1
|
Bertram J, Moiron M, Bichet C, Kürten N, Schupp PJ, Bouwhuis S. Mercury concentrations in blood and back feathers are repeatable, heritable and correlated in a long-lived seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176939. [PMID: 39414038 DOI: 10.1016/j.scitotenv.2024.176939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Mercury pollution is increasing both in the environment and in various organisms, especially top-predators. If variation in individual mercury concentrations is underpinned by genetic among-individual differences in traits related to mercury uptake, storage or excretion, and results in variation in fitness, populations may have the potential to evolve in response to this development. Few studies, however, have been able to collect sufficient information to investigate the genetic basis of pollution levels. We ran Bayesian quantitative genetic analyses, combining pedigree information obtained from a marine top-predator, the common tern (Sterna hirundo), with total mercury concentrations (THg) measured in 1364 blood and 1560 back feather samples obtained from >600 individual birds across seven years. Blood and back feather THg concentrations differed in repeatability (19 vs. 64 %, respectively), but showed similar levels of heritability (c. 9 %) and evolvability (c. 2 %). Blood and back feather THg concentrations were positively correlated at the phenotypic, but not genetic, level. Although further work is needed to elucidate the uptake, storage or excretion pathways underlying these patterns, our study provides pioneering insights into the architecture of THg concentrations, and suggests that adaptation to environmental pollution may to some extent be possible.
Collapse
Affiliation(s)
- Justine Bertram
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Maria Moiron
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Department of Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Coraline Bichet
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Nathalie Kürten
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Peter J Schupp
- Carl von Ossietzky Universität Oldenburg, Department for Chemistry and Biology of the Marine Environment, Terramare, Wilhelmshaven, Niedersachsen DE 26382, Germany; Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
| | - Sandra Bouwhuis
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
2
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of sublethal methylmercury and food stress on songbird energetic performance: metabolic rates, molt and feather quality. J Exp Biol 2024; 227:jeb246239. [PMID: 38856174 PMCID: PMC11418191 DOI: 10.1242/jeb.246239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.
Collapse
Affiliation(s)
- Claire L. J. Bottini
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Rebecca E. Whiley
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Brian A. Branfireun
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Scott A. MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
- The University of Western Ontario, Department of Psychology, 1151 Richmond St., London, ON, N6A 5C2, Canada
| |
Collapse
|
3
|
Burger J, Feigin S, Ng K, Jeitner C, Tsipoura N, Niles L, Gochfeld M. Some metals and metalloids in the blood of three species of shorebirds increase while foraging during two-week migratory stopover in Delaware Bay, New Jersey. ENVIRONMENTAL RESEARCH 2023; 238:117194. [PMID: 37748669 PMCID: PMC10841762 DOI: 10.1016/j.envres.2023.117194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/27/2023]
Abstract
Most migratory shorebird species are declining, some are endangered, and some may be vulnerable to contaminants on long distance travel between wintering grounds and high latitude breeding grounds. We examined whether shorebirds accumulated trace elements at the Delaware Bay (New Jersey) stopover by testing the null hypothesis that there was no difference in the levels of arsenic, cadmium, chromium, lead, mercury, and selenium in blood of three species of shorebirds collected early in their stopover compared to levels in blood collected about two weeks later near the end of the stopover, before departing for breeding grounds. There were significantly higher levels of all metals and metalloids in the blood of ruddy turnstone (Arenaria interpres) later in May than earlier. There were seasonal increases in blood levels of arsenic and selenium for all three species. Chromium and lead levels also increased in red knots (Calidris canutus). These increases occurred although the birds were only present for about two weeks. Levels of arsenic, mercury, and lead in knots and selenium in sanderlings (Calidrris alba), exceeded reported effects levels. These results have potential implications for studying the refueling physiology, energetics, and feeding behavior of migratory shorebirds. However, they also suggest cause for concern because the increased contaminant loads occur in a short period, and the high metal level bolus received all in a few days may result in adverse effects.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA; Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey, 08854, USA; Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ, 08854, USA; Environmental Science Graduate Program, Rutgers University, New Brunswick, New Jersey, 08903, USA; Ecology and Evolution Graduate Program, Rutgers University, New Brunswick, New Jersey, USA, 08903.
| | - Stephanie Feigin
- Environmental Science Graduate Program, Rutgers University, New Brunswick, New Jersey, 08903, USA; Wildlife Restoration Partnership, 109 Market Land, Greenwich, N 08323, USA.
| | - Kelly Ng
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA; Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ, 08854, USA; Ecology and Evolution Graduate Program, Rutgers University, New Brunswick, New Jersey, USA, 08903.
| | - Christian Jeitner
- Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Nellie Tsipoura
- New Jersey Audubon Society, 11 Hardscrabble Rd, Bernardsville, NJ, 07924, USA.
| | - Larry Niles
- Wildlife Restoration Partnership, 109 Market Land, Greenwich, N 08323, USA.
| | - Michael Gochfeld
- Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey, 08854, USA; Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ, 08854, USA; Environmental and Occupational Health & Justice, Rutgers University School of Public Health, Piscataway, New Jersey, USA, 08854.
| |
Collapse
|
4
|
Grunst ML, Grunst AS, Grémillet D, Kato A, Gentès S, Fort J. Keystone seabird may face thermoregulatory challenges in a warming Arctic. Sci Rep 2023; 13:16733. [PMID: 37794049 PMCID: PMC10550970 DOI: 10.1038/s41598-023-43650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Climate change affects the Arctic more than any other region, resulting in evolving weather, vanishing sea ice and altered biochemical cycling, which may increase biotic exposure to chemical pollution. We tested thermoregulatory impacts of these changes on the most abundant Arctic seabird, the little auk (Alle alle). This small diving species uses sea ice-habitats for foraging on zooplankton and resting. We equipped eight little auks with 3D accelerometers to monitor behavior, and ingested temperature recorders to measure body temperature (Tb). We also recorded weather conditions, and collected blood to assess mercury (Hg) contamination. There were nonlinear relationships between time engaged in different behaviors and Tb. Tb increased on sea ice, following declines while foraging in polar waters, but changed little when birds were resting on water. Tb also increased when birds were flying, and decreased at the colony after being elevated during flight. Weather conditions, but not Hg contamination, also affected Tb. However, given our small sample size, further research regarding thermoregulatory effects of Hg is warranted. Results suggest that little auk Tb varies with behavior and weather conditions, and that loss of sea ice due to global warming may cause thermoregulatory and energic challenges during foraging trips at sea.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, CEBC, UMR 7372 CNRS-La Rochelle Université, La Rochelle, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
5
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
6
|
Grunst AS, Grunst ML, Fort J. Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163169. [PMID: 37003321 DOI: 10.1016/j.scitotenv.2023.163169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The potential for chemical contaminant exposure to interact with other stressors to affect animal behavioral responses to environmental variability is of mounting concern in the context of anthropogenic environmental change. We systematically reviewed the avian literature to evaluate evidence for contaminant-by-environment interactive effects on animal behavior, as birds are prominent models in behavioral ecotoxicology and global change research. We found that only 17 of 156 (10.9 %) avian behavioral ecotoxicological studies have explored contaminant-by-environment interactions. However, 13 (76.5 %) have found evidence for interactive effects, suggesting that contaminant-by-environment interactive effects on behavior are understudied but important. We draw on our review to develop a conceptual framework to understand such interactive effects from a behavioral reaction norm perspective. Our framework highlights four patterns in reaction norm shapes that can underlie contaminant-by-environment interactive effects on behavior, termed exacerbation, inhibition, mitigation and convergence. First, contamination can render individuals unable to maintain critical behaviors across gradients in additional stressors, exacerbating behavioral change (reaction norms steeper) and generating synergy. Second, contamination can inhibit behavioral adjustment to other stressors, antagonizing behavioral plasticity (reaction norms shallower). Third, a second stressor can mitigate (antagonize) toxicological effects of contamination, causing steeper reaction norms in highly contaminated individuals, with improvement of performance upon exposure to additional stress. Fourth, contamination can limit behavioral plasticity in response to permissive conditions, such that performance of more and less contaminated individuals converges under more stressful conditions. Diverse mechanisms might underlie such shape differences in reaction norms, including combined effects of contaminants and other stressors on endocrinology, energy balance, sensory systems, and physiological and cognitive limits. To encourage more research, we outline how the types of contaminant-by-environment interactive effects proposed in our framework might operate across multiple behavioral domains. We conclude by leveraging our review and framework to suggest priorities for future research.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| |
Collapse
|
7
|
Bottini CLJ, MacDougall-Shackleton SA. Methylmercury effects on avian brains. Neurotoxicology 2023; 96:140-153. [PMID: 37059311 DOI: 10.1016/j.neuro.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Methylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain. Publication rates of papers related to neurology and/or birds and/or MeHg increased with time and can be linked with historical events, regulations, and increased understanding of MeHg cycling in the environment. However, publications on MeHg effects on the avian brain remain relatively low across time. The neural effects measured to evaluate MeHg neurotoxicity in birds changed with time and researcher interest. The measures most consistently affected by MeHg exposure in birds were markers of oxidative stress. NMDA, acetylcholinesterase, and Purkinje cells also seem sensitive to some extent. MeHg exposure has the potential to affect most neurotransmitter systems but more studies are needed for validation in birds. We also review the main mechanisms of MeHg-induced neurotoxicity in mammals and compare it to what is known in birds. The literature on MeHg effects on the avian brain is limited, preventing full construction of an adverse outcome pathway. We identify research gaps for taxonomic groups such as songbirds, and age- and life-stage groups such as immature fledgling stage and adult non-reproductive life stage. In addition, results are often inconsistent between experimental and field studies. We conclude that future neurotoxicological studies of MeHg impacts on birds need to better connect the numerous aspects of exposure from molecular physiological effects to behavioural outcomes that would be ecologically or biologically relevant for birds, especially under challenging conditions.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London Ontario, N6A 5B7; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London Ontario, N6A 5C2
| |
Collapse
|
8
|
Grunst AS, Grunst ML, Grémillet D, Kato A, Bustamante P, Albert C, Brisson-Curadeau É, Clairbaux M, Cruz-Flores M, Gentès S, Perret S, Ste-Marie E, Wojczulanis-Jakubas K, Fort J. Mercury Contamination Challenges the Behavioral Response of a Keystone Species to Arctic Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2054-2063. [PMID: 36652233 DOI: 10.1021/acs.est.2c08893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - David Grémillet
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
- Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France
| | - Céline Albert
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Émile Brisson-Curadeau
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Manon Clairbaux
- School of Biological, Environmental and Earth Sciences, University College Cork, Cork T23 N73K, Ireland
- MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork P43 C573, Ireland
| | - Marta Cruz-Flores
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Samuel Perret
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
| | - Eric Ste-Marie
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| |
Collapse
|
9
|
La Sorte FA, Lepczyk CA, Aronson MFJ. Light pollution enhances ground-level exposure to airborne toxic chemicals for nocturnally migrating passerines. GLOBAL CHANGE BIOLOGY 2023; 29:57-68. [PMID: 36281768 DOI: 10.1111/gcb.16443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities generate different forms of environmental pollution, including artificial light at night (ALAN) and airborne toxic chemicals (ATCs). Nocturnally migrating birds are attracted to ALAN during migration and if ALAN occurs in unison with ATC, the chances of ground-level ATC contamination occurring at stopover sites could increase. Here, we document the relationship between ALAN and ATC within the contiguous United States based on 479 toxic chemicals from 15,743 releasing facilities. Using weekly diurnal estimates of relative abundance for 165 nocturnally migrating passerine (NMP) bird species, we assess how the species richness and relative abundance of NMP species are correlated with ALAN and ATC across the annual cycle. The concentration of ATC increased with increasing ALAN levels, except at the highest ALAN levels. The species richness of NMP species was positively correlated with ATC during the non-breeding season and migration, and negatively correlated during the breeding season. The relative abundance of NMP species was negatively correlated with ATC during the breeding and non-breeding seasons and the correlation did not differ from zero during migration. Through the disorienting influence of ALAN, our findings suggest large numbers of NMP species are being exposed to higher ATC concentrations at stopover sites. Outside of migration, large numbers of NMP species that winter along the US Gulf Coast are being exposed for an extended period of time to higher ATC concentrations. Initiatives designed to decrease ALAN during migration have the potential to reduce the acute and chronic effects of ATC contamination, lower the maternal transfer of toxic chemicals to eggs, and decrease the biologically mediated transport of toxic chemicals across regions. However, these initiatives will not benefit species that experience prolonged ATC exposure during the non-breeding season along the US Gulf Coast, a region that could be a significant source of ATC contamination for North American birds.
Collapse
Affiliation(s)
- Frank A La Sorte
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Christopher A Lepczyk
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA
| | - Myla F J Aronson
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
10
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of methylmercury and food stress on migratory activity in song sparrows, Melospiza melodia. Horm Behav 2022; 146:105261. [PMID: 36126358 DOI: 10.1016/j.yhbeh.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022]
Abstract
Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Rebecca E Whiley
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Brian A Branfireun
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London, Ontario N6A 5C2, Canada
| |
Collapse
|
11
|
Chastel O, Fort J, Ackerman JT, Albert C, Angelier F, Basu N, Blévin P, Brault-Favrou M, Bustnes JO, Bustamante P, Danielsen J, Descamps S, Dietz R, Erikstad KE, Eulaers I, Ezhov A, Fleishman AB, Gabrielsen GW, Gavrilo M, Gilchrist G, Gilg O, Gíslason S, Golubova E, Goutte A, Grémillet D, Hallgrimsson GT, Hansen ES, Hanssen SA, Hatch S, Huffeldt NP, Jakubas D, Jónsson JE, Kitaysky AS, Kolbeinsson Y, Krasnov Y, Letcher RJ, Linnebjerg JF, Mallory M, Merkel FR, Moe B, Montevecchi WJ, Mosbech A, Olsen B, Orben RA, Provencher JF, Ragnarsdottir SB, Reiertsen TK, Rojek N, Romano M, Søndergaard J, Strøm H, Takahashi A, Tartu S, Thórarinsson TL, Thiebot JB, Will AP, Wilson S, Wojczulanis-Jakubas K, Yannic G. Mercury contamination and potential health risks to Arctic seabirds and shorebirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156944. [PMID: 35752241 DOI: 10.1016/j.scitotenv.2022.156944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.
Collapse
Affiliation(s)
- Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France.
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, United States.
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Niladri Basu
- McGill University, Faculty of Agriculture and Environmental Sciences, Montreal, QC H9X 3V9, Canada
| | | | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM Centre, 9296 Tromsø, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | | | - Igor Eulaers
- Norwegian Polar Institute, Fram center, 9296 Tromsø, Norway; Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Alexey Ezhov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya str. 17 Murmansk, Russia
| | - Abram B Fleishman
- Conservation Metrics, Inc., Santa Cruz, CA, United States of America
| | | | - Maria Gavrilo
- Arctic and Antarctic Research Institute, 199397 St. Petersburg, Russia
| | - Grant Gilchrist
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ont., Canada K1A 0H3
| | - Olivier Gilg
- Laboratoire Chrono-environnement, UMR 6249, Université de Bourgogne Franche Comté, 25000 Besançon, France; Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, F-21440 Francheville, France
| | - Sindri Gíslason
- Southwest Iceland Nature Research Centre, Gardvegur 1, 245 Sudurnesjabaer, Iceland
| | - Elena Golubova
- Laboratory of Ornithology, Institute of Biological Problems of the North, RU-685000 Magadan, Portovaya Str., 18, Russia
| | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, F-75005 Paris, France
| | - David Grémillet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France,; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Gunnar T Hallgrimsson
- Department of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Erpur S Hansen
- South Iceland Nature Research Centre, Ægisgata 2, 900 Vestmannaeyjar, Iceland
| | | | - Scott Hatch
- Institute for Seabird Research and Conservation, Anchorage, 99516-3185, AK, USA
| | - Nicholas P Huffeldt
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, University of Gdansk, 80-308 Gdansk, Poland
| | - Jón Einar Jónsson
- University of Iceland's Research Center at Snæfellsnes, 340 Stykkishólmur, Iceland
| | - Alexander S Kitaysky
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99775-7000, United States of America
| | | | - Yuri Krasnov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya str. 17 Murmansk, Russia
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ont., Canada K1A 0H3
| | | | - Mark Mallory
- Biology, Acadia University Wolfville, Nova Scotia B4P 2R6, Canada
| | - Flemming Ravn Merkel
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Børge Moe
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - William J Montevecchi
- Memorial Univerisity of Newfoundland and Labrador, St. John's, Newoundland A1C 3X9, Canada
| | - Anders Mosbech
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Bergur Olsen
- Faroe Marine Reseaqrch Institute, Nóatún 1, FO-110 Tórshavn, Faroe Islands
| | - Rachael A Orben
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Hatfield Marine Science Center, Newport, OR, USA
| | - Jennifer F Provencher
- Science & Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada K1A 0H3
| | | | - Tone K Reiertsen
- Norwegian Institute for Nature Research, FRAM Centre, 9296 Tromsø, Norway
| | - Nora Rojek
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Marc Romano
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Jens Søndergaard
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram center, 9296 Tromsø, Norway
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Alexis P Will
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99775-7000, United States of America; National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606, Stakkevollan, 9296, Tromsø, Norway
| | | | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| |
Collapse
|
12
|
Short-term mercury exposure disrupts muscular and hepatic lipid metabolism in a migrant songbird. Sci Rep 2022; 12:11470. [PMID: 35794224 PMCID: PMC9259677 DOI: 10.1038/s41598-022-15680-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Methylmercury (MeHg) is a global pollutant that can cause metabolic disruptions in animals and thereby potentially compromise the energetic capacity of birds for long-distance migration, but its effects on avian lipid metabolism pathways that support endurance flight and stopover refueling have never been studied. We tested the effects of short-term (14-d), environmentally relevant (0.5 ppm) dietary MeHg exposure on lipid metabolism markers in the pectoralis and livers of yellow-rumped warblers (Setophaga coronata) that were found in a previous study to have poorer flight endurance in a wind tunnel than untreated conspecifics. Compared to controls, MeHg-exposed birds displayed lower muscle aerobic and fatty acid oxidation capacity, but similar muscle glycolytic capacity, fatty acid transporter expression, and PPAR expression. Livers of exposed birds indicated elevated energy costs, lower fatty acid uptake capacity, and lower PPAR-γ expression. The lower muscle oxidative enzyme capacity of exposed birds likely contributed to their weaker endurance in the prior study, while the metabolic changes observed in the liver have potential to inhibit lipogenesis and stopover refueling. Our findings provide concerning evidence that fatty acid catabolism, synthesis, and storage pathways in birds can be dysregulated by only brief exposure to MeHg, with potentially significant consequences for migratory performance.
Collapse
|
13
|
He X, Wallace WG, Reinfelder JR. Grass Shrimp ( Palaemonetes pugio) as a Trophic Link for Methylmercury Accumulation in Urban Salt Marshes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8071-8081. [PMID: 35584355 DOI: 10.1021/acs.est.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grass shrimp (Palaemonetes pugio) represent a potential link in the transfer of methylmercury (MeHg) from salt marsh sediments to transient young-of-the-year (YOY) fish. Across six salt marshes subject to varying degrees of Hg contamination, MeHg concentration in grass shrimp was significantly correlated with MeHg in sediment (p < 0.05, R2 = 0.81). Bioenergetic models show that grass shrimp alone account for 12-90% of MeHg observed in YOY striped bass and 6-22% of MeHg in YOY summer flounder. Direct accumulation of MeHg from grass shrimp to YOY fish increased with MeHg levels in grass shrimp and sediment. However, in the most contaminated salt marshes with the highest levels of MeHg in grass shrimp and sediment, indirect accumulation of MeHg from grass shrimp by YOY summer flounder, whose diet is dominated by benthic forage fish (mummichog), is predicted to plateau because higher concentrations of MeHg in grass shrimp are offset by a lower proportion of grass shrimp in the mummichog diet. Our results demonstrate that grass shrimp are an important trophic link in the bioaccumulation of MeHg in salt marsh food webs and that MeHg accumulation in YOY fish varies with both the concentration of MeHg in salt marsh sediments and benthic food web structure.
Collapse
Affiliation(s)
- Xiaoshuai He
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - William G Wallace
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
14
|
Carravieri A, Vincze O, Bustamante P, Ackerman JT, Adams EM, Angelier F, Chastel O, Cherel Y, Gilg O, Golubova E, Kitaysky A, Luff K, Seewagen CL, Strøm H, Will AP, Yannic G, Giraudeau M, Fort J. Quantitative meta-analysis reveals no association between mercury contamination and body condition in birds. Biol Rev Camb Philos Soc 2022; 97:1253-1271. [PMID: 35174617 DOI: 10.1111/brv.12840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Mercury contamination is a major threat to the global environment, and is still increasing in some regions despite international regulations. The methylated form of mercury is hazardous to biota, yet its sublethal effects are difficult to detect in wildlife. Body condition can vary in response to stressors, but previous studies have shown mixed effects of mercury on body condition in wildlife. Using birds as study organisms, we provide the first quantitative synthesis of the effect of mercury on body condition in animals. In addition, we explored the influence of intrinsic, extrinsic and methodological factors potentially explaining cross-study heterogeneity in results. We considered experimental and correlative studies carried out in adult birds and chicks, and mercury exposure inferred from blood and feathers. Most experimental investigations (90%) showed a significant relationship between mercury concentrations and body condition. Experimental exposure to mercury disrupted nutrient (fat) metabolism, metabolic rates, and food intake, resulting in either positive or negative associations with body condition. Correlative studies also showed either positive or negative associations, of which only 14% were statistically significant. Therefore, the overall effect of mercury concentrations on body condition was null in both experimental (estimate ± SE = 0.262 ± 0.309, 20 effect sizes, five species) and correlative studies (-0.011 ± 0.020, 315 effect sizes, 145 species). The single and interactive effects of age class and tissue type were accounted for in meta-analytic models of the correlative data set, since chicks and adults, as well as blood and feathers, are known to behave differently in terms of mercury accumulation and health effects. Of the 15 moderators tested, only wintering status explained cross-study heterogeneity in the correlative data set: free-ranging wintering birds were more likely to show a negative association between mercury and body condition. However, wintering effect sizes were limited to passerines, further studies should thus confirm this trend in other taxa. Collectively, our results suggest that (i) effects of mercury on body condition are weak and mostly detectable under controlled conditions, and (ii) body condition indices are unreliable indicators of mercury sublethal effects in the wild. Food availability, feeding rates and other sources of variation that are challenging to quantify likely confound the association between mercury and body condition in natura. Future studies could explore the metabolic effects of mercury further using designs that allow for the estimation and/or manipulation of food intake in both wild and captive birds, especially in under-represented life-history stages such as migration and overwintering.
Collapse
Affiliation(s)
- Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| | - Orsolya Vincze
- Centre for Ecological Research-DRI, Institute of Aquatic Ecology, 18/C Bem tér, Debrecen, 4026, Hungary.,Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 5-7 Clinicilor street, Cluj-Napoca, 400006, Romania
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France.,Institut Universitaire de France (IUF), 1 rue Descartes, Paris, 75005, France
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, U.S.A
| | - Evan M Adams
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, U.S.A
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Olivier Gilg
- UMR 6249 CNRS-Chrono-environnement, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25000, France.,Groupe de Recherche en Ecologie Arctique (GREA), 16 rue de Vernot, Francheville, 21440, France
| | - Elena Golubova
- Groupe de Recherche en Ecologie Arctique (GREA), 16 rue de Vernot, Francheville, 21440, France.,Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Str., 18, Magadan, RU-685000, Russia
| | - Alexander Kitaysky
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK, 99775, U.S.A
| | - Katelyn Luff
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Chad L Seewagen
- Great Hollow Nature Preserve and Ecological Research Center, 225 State Route 37, New Fairfield, CT, 06812, U.S.A
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Tromsø, NO-9296, Norway
| | - Alexis P Will
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK, 99775, U.S.A
| | - Glenn Yannic
- Groupe de Recherche en Ecologie Arctique (GREA), 16 rue de Vernot, Francheville, 21440, France.,UMR 5553 CNRS-Université Grenoble Alpes, Université Savoie Mont Blanc, 2233 Rue de la Piscine, Saint-Martin d'Hères, Grenoble, 38000, France
| | - Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France.,Centre de Recherches en Écologie et en Évolution de la Santé (CREES), MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Domaine La Valette, 900 rue Breton, Montpellier, 34090, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| |
Collapse
|
15
|
Tartu S, Blévin P, Bustamante P, Angelier F, Bech C, Bustnes JO, Chierici M, Fransson A, Gabrielsen GW, Goutte A, Moe B, Sauser C, Sire J, Barbraud C, Chastel O. A U-Turn for Mercury Concentrations over 20 Years: How Do Environmental Conditions Affect Exposure in Arctic Seabirds? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2443-2454. [PMID: 35112833 DOI: 10.1021/acs.est.1c07633] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
- Fram Centre, Akvaplan-niva AS, Tromsø 9296, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, La Rochelle 17000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Claus Bech
- Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jan Ove Bustnes
- Fram Centre, Norwegian Institute for Nature Research (NINA), Tromsø 9296, Norway
| | - Melissa Chierici
- Fram Centre, Institute of Marine Research (IMR), Tromsø 9296, Norway
| | | | | | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, Paris F-75005, France
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway
| | - Christophe Sauser
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Julien Sire
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
16
|
Caito SW, Newell-Caito J, Martell M, Crawford N, Aschner M. Methylmercury Induces Metabolic Alterations in Caenorhabditis elegans: Role for C/EBP Transcription Factor. Toxicol Sci 2021; 174:112-123. [PMID: 31851340 DOI: 10.1093/toxsci/kfz244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. We have previously shown that MeHg causes metabolic alterations in Caenorhabditis elegans, leading to decreased nicotinamide adenine dinucleotide cofactor, mitochondrial dysfunction, and oxidative stress. We were, therefore, interested in whether MeHg also affects nutrient metabolism, particularly lipid homeostasis, which may contribute to the development of metabolic conditions such as obesity or metabolic syndrome (MS). RNA from wild-type worms exposed to MeHg was collected immediately after treatment and used for gene expression analysis by DNA microarray. MeHg differentially regulated 215 genes, 17 genes involved in lipid homeostasis, and 12 genes involved in carbohydrate homeostasis. Of particular interest was cebp-1, the worm ortholog to human C/EBP, a pro-adipogenic transcription factor implicated in MS. MeHg increased the expression of cebp-1 as well as pro-adipogenic transcription factors sbp-1 and nhr-49, triglyceride synthesis enzyme acl-6, and lipid transport proteins vit-2 and vit-6. Concurrent with the altered gene expression, MeHg increased triglyceride levels, lipid storage, and feeding behaviors. Worms expressing mutant cebp-1 were protected from MeHg-induced alterations in lipid content, feeding behaviors, and gene expression, highlighting the importance of this transcription factor in the worm's response to MeHg. Taken together, our data demonstrate that MeHg induces biochemical, metabolic, and behavioral changes in C. elegans that can lead to metabolic dysfunction.
Collapse
Affiliation(s)
- Samuel W Caito
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | | | - Megan Martell
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Nicole Crawford
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Ma Y, Hobson KA, Kardynal KJ, Guglielmo CG, Branfireun BA. Inferring spatial patterns of mercury exposure in migratory boreal songbirds: Combining feather mercury and stable isotope (δ 2H) measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143109. [PMID: 33162143 DOI: 10.1016/j.scitotenv.2020.143109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Migratory songbirds breeding in the Canadian Boreal forest are exposed to mercury (Hg), a potent neurotoxin that impairs avian health, however, the degree of exposure depends on many factors. As breeding grounds are geographically remote and vast, the measurement of Hg in individual birds is impractical particularly at large spatial scales. Here, we present a Canada-wide dataset of nearly 2000 migratory songbirds that were used to assess summer Hg exposure of 15 songbird species sampled during fall migration. We measured Hg concentrations in tail feathers and related those to dietary guild, geographic capture location, age, sex and probable breeding ground locations using feather δ2H. Overall mean (±SE) feather Hg concentration was 1.49 ± 0.03 μg/g (N = 1946): however, a clear geographic gradient in feather Hg concentrations emerged being highest in East and lowest in West. Dietary guild was the next strongest predictor of feather Hg with insectivorous songbirds in Eastern Canada at particular risk due to Hg exposure on summer breeding grounds. This broad-scale assessment of Hg exposure in migratory songbirds in Canada can be used to guide future studies on finer-scale determinants of Hg exposure in birds.
Collapse
Affiliation(s)
- Yanju Ma
- Department of Biology, University of Western Ontario, London, Ontario, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, London, Ontario, Canada; Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Kevin J Kardynal
- Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Christopher G Guglielmo
- Department of Biology, University of Western Ontario, London, Ontario, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Brian A Branfireun
- Department of Biology, University of Western Ontario, London, Ontario, Canada; Centre for Environment and Sustainability, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|