XPS investigations, the surface carboxyl/sulfonate group is responsible to the chelation of U(VI), indicating that the enhanced sorption capacity may be ascribed to the PSS moiety. These findings can greatly contribute to the design strategy for developing highly efficient adsorbents in the field of radioactive wastewater treatment.
Collapse
Affiliation(s)
- Shuang Song
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ken Wang
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yihan Zhang
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yunkai Wang
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chenlu Zhang
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xin Wang
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rui Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Tao Wen
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Xiangke Wang
- MOE Key Lab of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|