1
|
Xu C, Yao X, Kong W, Mu B, Duan G, Wang J, Xu Y, Li X. Ecotoxicological risk of co-exposure to fosthiazate and microplastics on earthworms (Eisenia fetida): Integrating biochemical and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125053. [PMID: 39357558 DOI: 10.1016/j.envpol.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Fosthiazate (FOS) is a widely used organophosphorus insecticide effective against soil root-knot nematodes. However, its ecotoxicity to non-target soil organisms, particularly in combination with microplastics (MPs), is unclear. This study explores the toxic-effects and molecular mechanisms of co-exposure to FOS and MPs on earthworms (Eisenia fetida) using multilevel toxicity endpoints and transcriptomics. Results showed that both FOS and MPs elevated the intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) in earthworms' cells. The superoxide dismutase (SOD) and catalase (CAT) activities followed a similar trend in all treatments, with changes observed at 14 and 28 days, indicating that co-exposure to FOS and MPs increased DNA oxidative damage. Notably, the co-exposure more significantly inhibited Ca2+-ATPase activity and exacerbated neurotoxicity compared to individual treatments, closely associated with changes in intracellular ROS levels that mediate neuroinhibition and lead to neurotoxicity. KEGG enrichment analysis revealed that MPs and FOS disrupted pathways related to metabolism, immunity, and apoptosis, while co-exposure primarily impaired endocrine and receptor pathways, showing higher toxicity. Our study offers novel insights into the ecotoxicological effects and mechanisms of pesticides and microplastics on earthworms, providing valuable data for evaluating the soil environmental health risks associated with compound pollution.
Collapse
Affiliation(s)
- Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Weizheng Kong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Baoyan Mu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yuxin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
2
|
Balogun EO, Joseph GI, Olabode SC, Dayaso NA, Danazumi AU, Bashford-Rogers R, Mckerrow JH, Jeelani G, Caffrey CR. Computational Workflow to Design Novel Vaccine Candidates and Small-Molecule Therapeutics for Schistosomiasis. Pathogens 2024; 13:850. [PMID: 39452722 PMCID: PMC11509903 DOI: 10.3390/pathogens13100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Human schistosomiasis, caused by the Schistosoma trematode, is a neglected parasitic disease affecting over 250 million people worldwide. There is no vaccine, and the single available drug is threatened by drug resistance. This study presents a computational approach to designing multiepitope vaccines (MEVs) targeting the cercarial (CMEV) and schistosomular (SMEV) stages of schistosomes, and identifies potential schistosomicidal compounds from the Medicine for Malaria Ventures (MMV) and SuperNatural Database (SND) libraries. The designed vaccines (CMEV and SMEV) are engineered to provoke robust immune responses by incorporating a blend of T- and B-cell epitopes. Structural and immunoinformatics evaluations predicted robust interactions of CMEV and SMEV with key immune receptors and prolonged immune responses. In addition, molecular docking identified several compounds from the MMV and SND libraries with strong binding affinities to vital Schistosoma cathepsin proteases, indicating their potential as schistosomicidal agents. Our findings contribute to the potential development of effective vaccines and drugs against schistosomiasis.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA 92093, USA
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gideon Ibrahim Joseph
- Department of Biochemistry, Federal University of Technology, Minna PMB 65, Niger, Nigeria;
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna PMB 65, Niger, Nigeria
| | - Samuel Charles Olabode
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria
| | - Naziru Abdulkadir Dayaso
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria
| | - Ammar Usman Danazumi
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
| | | | - James H. Mckerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA 92093, USA
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Li L, Zhao X, Hu K, Xu W, Wang M, Wang H. Enantioselective Toxicity and Potential Endocrine-Disruptive Effects of the Insecticides Flufiprole and Ethiprole on Danio rerio. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1509-1515. [PMID: 38190123 DOI: 10.1021/acs.jafc.3c07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Phenylpyrazole insecticides are widely used as chiral pesticides. However, the enantioselective toxicity and potential endocrine-disrupting effects of these insecticides on aquatic organisms remain unclear. Herein, the enantioselective toxicity and potential endocrine-disrupting effects of flufiprole and ethiprole were investigated by using zebrafish embryos/larvae as a model. The acute toxicity of R-flufiprole and R-ethiprole toward zebrafish embryos and larvae was 1.8-3.1-fold higher than that of the S-configuration. Additionally, R-flufiprole and R-ethiprole had a greater effect on the expression of genes related to the hypothalamus-pituitary-gonad axis in zebrafish compared with the S-configuration. Nevertheless, both S-flufiprole and S-ethiprole exhibited a greater interference effect on the expression of genes related to the hypothalamus-pituitary-thyroid axis and a greater teratogenic effect on zebrafish than the R-configuration. Thus, this study demonstrates that both flufiprole and ethiprole exhibit enantioselective acute toxicity and developmental toxicity toward zebrafish. Furthermore, those pesticides potentially possess enantioselective endocrine-disrupting effects.
Collapse
Affiliation(s)
- Lianshan Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| | - Xuejun Zhao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| | - Kunming Hu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Weiye Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Guo L, Nie Z, Wen L, Chen B, Tang J, Gao M, Chen J, Liu J. Insights into the effects of natural pyrite-activated sodium percarbonate on tetracycline removal from groundwater: Mechanism, pathways, and column studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165883. [PMID: 37517722 DOI: 10.1016/j.scitotenv.2023.165883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In-situ chemical oxidation based on sodium percarbonate (SPC) has received much attention for remediation of groundwater contaminated with organic pollutants due to the high efficiency, stable reaction, and sustainability of SPC. Currently, metal ions and their composite materials, are mainly employed for the activation of SPC. However, due to its narrow pH range, slow Fe3+/Fe2+ circulation, and generation of refractory sludge, its application in groundwater is limited. In this study, SPC was activated with natural pyrite (FeS2) to remove tetracycline, which was selected as the target pollutant. FeS2 exhibited excellent catalytic activity and stability towards the degradation of tetracycline. The tetracycline degradation efficiency of SPC/FeS2 system reached 70 % within 10 min, and nearly half of the tetracycline was degraded in the first 5 min of the reaction. The optimum SPC dosage for the tetracycline removal was 8 mM, with FeS2 dosage of 0.5 g/L. The tetracycline removal efficiency remained above 60 % after 4 cycles, indicating its good recycling efficiency of the system. SPC/FeS2 system was not significantly affected by the initial pH or the presence of Cl-, SO42-, NO3- while, HCO3-, Ca2+, Mg2+, and humid acid suppressed the reaction. The electron paramagnetic resonance spectroscopy and quenching experiments demonstrated that OH and O2- played a dominant role in tetracycline removal by the system. S22-, as an electron donor, was able to participate in the Fe3+/Fe2+ cycle. In addition, the 13 transformation products were determined by liquid chromatography-mass spectrometry predicted that the degradation pathway of tetracycline consisted of hydroxylation, demethylation, and decarbonylation reactions. Finally, the dynamic simulation experiments of SPC/FeS2 sand column showed that FeS2 effectively activated SPC and significantly reduced the toxicity in groundwater after the packed column treatment. This study reveals that FeS2 can efficiently activate SPC and has good prospects for tetracycline-contaminated groundwater remediation applications.
Collapse
Affiliation(s)
- Liu Guo
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Ziqiu Nie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Lijia Wen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Bohan Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jie Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Man Gao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajing Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jingjing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
5
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
6
|
Dong B, Hu J. Dissipation, residue distribution, and risk assessment of ethiprole and its metabolites in rice under various open field conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6510-6520. [PMID: 37219399 DOI: 10.1002/jsfa.12729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Ethiprole has been registered to control planthoppers in rice fields for many years in Asia. However, its dissipation and residues in rice under natural field conditions and health hazards are largely unclear. In the present study, a modified QuEChERS (i.e. Quick Easy Cheap Effective Rugged Safe) and high-performance liquid chromatography-tandem mass spectrometry method was established to detect ethiprole and its metabolites, ethiprole amide and ethiprole sulfone, in brown rice, rice husks, and rice straw. The field experiments were implemented in 12 representative provinces of China under Good Agricultural Practices aiming to investigate the fate and terminal residues of ethiprole and its metabolites in rice. Finally, the dietary risk of ethiprole was evaluated. RESULTS The average recoveries of these analytes in all matrices were 86.4-99.0% with a repeatability of 0.575-9.38%. The limits of quantification for each compound were 0.01 mg kg-1 . Dissipation of ethiprole followed the single first-order, first + first-order, and first-order multi-compartment kinetic models with a half-life of 2.68-8.99 days in rice husks. The dissipation half-life of ethiprole combining all metabolites was 5.20-16.2 days in rice husks. The terminal residues of ethiprole and its metabolites at preharvest intervals of 21 days were < 0.011, 0.25, and 0.20 mg kg-1 in brown rice, rice husks, and rice straw, respectively. Ethiprole amide was undetectable in all matrices, and the risk quotient of ethiprole was far less than 100%. CONCLUSION Ethiprole rapidly converted to ethiprole sulfone in rice, and ethiprole and ethiprole sulfone mainly remained in rice husks and straws. The dietary risk of ethiprole was acceptable for Chinese consumers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
7
|
Jiang SL, Hu L, Wu M, Li L, Shi JH. Assessment on binding characteristics of ethiprole and a model protein bovine serum albumin (BSA) through various spectroscopic techniques integrated with computer simulation. J Biomol Struct Dyn 2023; 41:7862-7873. [PMID: 36152999 DOI: 10.1080/07391102.2022.2126398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
To investigate the binding characteristics of pesticide ethiprole (ETP) with serum albumin is of great significance for pathological analysis of pesticide poisoning, gene mutation, and clinical detection. In present work, the binding characteristics of ETP with a model protein BSA has been estimated by means of multi-spectroscopic approaches integrated with computer simulation. The outcomes testified that the intrinsic fluorescence of BSA was mainly quenched by ETP in a static quenching mode and the stable ETP-BSA complex with the stoichiometry of 1:1 and the binding constant of 6.81 × 103 M-1 (298 K) was produced. The outcomes revealed that ETP combined preferentially to the subdomain IIA (Site I) of BSA and caused the decline in the content of α-helix of BSA and the enhancement in the hydrophobicity of environment centered on Trp residues. The outcomes of experimental and theoretical studies provide the sufficient evidence about the driving forces for the complexation of ETP with BSA, which included van der Waals forces (vdW), hydrogen bonding (H-bonding) interaction, and hydrophobicity. Simultaneously, the theoretical calculation results also confirmed the existence of the significant changes in the physicochemical natures of ETP including molecular conformation, dipole moment, frontier orbital energy, and the atomic charge distribution, which was a responsible for the complexation with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Meng Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Li Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Liu A, Zhang L, Zhou A, Yang F, Yue Z, Wang J. Metabolomic and physiological changes of acid-tolerant Graesiella sp. MA1 during long-term acid stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97209-97218. [PMID: 37589846 DOI: 10.1007/s11356-023-29295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Algae plays a significant role for the primary production in the oligotrophic ecosystems such as the acid mine pit lakes. Graesiella sp. MA1 was a new acid-tolerant photosynthetic protist isolated from an acid mine pit lake. To understand the acid responses of Graesiella sp. MA1, its physiological changes and metabolomics were studied during long-term acid stress. Photosynthetic pigments, soluble proteins, and antioxidant systems of Graesiella sp. MA1 cells displayed two phases, the adaptation phase and the growth phase. During the adaptation phase, both photosynthetic pigments and soluble proteins were inhibited, while antioxidant activity of SOD, APX, and GSH were promoted to response to the organism's damage. Metabolomics results revealed lipids and organic acids were abundant components in Graesiella sp. MA1 cells. In response to acid stress, the levels of acid-dependent resistant amino acids, including glutamate, aspartate, arginine, proline, lysine, and histidine, accumulated continuously to maintain orderly intracellular metabolic processes. In addition, fatty acids were mainly unsaturated, which could improve the fluidity of the cell membranes under acid stress. Metabolomic and physiological changes showed that Graesiella sp. MA1 had tolerance during long-term acid stress and the potential to be used as a bioremediation strain for the acidic wastewater.
Collapse
Affiliation(s)
- Azuan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Ao Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
9
|
Zhang W, Di S, Yan J. Chiral pesticides levels in peri-urban area near Yangtze River and their correlations with water quality and microbial communities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3817-3831. [PMID: 36586031 DOI: 10.1007/s10653-022-01459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
Pesticides are considered to be the second-largest non-point source pollution in water. Our research assayed the river network of typical agricultural areas in the middle and lower Yangtze River as the study area. Pesticides residues in aquatic environment were determined by QuEChERS, combined with high-performance liquid chromatography tandem mass spectrometry, or gas chromatograph-mass spectrometer. At chiral pesticides' levels, we detected pesticides contents in water, classified and counted the types of pesticides, and analyzed their environmental risk assessment. Furthermore, potential correlations between chiral pesticides concentrations and water quality indicators were assayed. Additionally, we explored their relations with microbial communities at species levels. Enantiomers of Diclofop-methyl, Ethiprole, Difenoconazole and Epoxiconazole were enantioselectively distributed. More interestingly, due to various chiral environment of the sampling site, the enantiomers of Tebuconazole Acetochlor, Glufosinate ammonium and Bifenthrin had completely different distributions at different sites. Based on that, the chiral pesticides Diclofop-methyl, Bifenthrin, Ethiprole, Tebuconazole and Difenoconazole are enantioselective to the risk of aquatic environment. Generally, enantiomeric selectivity had high positive correlations with total nitrogen and phosphorus. Then we found that chiral fate behavior of Tebuconazole and Paichongding in water might be affected by prokaryotes. In addition, the chiral behavior of Diclofop-methyl, Propiconazole, Difenoconazole, and Tebuconazole isomers in water might be negatively affected by eukaryotes. That research helped us to comprehensively understand the impact of non-point source pollution of chiral pesticides in aquatic environment and provided basic data support for developing biological and water quality indicators for monitoring pollution in aquatic environment.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
10
|
Li M, Wang Y, Xu J, Zhang X, Wei Z. Deciphering the toxicity mechanism of haloquinolines on Chlorella pyrenoidosa using QSAR and metabolomics approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114943. [PMID: 37099961 DOI: 10.1016/j.ecoenv.2023.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
The hazardous potential of haloquinolines (HQLs) is becoming an issue of great concern due to its wide and long-term usage in many personal care products. We examined the growth inhibition, structure-activity relationship, and toxicity mechanism of 33 HQLs on Chlorella pyrenoidosa using the 72-h algal growth inhibition assay, three-dimensional quantitative structure-activity relationship (3D-QSAR), and metabolomics. We found that the IC50 (half maximal inhibitory concentration) values for 33 compounds ranged from 4.52 to > 150 mg·L-1, most tested compounds were toxic (1 mg·L-1 < IC50 < 10 mg·L-1) or harmful (10 mg·L-1 < IC50 < 100 mg·L-1) for the aquatic ecosystem. Hydrophobic properties of HQLs dominate their toxicity. Halogen atoms with large volume appear at the 2, 3, 4, 5, 6, and 7-positions of the quinoline ring to significantly increase the toxicity. In algal cells, HQLs can block diverse carbohydrates, lipids, and amino acid metabolism pathways, thereby resulting in energy usage, osmotic pressure regulation, membrane integrity, oxidative stress disorder, thus fatally damaging algal cells. Therefore, our results provide insight into the toxicity mechanism and ecological risk of HQLs.
Collapse
Affiliation(s)
- Min Li
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China; Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, Ningxia Province, PR China.
| | - Yayao Wang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China.
| | - Jianren Xu
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China; Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, Ningxia Province, PR China.
| | - Xiu Zhang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China; Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, Ningxia Province, PR China.
| | - Zhaojun Wei
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China.
| |
Collapse
|
11
|
Ji C, Song Z, Tian Z, Feng Z, Fan L, Shou C, Zhao M. Enantioselectivity in the toxicological effects of chiral pesticides: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159656. [PMID: 36280076 DOI: 10.1016/j.scitotenv.2022.159656] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
As a special category of pesticides, chiral pesticides have increased the difficulty in investigating pesticide toxicity. Based on their usage, chiral pesticides can be divided into insecticides, herbicides, and fungicides. Over the past decades, great efforts have been made on elucidating their toxicological effects. However, no literature has reviewed the enantioselective toxicity of chiral pesticides since 2014. In recent years, more chiral pesticides have been registered for application. As such, huge research progresses have been achieved in enantioselective toxicity of chiral pesticides. Generally, more researches have remedied the knowledge gap in toxicological effects of old and new chiral pesticides. And the toxicological endpoints being evaluated have become more specific rather than centering on basic toxicity and target organisms. Besides, the underlying mechanisms accounting for the enantioselectivity in toxicological effects of chiral pesticides have been discussed as well. All in all, this review provides the critical knowledge for risk assessments, and help to drive the green-technology of single- or enriched-enantiomer pesticides and formulation of relevant laws and regulations.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zixuan Feng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lele Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenfei Shou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Eco-toxicological effect of a commercial dye Rhodamine B on freshwater microalgae Chlorella vulgaris. Arch Microbiol 2022; 204:658. [PMID: 36183287 DOI: 10.1007/s00203-022-03254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
In this study, the acute toxicity effects of a fluorescent xanthene dye, Rhodamine B (RhB), widely used in textile, paper, and leather industries was investigated on a freshwater microalgae Chlorella vulgaris. The acute toxicity of RhB on C. vulgaris was determined by examining the growth, cell morphology, pigment production, protein content, and the activities of oxidative stress enzymes. Based on the results of the toxicity study of 24-96 h, the median inhibitory concentration (IC50) values ranged from 69.94 to 31.29 mg L-1. The growth of C. vulgaris was conspicuously inhibited by RhB exposure, and the cell surfaces appeared to be seriously shrunk in SEM analysis. The growth of C. vulgaris was hindered after exposure to graded concentrations (10-50 mg L-1) of RhB. A significant reduction in growth rate, pigment synthesis (chlorophyll a, chlorophyll b, and carotenoid), and protein content was recorded in a dose-dependent manner. After 96 h exposure of C. vulgaris to 50 mg L-1 RhB, chlorophyll a, chlorophyll b, carotenoids, and protein contents were reduced by 71.59, 74.90, 65.84, and 74.20%, respectively. The activities of the antioxidant enzymes peroxidase (POD), and catalase (CAT) also increased markedly in the presence of RhB. A notable effect was observed on oxidative enzymes catalase and peroxidase, indicating that oxidative stress may be the primary factor in the inhibition of growth and pigment synthesis. Consequently, the experimental acute toxicity data were compared to the QSAR prediction made by the ECOSAR programme. Results showed that the experimental acute toxicity values were 67.74-fold lower than the ECOSAR predicted values. The study provides convincing evidence for the metabolic disruption in the ubiquitous microalgae C. vulgaris due to the RhB dye toxicity.
Collapse
|
13
|
Zhou L, Wu Q, Gao Y, Shi H, Wang M. Enantioselective aquatic toxicity and degradation in soil of the chiral fungicide oxathiapiprolin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155632. [PMID: 35523333 DOI: 10.1016/j.scitotenv.2022.155632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Oxathiapiprolin is an efficient and chiral fungicide for peronosporomycetes. The enantioselective environmental behavior and ecotoxicity of oxathiapiprolin are still unclear. The enantioselectivity of oxathiapiprolin enantiomers was explored, including their acute toxicity toward aquatic plants (Auxenochlorella pyrenoidosa and Soirodela polyrhiza) along with their influence on photosynthetic pigment production, the acute toxicity and morphological differences for the embryos, larvae and adult stages of zebrafish (Danio rerio), and the degradation in four typical soils (aerobic, anaerobic and sterilized conditions). The enantioselective toxicity of oxathiapiprolin showed that the toxicity of R-oxathiapiprolin was 1.8-2.1 times higher than that of S-oxathiapiprolin toward the two aquatic plants. In particular, the content of photosynthetic pigments decreased significantly stronger after exposure to R-oxathiapiprolin compared with S-oxathiapiprolin. The LC50 values of R-oxathiapiprolin in zebrafish in the different life stages were 1.6-2.1 times higher than those of S-oxathiapiprolin. The zebrafish embryos were most sensitive to the oxathiapiprolin enantiomers. After exposure to R-oxathiapiprolin, zebrafish embryos showed noticeable hatching delays, inhibition or deformation. R-oxathiapiprolin degraded preferentially in all four soils, with an enantiomeric fraction (EF) ranging from 0.28 to 0.42 under aerobic conditions. Enantioselective degradation was not found under anaerobic and sterilized conditions. The enantioselectivity of new chiral pesticides should be fully considered in risk assessments to provide a basis for the development and preparation of pure optical enantiomers.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
14
|
Meng X, Wang F, Li Y, Deng P, Hu D, Zhang Y. Comparing toxicity and biodegradation of racemic glufosinate and L-glufosinate in green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153791. [PMID: 35150682 DOI: 10.1016/j.scitotenv.2022.153791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Glufosinate-ammonium, a widely used chiral herbicide, has become the focus of attention because of its toxicity toward non-target organisms and its degradation behavior in the environment. With the introduction of L-glufosinate-ammonium products, the toxicity and environmental behavior of rac-glufosinate-ammonium and L-glufosinate-ammonium have become the subject of increasing interest. The overall goal of this study was to investigate the differences in toxicity and biodegradation of rac-glufosinate-ammonium and L-glufosinate-ammonium in an aquatic organism, Scenedesmus obliquus. The toxicity of rac-glufosinate-ammonium and L-glufosinate-ammonium to S. obliquus was compared by measuring EC50, malondialdehyde (MDA) content, protein content and antioxidant enzyme activity. The 96-h EC50 values of rac-glufosinate-ammonium and L-glufosinate-ammonium were 57.22 μg/mL and 25.55 μg/mL, respectively, which indicated that L-glufosinate-ammonium was more toxic to S. obliquus than rac-glufosinate-ammonium. Based on the MDA content, protein content, and antioxidant enzyme (SOD and CAT) activity, we found that L-glufosinate-ammonium could cause more serious oxidative damage than rac-glufosinate-ammonium. The residual amount of glufosinate-ammonium and its metabolites in the culture medium and S. obliquus were determined by HPLC-HRMS. Comparison of glufosinate-ammonium concentrations in algae-free and algae-containing media, showed that glufosinate-ammonium degradation in the S. obliquus system was significantly increased, and the degradation rate of L-glufosinate-ammonium was faster than that of D-glufosinate-ammonium. No enantiomerization was observed for pure L-glufosinate-ammonium treatment. N-acetyl-glufosinate was identified as the main metabolite of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xiurou Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Fei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunfang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Pengyu Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
15
|
Huang J, Bao M, Li J, Chen H, Xu D, Chen Z, Wen Y. Enantioselective Response of Wheat Seedlings to Imazethapyr: From the Perspective of Fe and the Secondary Metabolite DIMBOA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5516-5525. [PMID: 35476430 DOI: 10.1021/acs.jafc.1c07727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The responses of trace elements and secondary metabolites to stress can reflect plant adaptation to the environment. If and how the imperative trace element Fe and the defensive secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) mediate the toxicity of chiral herbicides to nontarget plants remains inconclusive. We found that the herbicidal-active imazethapyr enantiomer [(R)-IM] stimulated heme oxygenase-1 activity, triggered the release of the catalytic product Fe2+, increased reactive oxygen species production, decreased the DIMBOA content, and increased the DIMBOA-Fe content. XAFS analyses and in vitro Fenton assays demonstrated that DIMBOA could relieve phytotoxicity by chelating excessive Fe3+ to restore Fe homeostasis. The free radical scavenging ability of the chelate of DIMBOA and Fe was also involved. This work refines the dual role of DIMBOA and Fe in mediating the enantioselective phytotoxicity of chiral herbicides, which provides a new direction for improving the herbicide resistance of crops.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
He Z, Li C, Xia W, Wang Z, Li R, Zhang Y, Wang M. Comprehensive Enantioselectivity Evaluation of Insecticidal Activity and Mammalian Toxicity of Fenobucarb. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5330-5338. [PMID: 35451821 DOI: 10.1021/acs.jafc.2c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To comprehensively evaluate the efficiency and risk of the chiral pesticide fenobucarb, the bioactivity, toxicity, and environmental behavior of fenobucarb (FNC) enantiomers were investigated. The results showed that R-FNC possesses 1.8-2.7 times more bioactivity than S-FNC but 1.3-3.0 times lower toxicity than S-FNC against four nontarget organisms: Chlorella pyrenoidosa, HepG2, and Danio rerio and its embryos. The corresponding enzyme inhibitory activity showed consistent results; the acetylcholinesterase inhibitory activity of target organisms was ordered as R-FNC > rac-FNC > S-FNC, while the reduction in catalase activity after exposure to R-FNC was 2.5 times that after exposure to S-FNC in zebrafish. The enantioselective bioactivity mechanism of FNC enantiomers was further explored in silico. No significant enantioselective degradation was found in soils or rat liver microsomes. In sum, R-FNC possesses higher insecticidal activity and lower toxicity. The development of R-FNC as a commercial agrochemical is beneficial for reducing pesticide inputs.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chenglong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Weitong Xia
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
17
|
Ou Y, Yan Z, Shi G, Yu Z, Cai Y, Ma R. Enantioselective toxicity, degradation and transformation of the chiral insecticide fipronil in two algae culture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113424. [PMID: 35313125 DOI: 10.1016/j.ecoenv.2022.113424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of pesticides and their metabolites in the environment can alter the ecological relationships between aquatic food chains. Fipronil is a broad-spectrum insecticide which release in the environment may harm the non-target organisms. However, the toxicity and biotransformation of its two enantiomers are far from fully understood. The present study aimed to investigate the aquatic toxicity and environmental behavior of fipronil at enantiomeric level using two freshwater algae, Scenedesmus quaclricauda (S. quaclricauda), and Chlorella vulgaris (C. vulgaris) through an integrative approach the transformation process of the individual enantiomer isolated and in racemic form. The 72 h-EC50 values of rac-, R-, S-fipronil varied from 3.27 to 7.24 mg L-1 with R-fipronil posing a more significant effect on algal growth inhibition. Chlorophyll a was more susceptible to fipronil exposure than chlorophyll b and carotenoids. Enantioselective alterations on physiological and biochemical parameters (chlorophyll a, chlorophyll b, carotenoids, and the activities of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD)) were also observed. The half-lives (T1/2) of R-fipronil and S-fipronil in algae culture were 3.4-3.5 d and 4.0-4.9 d, respectively. By the end of the 17-d exposure, the enantiomer fractions (EFs) increased to 0.59, indicating a preferential depuration of R-fipronil. The metabolites monitoring showed the fipronil sulfide was the main metabolite followed by fipronil sulfone. The results revealed that the enantiomers of fipronil pose enantiospecific behaviors induced by these two algae, with the R-enantiomer more toxic to algal growth and favorable in degradation. These analyses are beneficial for understanding the ecological effect of chiral pesticide in aquatic environment, and the enantiomeric differences of the toxicity, degradation and the formation of toxic metabolites could be helpful for the eco-environmental risk evaluation.
Collapse
Affiliation(s)
- Yingjuan Ou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Zhiyong Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China.
| | - Guofeng Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yixiang Cai
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
18
|
Shen M, Gong X, Huang S, Shen Y, Ye YX, Xu J, Ouyang G. Noncovalently Tagged Gas Phase Complex Ions for Screening Unknown Contaminant Metabolites in Plants. Anal Chem 2021; 93:14929-14933. [PMID: 34730331 DOI: 10.1021/acs.analchem.1c03145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Screening the metabolites of emerging organic contaminants (EOCs) from complicated biological matrices is an important but challenging task. Although stable isotope labeling (SIL) is frequently used to facilitate the identification of contaminant metabolites from redundant interfering components, the isotopically labeled reagents are expensive and difficult to synthesize, which greatly constrains the application of the SIL method. Herein, a new online noncovalent tagging method was developed for screening the metabolites of 1H-benzotriazol (BT) based on the characteristic structural moieties reserved in the metabolites. By selecting β-cyclodextrin (β-CD) as a macrocyclic tagging reagent, metabolites with the reserved moiety were expected to exhibit a characteristic shift of the mass-to-charge ratio (Δm/z = 1134.3698) after being noncovalently tagged by β-CD. Based on the characteristic mass shift, the suspected features were reduced by 1 order of magnitude, as numerous interfering species that could not be effectively tagged by β-CD were excluded. From these suspected features, two metabolites of BT that have not been reported before were successfully screened out. The significant characteristic mass shift caused by the noncovalent tagging method is easier to identify with more confidence than the previously reported SIL method. Besides, noncovalent tagging reagents can be much more accessible and less expensive than isotopically labeled reagents. Hence, this online noncovalent tagging method can be an intriguing alternative to the conventional SIL method.
Collapse
Affiliation(s)
- Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuyao Huang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.,College of Chemistry, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.,Guangdong Provincial Key Laboratory of Emergency Testing for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
19
|
Gao J, Wang F, Cui J, Zhang Q, Wang P, Liu D, Zhou Z. Assessment of toxicity and environmental behavior of chiral ethiprole and its metabolites using zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125492. [PMID: 33647613 DOI: 10.1016/j.jhazmat.2021.125492] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Ethiprole is effective against a wide range of insects and has been used throughout the world. In this work, the toxicity, bioaccumulation and elimination of ethiprole and its main metabolites (ethiprole sulfone (M1), ethiprole sulfide (M2), ethiprole amide (M3), ethiprole sulfone amide (M4) and desethylsulfinyl ethiprole (M5)) in zebrafish Danio rerio were investigated at enantiomeric level. Rac-ethiprole showed high toxicity (96 h LC50 = 708 μg L-1) and M2 was six times more toxic than ethiprole (111 μg L-1). Enantioselective toxicity was observed, with the S-ethiprole (924 μg L-1) being more toxic than R-ethiprole (2195 μg·L-1). Rac-ethiprole and M2 could induce oxidative stress in the liver of adult zebrafish and developmental toxicity in zebrafish embryos. Zebrafish were exposed to 100 μg L-1 rac-/R-/S-ethiprole and the bioaccumulation was monitored during a 21 d period followed by a 7 d metabolism. The bioconcentration factor (BCF) of rac-ethiprole was 17, and the half-lives of rac-ethiprole and metabolites varied between 0.44 and 2.99 d. R-ethiprole was preferentially accumulated and metabolized in zebrafish. Besides, the metabolic pathways of R- and S-ethiprole were found to be different. This study indicated assessment of metabolites and enantioselectivity should be taken into consideration in evaluating environmental risks of ethiprole.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China
| | - Fang Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China
| | - Qiang Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
20
|
Zhang Z, Wang Z, Li QX, Hua R, Wu X. Enantioselective metabolism of phenylpyrazole insecticides by rat liver microsomal CYP3A1, CYP2E1 and CYP2D2. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104861. [PMID: 34119225 DOI: 10.1016/j.pestbp.2021.104861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/11/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11-0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49-0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5-2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (-7.56 kcal mol-1) and R-ethiprole (-6.45 kcal mol-1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Zhiqiang Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
21
|
Kaziem AE, He Z, Li L, Wen Y, Wang Z, Gao Y, Wang M. Changes in soil and rat gut microbial diversity after long-term exposure to the chiral fungicide epoxiconazole. CHEMOSPHERE 2021; 272:129618. [PMID: 33465613 DOI: 10.1016/j.chemosphere.2021.129618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In previous articles, it was found that epoxiconazole enantiomers can persist for a long time in the environment, causing severe environmental damage. Herein, we investigated alterations in the soil microbial community and rat gut microbiota after six weeks of treatment with rac-epoxiconazole or one of its enantiomers. The selected concentrations were 1, 2, and 6 times greater than the maximum residue limits (MRLs). The rat gut microbiota relative abundance in the feces significantly changed following exposure to rac-epoxiconazole or one of its enantiomers. At the phylum level, in the R,S-, S,R-epoxiconazole, and rac-treated groups, Firmicutes presented the greatest decrease in abundance; however, Spirochaetes presented the greatest increase in abundance in the rac- and S,R-epoxiconazole-treated groups. In response to R,S-epoxiconazole, Epsilonbacteraeota presented the greatest increase in abundance. In soil samples treated with epoxiconazole, the relative abundance of the soil bacterial community also changed. Proteobacteria presented the greatest decrease in abundance in the S,R- and rac-treated samples. However, Firmicutes presented the greatest increase in abundance. In the R,S-treated soil samples, the situation was the opposite. In general, prolonged exposure to epoxiconazole at high concentrations could initiate noticeable alterations in rat gut microbiota and soil microbial diversity. R,S-epoxiconazole had improved bioactivity and less toxic effects at relatively low concentrations. Therefore, we recommend using R,S-epoxiconazole at a relatively low concentration, which is better for environmental safety.
Collapse
Affiliation(s)
- Amir E Kaziem
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China; Department of Environmental Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo, 11566, Egypt
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Yong Wen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China.
| |
Collapse
|
22
|
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141873. [PMID: 32911142 DOI: 10.1016/j.scitotenv.2020.141873] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals pollution of soil and widespread application of neonicotinoid insecticides have caused environmental problems worldwide. To evaluate ecological toxicity resulting from the combined pollution of neonicotinoids and heavy metals, typical representatives of neonicotinoid insecticides (imidacloprid, thiamethoxam, dinotefuran) and heavy metals (cadmium, copper, zinc) were selected as soil pollutants; earthworms were used as test organisms. Analysis of the main and interaction effects of a combined pollution process were performed using a uniform design method. Results showed that the reactive oxygen species (ROS) content of earthworms in most treatment groups was higher during exposure than that of the control group. The malondialdehyde (MDA) and ROS content of earthworms demonstrated relatively low values on the 21st day and increased by the 28th day. The interaction between dinotefuran and Cd had significant antagonistic effects on ROS and MDA. The combined pollution adversely affected both the growth and genes of earthworms and also caused damage to the epidermis, midgut, and DNA. The interaction between imidacloprid and Cd was synergistic to ROS, weight inhibition rate, and Olive tail moment (OTM), but was antagonistic to MDA. Of all the single and combined exposures, Zn as a single chemical affected ROS and DNA damage the most, and MDA was significantly enhanced by imidacloprid. Composite pollutants may create different primary effects and interactions causing potential harm to soil organisms.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuyan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
23
|
Zhang X, Chen H, Wang H, Wang Q. Time-course effects of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on Chlorella pyrenoidosa: Growth inhibition and adaptability mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123784. [PMID: 33254794 DOI: 10.1016/j.jhazmat.2020.123784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a widely used chlorinated organophosphorus flame retardant, is an increasingly widespread contaminant of aquatic environment. In this study, time-dependent effect of TDCPP on the freshwater green-algae Chlorella pyrenoidosa was investigated and its underlying mechanisms were explored. We show that TDCPP lower than 10 ppm caused a reversible inhibition of algal growth, with complete inhibition occurring at 15 ppm. This inhibition was not caused by damage from reactive oxygen species, but rather resulted from the impairment of photosynthetic function, with PSII reaction center as the primary target, as indicated by Chl a fluorescence induction, QA- reoxidation, S-state distribution and immunoblot analysis. The reversal of damage caused by TDCPP concentrations under 10 ppm might be attributable to the repair of photosynthetic function by de novo protein biosynthesis in the chloroplast, with the most likely explanation being the replacement of the damaged PSII D1 protein. The results provide novel insights into mechanisms of TDCPP toxicity toward freshwater microalgae and better understanding of ecological consequences of TDCPP in the environment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Haiying Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China; Innovation Academy for Seed Design, CAS, China.
| |
Collapse
|
24
|
Wang W, Gong W, Zhou S, Han J, Qi D, Qu H. β-cyclodextrin improve the tolerant of freshwater algal Spiny Scenedesmus to chiral drugs venlafaxine and its metabolite. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123076. [PMID: 32540709 DOI: 10.1016/j.jhazmat.2020.123076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study based on the freshwater algae Spiny scenedesmus (S. scenedesmus) with tolerance to venlafaxine aiming to investigate algae removal abilities. Here presented for the first time to evaluate the effect of β-cyclodextrin (β-CD) on reduce toxicity and enhance removal ability of venlafaxine and O-desmethylvenlafaxine to S. scenedesmus. Based on dose-response results, the toxicity of R-venlafaxine (EC50 = 6.81 mg·L -1) and R-O-desmethylvenlafaxine (EC50 = 3.36 mg·L -1) to algae were more than two times than those in the presence of β-CD treatment (10.64 mg L -1 for R-venlafaxine and 11.87 mg L -1 for R-O-desmethylvenlafaxine). The significant differences were observed between S-venlafaxine (11.07 mg L -1) and S-O-desmethylvenlafaxine (10.24 mg L -1), which were more toxic than R-forms. The half-lives of R- and S-venlafaxine were 0.8 d and 0.5 d in the presence of β-CD, which were obvious shorter than those in alone treatments. In addition, our experiments not only demonstrated that β-CD performed particularly well for removal of venlafaxine and O-desmethylvenlafaxine, it significantly reduces the toxicity of venlafaxine to alga. These results highlight advantages of β-CD relevant to chiral drugs removal and protection of aquatic organisms, which may have a better application for environmental and ecological safety in future.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Wenwen Gong
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Rm LM 321, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Han Qu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China; Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85712, United States.
| |
Collapse
|
25
|
Wang F, Wang B, Qu H, Zhao W, Duan L, Zhang Y, Zhou Y, Yu G. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114593. [PMID: 32315820 DOI: 10.1016/j.envpol.2020.114593] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Plastic pollution has become a pressing issue due to its persistence in the environment. Smaller plastics are more easily ingested, potentially exerting greater influences on organisms. In this study, the effects of polystyrene nanoplastics (NP) on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen (IBU) in algae Chlorella pyrenoidosa were explored. The influences on the growth rate, chlorophyll a, total antioxidant capacity (T-AOC), reactive oxygen species (ROS) and lipid peroxidation (MDA) were evaluated after 96 h of exposure to a combination of polystryene NP (1 mg L-1) and IBU (5-100 mg L-1). The results indicated that the inhibitory effect of IBU on C. pyrenoidosa growth was alleviated in the presence of NP. For instance, the 96 h-IC50 value for rac-IBU in the treatment lacking NP was 45.7 mg L-1, and the corresponding value in the treatment containing NP was 63.9 mg L-1. The co-exposure of NP led to a significant enhancement of T-AOC and slight reduction of ROS and MDA compared with the individual exposure (IBU) group, suggesting a decreased oxidative stress. In addition, treatment with NP led to a decreased bioaccumulation and accelerated biodegradation of IBU in C. pyrenoidosa and enhanced removal in the medium. The enantioselective toxicity, bioaccumulation and biodegradation of IBU were observed both in the absence and presence of NP. S-IBU exhibited a greater toxicity, and R-IBU was preferentially accumulated and degraded in C. pyrenoidosa. No interconversion of the two enantiomers occurred regardless of the presence of NP. This consequence implied that the influence of coexistent NP should be considered in the environmental risk assessment of pharmaceuticals and personal care products in aquatic environments.
Collapse
Affiliation(s)
- Fang Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Building 16, 101 Business Park, No, 158 Jinfeng Road, New District, Suzhou, 215163, China.
| | - Han Qu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China; Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85712, United States
| | - Wenxing Zhao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China
| | - Lei Duan
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China
| | - Yizhe Zhang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China
| | - Yitong Zhou
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Building 16, 101 Business Park, No, 158 Jinfeng Road, New District, Suzhou, 215163, China
| |
Collapse
|
26
|
Chen B, Dong J, Li B, Xue C, Tetteh PA, Li D, Gao K, Deng X. Using a freshwater green alga Chlorella pyrenoidosa to evaluate the biotoxicity of ionic liquids with different cations and anions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110604. [PMID: 32339924 DOI: 10.1016/j.ecoenv.2020.110604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 05/28/2023]
Abstract
With the extensive use of ionic liquids (ILs) in various industrial fields, their potential toxicity to aquatic ecosystem has attracted considerable attention. In this work, biotoxicity of ILs with different cations and anions was evaluated by using a freshwater green alga Chlorella pyrenoidosa. Results showed that 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-octyl-3-methylimidazolium chloride ([C8mim]Cl), 1-octyl-3-methylimidazolium nitrate ([C8mim]NO3), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]BF4), and 1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) had a significant inhibition on the algal growth with EC50 values of 23.48, 4.72, 3.80, 4.44, and 0.10 mg L-1 at the 72 h of exposure, respectively. These data suggested that the toxicity of ILs increased with the increase of side alkyl chain length, while anions had little influences on their toxicity to this alga. Moreover, changes in chlorophyll a content and chlorophyll fluorescence parameters (Fv/Fm and ΦPSII) indicated that the five ILs could damage the photosynthetic system of this alga resulting in the decrease of photosynthetic efficiency. The increased soluble protein content and antioxidase activity could be considered as an active response mechanism of this alga against the exposure of ILs. Content of malondialdehyde (MDA) in this alga increased significantly when it was exposed to ILs, suggesting that reactive oxygen species (ROS) were accumulated in the algal cells, which would cause injury of the algal biofilm and chloroplast. Therefore, results obtained in this work would help to explain the possible underlying toxic mechanisms of ILs to C. pyrenoidosa, and provide a significant theoretical support for assessing the toxicity of ILs to aquatic organisms.
Collapse
Affiliation(s)
- Biao Chen
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Jingwei Dong
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Bin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Chunye Xue
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Pius Abraham Tetteh
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Da Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Kun Gao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Xiangyuan Deng
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China.
| |
Collapse
|
27
|
Xu Y, Xu X, Wu B, Gan C, Lin X, Wang J, Ke F. Transition‐Metal‐Free, Visible‐Light‐Mediated
N
‐acylation: An Efficient Route to Amides in Water. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiwen Xu
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Xiuzhi Xu
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Bin Wu
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Chenling Gan
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Xiaoyan Lin
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Jin Wang
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| | - Fang Ke
- Institute of Materia Medica, School of PharmacyFujian Provincial Key Laboratory of Natural Medicine PharmacologyFujian Medical University Fuzhou 350122 China
| |
Collapse
|
28
|
Gao J, Wang F, Jiang W, Han J, Wang P, Liu D, Zhou Z. Biodegradation of Chiral Flufiprole in Chlorella pyrenoidosa: Kinetics, Transformation Products, and Toxicity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1966-1973. [PMID: 31986037 DOI: 10.1021/acs.jafc.9b05860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pesticide pollution of surface water represents a considerable risk for algae and thus affects the structure and stability of aquatic ecosystems. To investigate the risk of flufiprole to phytoplankton, the digestion and uptake of flufiprole as well as the toxic effects of flufiprole enantiomers and the six metabolites to Chlorella pyrenoidosa were investigated. Flufiprole enantiomers were mainly metabolized to flufiprole amide and detrifluoromethylsulfinyl flufiprole in culture medium, while various metabolites were formed in algae, notably the amide derivative and fipronil. Chlorella pyrenoidosa showed a strong absorption capacity for the flufiprole series. The EC50 values (96 h) indicated that fipronil was the most toxic compound, approximately 5 times as toxic as rac-flufiprole. R-flufiprole was more toxic than S-flufiprole. The contents of chlorophylls, malondialdehyde (MDA), reactive oxygen species (ROS), and total antioxidant capacity (T-AOC) were significantly altered by the chemicals in most cases, especially fipronil. Our results supported the potential detrimental effect of the metabolites of flufiprole on algae.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , P.R. China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Jiajun Han
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto M5S 3H6 , Ontario Canada
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P.R. China
| |
Collapse
|
29
|
Gao J, Wang F, Jiang W, Han J, Liu D, Zhou Z, Wang P. Tissue Distribution, Accumulation, and Metabolism of Chiral Flufiprole in Loach ( Misgurnus anguillicaudatus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14019-14026. [PMID: 31725274 DOI: 10.1021/acs.jafc.9b05083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flufiprole is an insecticide used in the rice field and may pose a potential threat to aquatic organisms including loach. To investigate the transformation products of flufiprole in loach, the accumulation, elimination, and tissue distribution in vivo as well as the metabolism in vitro at the enantiomeric level were studied. Flufiprole enantiomers rapidly accumulated and were metabolized to flufiprole sulfone, fipronil, and flufiprole amide in the tissues. Enantiomeric fractions showed the preferential accumulation and degradation of S-flufiprole. The residue of the chiral metabolite flufiprole amide was also enantioselective. The individual enantiomer treatment indicated that S-flufiprole was preferentially metabolized to flufiprole sulfone and R-flufiprole to fipronil. The metabolites were more persistent than flufiprole with longer half-lives. The metabolism in liver microsomes also reached consistent conclusions. The dietary risk assessment indicated that flufiprole would not cause unacceptable threats to human health. However, the metabolites of flufiprole should be considered in the risk evaluation.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , P. R. China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Jiajun Han
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto M5S 3H6 , Ontario , Canada
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| |
Collapse
|
30
|
Li M, Yang Y, Xie J, Xu G, Yu Y. In-vivo and in-vitro tests to assess toxic mechanisms of nano ZnO to earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:71-76. [PMID: 31203009 DOI: 10.1016/j.scitotenv.2019.05.476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Increasing applications of engineered nanomaterials lead to the release of nanoparticles into various environmental media, especially soil. However, the environmental behavior of nano ZnO in soil and the toxic mechanism to terrestrial invertebrates were not fully understood. In this study, the concentrations of nano ZnO in earthworms (Eisenia fetida) were measured to assess its bioaccumulation. The ratio of nano ZnO in earthworms to soil in 250 mg/kg treatment group was lower than that in 10 mg/kg treatment group as the earthworms would not take up too much nano ZnO to protect themselves from the damage. Combination of in-vivo and in-vitro tests was adapted to investigate the toxic mechanism of nano ZnO to earthworms. In in-vivo test, biomarkers including ROS, SOD, and MDA suggested that the toxic effects of nano ZnO to earthworms were caused by the oxidative stress. To further elucidate its toxic mechanism, in-vitro toxicity test was carried out by employing earthworm coelomocytes. The biomarkers, intracellular ROS, extracellular LDH, and cell viability showed concentration-dependent manner with nano ZnO in the culture media, demonstrating that in-vitro toxicity test could be utilized to reveal the toxic mechanism of nano ZnO to earthworms or other organisms.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Department of Architectural Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Jiawei Xie
- School of Food and Environmental Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
31
|
Meng Z, Liu L, Jia M, Li R, Yan S, Tian S, Sun W, Zhou Z, Zhu W. Impacts of Penconazole and Its Enantiomers Exposure on Gut Microbiota and Metabolic Profiles in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8303-8311. [PMID: 31298535 DOI: 10.1021/acs.jafc.9b02856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exposure to chiral pesticides poses many potential health risks. In this study, we examined the impacts of exposure to penconazole and its enantiomers on gut microbiota and metabolic profiles in mice. The relative abundance of microbiota in cecal content significantly changed following exposure to penconazole and its enantiomers. At the genus level, the relative abundances of seven gut microflora were altered following exposure to (-)-penconazole. Both (±)-penconazole and (+)-penconazole caused significant changes in the relative abundances of five gut microflora. In addition, targeted serum metabolomics analysis showed disturbed metabolic profiles following exposure. Respectively, (±)-penconazole, (+)-penconazole, and (-)-penconazole exposure significantly altered the relative levels of 29, 23, and 36 metabolites. In general, exposure to penconazole and its enantiomers caused disorders in gut microbiota and metabolic profiles of mice. The potential health risks of penconazole and its enantiomers now require further evaluation.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Li Liu
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225127 , China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Wei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| |
Collapse
|