1
|
Ahn YY, Kim K. A novel simultaneous abatement of bromate and diphenyl phosphate using the freezing process. CHEMOSPHERE 2024; 367:143629. [PMID: 39461440 DOI: 10.1016/j.chemosphere.2024.143629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The purification of bromate (BrO3-)-contaminated water has become a challenge because of its persistence and adverse effects. Furthermore, there has been concern over the release of byproducts, such as diphenyl phosphate (DPHP), from flame retardants in wastewater treatment plant (WWTP). In this study, we designed the water treatment system for the oxidation of DPHP accompanied by bromate (BrO3-) reduction via freezing the solution. A sample containing 10 μM DPHP, 100 μM Br-, and 50 μM BrO3-, with a pH of 3 was frozen at -20oC, approximately 25 μM BrO3- was reduced, and DPHP was fully eliminated after a 0.5 h reaction time. Conversely, these reactions did not advance in water at 20oC. This increase in the rate of chemical reaction in ice is the consequence of the freeze concentration effect, which refers to the extraction of dissolved chemical species into the liquid-like regions of the polycrystalline ice micro-structure during the freezing of the solution. The redox reactions among DPHP, Br-, and BrO3- become thermodynamically favorable due to the distinctive environment in the liquid brine in ice. The efficiency of the DPHP oxidation significantly increased with an increase in BrO3- concentration, and vice versa. The Br-/BrO3--induced HOBr production is proposed as a primary oxidant for DPHP degradation. The proton activity (pH) has a significant influence on the reaction efficiency. The low freezing temperature accelerated the reaction kinetics of DPHP degradation and BrO3- reduction. The results of this study indicate the possibility of utilizing ice chemistry for the BrO3- reduction that concomitantly removes DPHP for water treatment. This environmentally friendly water treatment method can be considered to implement in regions with a cold climate.
Collapse
Affiliation(s)
- Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon, 21990, Republic of Korea.
| |
Collapse
|
2
|
Bhat MA, Fan D, Nisa FU, Dar T, Kumar A, Sun Q, Li SL, Mir RR. Trace elements in the Upper Indus River Basin (UIRB) of Western Himalayas: Quantification, sources modeling, and impacts. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135073. [PMID: 38968826 DOI: 10.1016/j.jhazmat.2024.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
This study conducted a comprehensive analysis of trace element concentrations in the Upper Indus River Basin (UIRB), a glacier-fed region in the Western Himalayas (WH), aiming to discern their environmental and anthropogenic sources and implications. Despite limited prior data, 69 samples were collected in 2019 from diverse sources within the UIRB, including mainstream, tributaries, and groundwater, to assess trace element concentrations. Enrichment factor (EF) results and comparisons with regional and global averages suggest that rising levels of Zn, Cd, and As may pose safety concerns for drinking water quality. Advanced multivariate statistical techniques such as principal component analysis (PCA), absolute principal component scores (APCS-MLR), Monte Carlo simulation (MCS), etc were applied to estimate the associated human health hazards and also identified key sources of trace elements. The 95th percentile of the MCS results indicates that the estimated total cancer risk for children is significantly greater than (>1000 times) the USEPA's acceptable risk threshold of 1.0 × 10-6. The results classified most of the trace elements into two distinct groups: Group A (Li, Rb, Sr, U, Cs, V, Ni, TI, Sb, Mo, Ge), linked to geogenic sources, showed lower concentrations in the lower-middle river reaches, including tributaries and downstream regions. Group B (Pb, Nb, Cr, Zn, Be, Al, Th, Ga, Cu, Co), influenced by both geogenic and anthropogenic activities, exhibited higher concentrations near urban centers and midstream areas, aligning with increased municipal waste and agricultural activities. Furthermore, APCS-MLR source apportionment indicated that trace elements originated from natural geogenic processes, including rock-water interactions and mineral dissolution, as well as anthropogenic activities. These findings underscore the need for targeted measures to mitigate anthropogenic impacts and safeguard water resources for communities along the IRB and WH.
Collapse
Affiliation(s)
- Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Daidu Fan
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Fahim Un Nisa
- Department of Geology, Aligarh Muslim University, Aligarh 202002, India
| | - Tanveer Dar
- Department of Earth Sciences, Indian Institute of Technology, Roorkee 247667, India
| | - Amit Kumar
- Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qingqing Sun
- Civil & Environmental Engineering University of Missouri, Columbia 65211, USA
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ramees R Mir
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
3
|
Zhou W, Bu D, Huang K, Zhang Q, Cui X, Dan Z, Yang Y, Fu Y, Yang Q, Teng Y, Fu J, Zhang A, Fu J, Jiang G. First comprehensive assessment of dietary chlorinated paraffins intake and exposure risk for the rural population of the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172435. [PMID: 38615758 DOI: 10.1016/j.scitotenv.2024.172435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Knowledge regarding the occurrence of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) in foodstuffs and their dietary exposure risks for rural Tibetan residents remains largely unknown. Herein, we collected main foodstuffs (including highland barley, vegetables, Tibetan butter, mutton, and yak beef) across the rural Tibetan Plateau and characterized the CP profiles and concentrations. The highest SCCPs concentrations were detected in Tibetan butter (geometric mean (GM): 240.6 ng/g wet weight (ww)), followed by vegetables (59.4 ng/g ww), mutton (51.4 ng/g ww), highland barley (46.3 ng/g ww), and yak beef (31.7 ng/g ww). For MCCPs, the highest concentrations were also detected in Tibetan butter (319.5 ng/g ww), followed by mutton (181.9 ng/g ww), vegetables (127.0 ng/g ww), yak beef (71.2 ng/g ww), and highland barley (30.3 ng/g ww). The predominant congener profiles of SCCPs were C13Cl7-8 in mutton and yak beef, C10Cl7-8 in Tibetan butter, and C10-11Cl6-7 in highland barley and vegetables. The predominant congener profiles of MCCPs were C14Cl7-9 in all sample types. Combined with our previous results of free-range chicken eggs, the median estimated daily intakes (EDIs) of SCCPs and MCCPs via diet for Tibetan rural adults and children was estimated to be 728.8 and 1853.9 ng/kg bw/day and 2565.6 and 5952.8 ng/kg bw/day, respectively. In the worst scenario, MCCPs might induce potential health risks for rural Tibetan population. To our knowledge, this is the first systematic dietary exposure research of SCCPs and MCCPs in the remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zeng Dan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yinzheng Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Marlina N, Hassan F, Chao HR, Latif MT, Yeh CF, Horie Y, Shiu RF, Hsieh YK, Jiang JJ. Organophosphate esters in water and air: A minireview of their sources, occurrence, and air-water exchange. CHEMOSPHERE 2024; 356:141874. [PMID: 38575079 DOI: 10.1016/j.chemosphere.2024.141874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.
Collapse
Affiliation(s)
- Nelly Marlina
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Fahir Hassan
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Faculty of Engineering, University of Jember, Jember, 68121, Indonesia
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chi-Fu Yeh
- Hwa-Ying Environment Technical Consultants Co., Ltd., Kaohsiung, 81463, Taiwan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yen-Kung Hsieh
- Climate Change Research Center, National Environmental Research Academy, Taoyuan, 320680, Taiwan.
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Research Center for Carbon Neutrality and Net Zero Emissions, Chung Yuan Christian University, Taoyuan, 320314, Taiwan.
| |
Collapse
|
5
|
Nzabanita D, Shen H, Grist S, Lewis PJ, Hampton JO, Firestone SM, Hufschmid J, Nugegoda D. Exposure to Persistent Organic Pollutants in Australian Waterbirds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:736-747. [PMID: 38085117 DOI: 10.1002/etc.5804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
There is growing worldwide recognition of the threat posed by persistent organic pollutants (POPs) to wildlife populations. We aimed to measure exposure levels to POPs in a Southern Hemisphere aquatic waterbird species, the nomadic gray teal (Anas gracilis), which is found across Australia. We collected wings from 39 ducks harvested by recreational hunters at two sites (one coastal, one inland) in Victoria, southeastern Australia, in 2021. We examined three groups of POPs: nine congeners of polychlorinated biphenyls (PCBs), 13 organochlorine pesticides (OCPs), and 12 polycyclic aromatic hydrocarbons (PAHs). The PCBs, OCPs, and PAHs were detected at quantifiable levels in 13%, 72%, and 100% of birds, respectively. Of the congeners we tested for in PCBs, OCPs, and PAHs, 33%, 38%, and 100% were detected at quantifiable levels, respectively. The highest levels of exposure to POPs that we found were to the PAH benzo[b]fluoranthene, occurring at a concentration range of 1.78 to 161.05 ng/g wet weight. There were some trends detected relating to differences between geographical sites, with higher levels of several PAHs at the coastal versus inland site. There were several strong, positive associations among PAHs found. We discuss potential sources for the POPs detected, including industrial and agricultural sources, and the likely role of large-scale forest fires in PAH levels. Our results confirm that while Australian waterbirds are exposed to a variety of POPs, exposure levels are currently relatively low. Additional future investigations are required to further characterize POPs within Australian waterbird species. Environ Toxicol Chem 2024;43:736-747. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Damien Nzabanita
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Hao Shen
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Stephen Grist
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Phoebe J Lewis
- Applied Sciences Division, Environment Protection Authority Victoria, Macleod, Victoria, Australia
| | - Jordan O Hampton
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Firestone
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Jasmin Hufschmid
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Dayanthi Nugegoda
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Jiang L, Ma X, Ciren Y, Wu J, Wang Y, Jiang G. Characterization of short-, medium-, and long-chain chlorinated paraffins in Tibetan butter and implications for local human exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133117. [PMID: 38056260 DOI: 10.1016/j.jhazmat.2023.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Since short-chain chlorinated paraffins (SCCPs) were severely restricted under the Stockholm Convention in 2017, a shift to the production of other chlorinated paraffin (CP) groups has occurred, particularly medium-chain (MCCPs) and long-chain CPs (LCCPs), although data on the latter are sparser in the literature. This study described the occurrence of three types of CPs in butter samples from six livestock milk sources across 15 sites in Tibet. The median levels of SCCPs, MCCPs, and LCCPs were 132, 456, and 13.2 ng/g lipid, respectively. The detection rate of 97.6% suggests that LCCPs can be transmitted to humans. Thus, all CPs, regardless of their chain length and degree of chlorination, should be treated with caution. The differences in concentration were mainly caused by dynamic wet deposition and thermodynamic cold-trapping effects across the different districts. The homolog pattern of CPs varied widely across livestock species, which was attributed to the diverse impacts of the physicochemical properties of the homologs, especially the heterogeneity in the uptake and transfer of CPs across different organisms. Under three different criteria, the health risks associated with the daily intake of SCCPs should not be neglected, especially considering other intake exposure pathways and the degradation of longer-carbon-chain monomers.
Collapse
Affiliation(s)
- Lu Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xindong Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan 570228, China
| | - Yuzhen Ciren
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
7
|
Gebru TB, Zhang Q, Dong C, Hao Y, Li C, Yang R, Li Y, Jiang G. The long-term spatial and temporal distributions of polychlorinated naphthalene air concentrations in Fildes Peninsula, West Antarctica. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132824. [PMID: 37890383 DOI: 10.1016/j.jhazmat.2023.132824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The knowledge of polychlorinated naphthalenes (PCNs) in the Antarctic atmosphere is quite limited compared to the Arctic. PCNs are a global concern because of their PBT characteristics (i.e., persistent, bioaccumulative, and toxic) and severe and often deadly biological effects on people and other animals. Therefore, the present study used a passive air sampling method to conduct long-term air monitoring of PCNs for almost a decade from 2013 to 2022, specifically on Fildes Peninsula, situated on King George Island, located in West Antarctica. The median sum of mono-CNs to octa-CN concentration (∑75PCNs) in the Antarctic atmosphere was 12.4 pg/m3. In terms of homologues, mono-CNs to tri-CNs predominated. Among these, the prevalent congeners observed were PCN-1 and PCN-2, originating from mono-CNs, followed by PCN-5/7 from di-CNs, and PCN-24/14 from tri-CNs, respectively. Between 2013 and 2022, the total levels of PCNs were found to have decreased approximately fourfold. Ratio analyses and principal component analysis (PCA) showed that the long-range atmospheric transport and combustion-related sources as the potential PCN sources in the study area. This paper provides the most up-to-date temporal trend analysis of PCNs in the Antarctic continent and is the first to document all 75 congeners (mono-CNs to octa-CN homologue groups).
Collapse
Affiliation(s)
- Tariku Bekele Gebru
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Hao
- State Key Laboratory of Precision Blasting, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cui Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
8
|
Ding Y, Qin S, Huang H, Tang X, Li X, Zhang Y, Chen W, Nguyen LP, Qi S. Selected pesticidal POPs and metabolites in the soil of five Vietnamese cities: Sources, fate, and health risk implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123043. [PMID: 38036093 DOI: 10.1016/j.envpol.2023.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Large quantities of organochlorine pesticides (OCPs) have been used in tropical regions. The fate processes and risks of these legacy contaminants in the tropics are poorly understood. Herein, we investigated the occurrence of three classes of widely used OCPs and their metabolites in surface and core soil from five cities across Vietnam with a prevalent tropical monsoon climate and a long history of OCP application. We aimed to elucidate migration potentials, degradation conditions, and transformation pathways and assess current health risks of these contaminants. Generally, the concentrations of OCPs and metabolites in the soil core were slightly lower than those in surface soil except for hexachlorocyclohexane (HCH) isomers. 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT), 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), the sum of dicofol and 4,4'-dichlorobenzophenone (p,p'-DBP), and 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (p,p'-DDD) were the most abundant compounds in both surface and core soils. A uniform distribution of HCHs (the sum of α-, β-, γ-, and δ-HCH) at trace levels was found in almost all soils, serving as evidence of the lack of recent use of HCH pesticides. Higher concentrations of DDTs (the sum of DDT, DDD, and DDE) were observed in north-central Vietnamese soil, whereas appreciable concentrations of ENDs (the sum of α- and β-endosulfan and endosulfan sulfate) were only found in southern Vietnamese soils. Empirical diagnostic ratios indicated residuals of DDTs were mainly from technical DDT rather than dicofol, whereas aged HCHs could be explained by the mixture of lindane and technical HCH. Both historical applications and recent input explain DDTs and ENDs in Vietnamese soil. Total organic carbon performs well in preventing vertical migration of more hydrophobic DDTs and ENDs. The dominant transformation pathway of DDT in surface soil followed p,p'-DDE→2,2-bis(4-chlorophenyl)-1-chloroethylene or p,p'-DDMU→1,1-bis(4-chlorophenyl)ethylene or p,p'-DDNU→p,p'-DBP, whereas the amount of p,p'-DDMU converted from p,p'-DDD and p,p'-DDE is similar in soil core. Non-cancer risks of OCPs and metabolites in all soils and cancer risks of those chemicals in core soils were below the safety threshold, whereas a small proportion of surface soil exhibited potential cancer risk after considering the exposure pathway of vegetable intake. This study implied that organic matter in non-rainforest tropical deep soils still could hinder the leaching of hydrophobic organic contaminants as in subtropical and temperate soils. When lands with a history of OCP application are used for agricultural purposes, dietary-related risks need to be carefully assessed.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China.
| | - Shibin Qin
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Institute of Eco-Environment Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China
| | - Xiushuang Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lan-Phuong Nguyen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
9
|
Sun L, Ouyang M, Liu M, Liu J, Zhao X, Yu Q, Zhang Y. Enrichment, bioaccumulation and human health assessment of organochlorine pesticides in sediments and edible fish of a plateau lake. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9669-9690. [PMID: 37801211 DOI: 10.1007/s10653-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.
Collapse
Affiliation(s)
- Lei Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Min Ouyang
- Kunming Institute of Physics, Kunming, 650223, China
| | - Min Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Jianhui Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Xiaohui Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Qingguo Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Yinfeng Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China.
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
10
|
Chai L, Zhou Y, Dong H, Gong P, Wang X. Soil contamination and carrying capacity across the Tibetan plateau using structural equation models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122640. [PMID: 37769704 DOI: 10.1016/j.envpol.2023.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Soil contamination is a major environmental issue worldwide. Compared with Arctic, European Alps and Rocky Mountains, the soil contamination and soil environment carrying capacity (SECC) of the Tibetan Plateau (TP) is not systematic and multidimensional. In this study, the levels, influencing factors including climate factors [(i.e., mean annual precipitation (MAP) and mean annual temperature (MAT)], socio-economic factors [(i.e., population, population density and gross domestic product (GDP)], vegetation coverage factor, soil factors [(i.e., pH, soil organic carbon (SOC), total phosphorus and total nitrogen] and topographic factors [(i.e., longitude, latitude and digital elevation model (DEM)] and carrying capacity of multiple soil contaminants [persistent organic pollutants (POPs), heavy metals (HMs) and microplastics (MPs)] was systematically studied. Results show that the spatial distribution of POPs in the eastern was higher than that in the western region, and the structural equation model (SEM) demonstrate that SOC and MAT were the key factors influencing distribution. Regarding HMs, except As, moderate and heavy pollution of the remaining elements were found in the northern and eastern TP regions, and pH and MAP were the main influencing factors. The MPs showed that the distribution of the patches was influenced by GDP and MAP. Furthermore, a higher SECC in the eastern region that gradually decreased from east to west. pH is the primary factors affecting SECC, followed by normalized difference vegetation index (NDVI). An increase of pH and NDVI by one unit is likely to make SECC scores decrease by 0.8 and increase by 0.32, respectively. Taken together, these studies provide a system, cost-effective, and quantitative framework for soil contamination and carrying capacity in the TP.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huike Dong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Gong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Dong C, Zhang Q, Xiong S, Yang R, Pei Z, Li Y, Jiang G. Occurrence and Trophic Transfer of Polychlorinated Naphthalenes (PCNs) in the Arctic and Antarctic Benthic Marine Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17076-17086. [PMID: 37839075 DOI: 10.1021/acs.est.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Information about the occurrence and trophic transfer of polychlorinated naphthalenes (PCNs) in polar ecosystems is vital but scarce. In this study, PCNs were analyzed in benthic marine sediment and several biological species, collected around the Chinese polar scientific research stations in Svalbard in the Arctic and South Shetland Island in Antarctica. Total PCNs in biota ranged from 28 to 249 pg/g of lipid weight (lw) and from 11 to 284 pg/g lw in the Arctic and Antarctic regions, respectively. The concentrations and toxic equivalent (TEQ) of PCNs in polar marine matrices remained relatively low, and the compositions were dominated by lower chlorinated homologues (mono- to trichlorinated naphthalenes). Trophic magnification factors (TMFs) were calculated for congeners, homologues, and total PCNs in the polar benthic marine food webs. Opposite PCN transfer patterns were observed in the Arctic and Antarctic regions, i.e., trophic dilution and trophic magnification, respectively. This is the first comprehensive study of PCN trophic transfer behaviors in remote Arctic and Antarctic marine regions, providing support for further investigations of the biological trophodynamics and ecological risks of PCNs.
Collapse
Affiliation(s)
- Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siyuan Xiong
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
12
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
14
|
Song S, Chen B, Huang T, Ma S, Liu L, Luo J, Shen H, Wang J, Guo L, Wu M, Mao X, Zhao Y, Gao H, Ma J. Assessing the contribution of global wildfire biomass burning to BaP contamination in the Arctic. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100232. [PMID: 36685748 PMCID: PMC9852607 DOI: 10.1016/j.ese.2022.100232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have become cause for growing concern in the Arctic ecosystems, partly due to their stable levels despite global emission reduction. Wildfire is considered one of the primary sources that influence PAH levels and trends in the Arctic, but quantitative investigations of this influence are still lacking. This study estimates the global emissions of benzo[a]pyrene (BaP), a congener of PAHs with high carcinogenicity, from forest and grassland fires from 2001 to 2020 and simulates the contributions of wildfire-induced BaP emissions from different source regions to BaP contamination in the Arctic. We find that global wildfires contributed 29.3% to annual averaging BaP concentrations in the Arctic from 2001 to 2020. Additionally, we show that wildfires contributed significantly to BaP concentrations in the Arctic after 2011, enhancing it from 10.1% in 2011 to 83.9% in 2020. Our results reveal that wildfires accounted for 94.2% and 50.8% of BaP levels in the Asian Arctic during boreal summer and autumn, respectively, and 74.2% and 14.5% in the North American Arctic for the same seasons. The source-tagging approach identified that local wildfire biomass emissions were the largest source of BaP in the Arctic, accounting for 65.7% of its concentration, followed by those of Northern Asia (17.8%) and Northern North America (13.7%). Our findings anticipate wildfires to play a larger role in Arctic PAH contaminations alongside continually decreasing anthropogenic emissions and climate warming in the future.
Collapse
Affiliation(s)
- Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Boqi Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuxin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Luqian Liu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jinmu Luo
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 5180551, PR China
| | - Jiaxin Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Liang Guo
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Min Wu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
15
|
Yang J, Luo Y, Chen M, Lu H, Zhang H, Liu Y, Guo C, Xu J. Occurrence, spatial distribution, and potential risks of organic micropollutants in urban surface waters from qinghai, northwest China. CHEMOSPHERE 2023; 318:137819. [PMID: 36640988 DOI: 10.1016/j.chemosphere.2023.137819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lack of knowledge on the destiny of organic micropollutants (OMPs) in the Tibetan Plateau region of China prevents the public from being aware of the need for protecting these unique aquatic ecosystems that are precious water resources and source areas of the Yellow River. To address this knowledge gap, this study systematically investigated the multi-residue analysis, distribution, and potential risks of six types of OMPs, namely, neonicotinoid pesticides (NEOs), fungicides, organophosphate esters (OPEs), organophosphorus pesticides (OPPs), psychoactive substances (PSs), and antidepressants (ADs), in surface waters of major cities in Qinghai. A total of 31 compounds, consisting of 8 NEOs, 1 fungicide, 12 OPEs, 2 OPPs, 5 PSs, and 3 ADs, were detected in >50% of the sites, showing their ubiquitous nature in the study area. Results showed that the total OMP concentration in surface water was 28.3-908 ng/L, and OPEs were the dominant composition (48.6%-97.4%). The risk quotient values of the detected diazinon and dursban regularly exceeded 1 for aquatic organisms at all sampling sites, indicating moderate-high chronic ecological risk. The joint probability curves showed that dursban and NEOs have higher risk levels than other OMPs. Although the results of the non-carcinogenic total hazard quotient of the OMPs in the surface water was less than 1 in all age groups and the carcinogenic risk was lower than the negligible risk level, the potential risks to children and infants were considerably greater and should not be underestimated. In addition to pollutant concentration and exposure duration, ingestion rate and body weight (BW) are also important factors affecting health risk, with BW having a negative effect. To the best of the authors' knowledge, this report is the first to describe OMP pollution in Qinghai, and the results provide new insight into the ecological security of the water resources of the Tibetan Plateau.
Collapse
Affiliation(s)
- Jiangtao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
16
|
Bolan S, Padhye LP, Mulligan CN, Alonso ER, Saint-Fort R, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130189. [PMID: 36265382 DOI: 10.1016/j.jhazmat.2022.130189] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Catherine N Mulligan
- Department of Bldg, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Emilio Ritore Alonso
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
| | - Roger Saint-Fort
- Department of Environmental Science, Faculty of Science & Technology, Mount Royal University, Calgary, AB T3E6K6, Canada
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
17
|
Li W, Chen D, Chen S, Zhang J, Song G, Shi Y, Sun Y, Ding G, Peijnenburg WJGM. Modelling the octanol-air partition coefficient of aromatic pollutants based on the solvation free energy and the dimer effect. CHEMOSPHERE 2022; 309:136608. [PMID: 36183880 DOI: 10.1016/j.chemosphere.2022.136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In this study, generalized predictive models were developed to estimate KOA of four kinds of aromatic pollutants based on the calculated solvation free energy and taking the dimer effect into account. Uncorrected log KOA values, which were directly estimated from the calculated solvation free energy of individual molecules, underestimated experimental values, and the deviation increased with increasing log KOA. Dimers were found to greatly affect the apparent KOA values of these aromatic pollutants, which were driven by π-π interactions. London dispersion and exchange-repulsion terms were identified to be dominant components of the underlying π-π interactions. It is interesting to find that the π-π interactions of polybrominated diphenyl ethers correlate with not only the molecular polarizability but also the size of opposing aromatic surfaces, which leads to a different trend of π-π interactions from other aromatic pollutants. A universal quantitative structure-activity relationship model was developed to estimate the proportion of dimers based on five molecular structural descriptors relevant to the π-π interactions. After calibration with the dimer effect, estimations of log KOA were consistent with experimental values. Therefore, the dimer effect should be taken into consideration when investigating the partition behavior of aromatic pollutants, and the solvation free energy model could be an alternative method for the prediction of KOA.
Collapse
Affiliation(s)
- Wanran Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Shuhua Chen
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, PR China.
| | - Jing Zhang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, PR China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Willie J G M Peijnenburg
- Center for Safety of Substances and Products, National Institute of Public Health and the Environment, P.O. Box 1, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300, the Netherlands
| |
Collapse
|
18
|
Dong C, Xiong S, Yang R, Pei Z, Li Y, Zhang Q, Jiang G. Polychlorinated naphthalenes (PCNs) in soils and plants from Svalbard, Arctic: Levels, distribution, and potential sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157883. [PMID: 35952869 DOI: 10.1016/j.scitotenv.2022.157883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As persistent organic pollutants (POPs) newly banned by the Stockholm Convention, polychlorinated naphthalenes (PCNs) have been widely detected in various environmental matrices. To date, however, the occurrence of PCNs in soils and plants in the Arctic environment has not been reported. In the current study, the concentrations and distribution of PCNs in Arctic soils and plants from Svalbard were analyzed. Total PCN concentrations ranged from 5.3 to 2550 pg/g dry weight (dw) in soils and 77 to 870 pg/g dw in plants. The higher levels of PCNs near the research stations and Longyearbyen town highlighted the significant influence of local anthropogenic emission sources. The composition of PCNs in Arctic soils and plants was dominated by lower chlorinated homologues, especially mono- to trichlorinated naphthalenes, which accounted for over 80 % of total PCNs in the soil and plant samples. The correlation analysis indicated the potential influences of total organic carbon (TOC) content on PCN concentrations in the soil, and octanol-air partition coefficients (KOA) or octanol-water partition coefficients (KOW) on PCN accumulation from soils to plants. To the best of our knowledge, this is the first study to report on the concentration and distribution of PCNs in Arctic soils and plants.
Collapse
Affiliation(s)
- Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
20
|
Chai L, Zhou Y, Wang X. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1616-1630. [PMID: 35770617 DOI: 10.1039/d1em00550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Global warming profoundly affects not only mountainous and polar environments, but also the global and regional cycling of pollutants. Mercury (Hg) and persistent organic pollutants (POPs) have global transport capacity and are regulated by the Minamata Convention and Stockholm Convention, respectively. Since the beginning of this century, understanding of the origin and fate of Hg and POPs on the Tibetan Plateau (TP, also known as the third pole) has been deepening. In this paper, the existing literature is reviewed to comprehensively understand the atmospheric transport, atmospheric deposition, cumulative transformation and accumulation of Hg and POPs on the TP region under the background of global warming. The biogeochemical cycle of both Hg and POPs has the following environmental characteristics: (1) the Indian summer monsoon and westerly winds carry Hg and POPs inland to the TP; (2) the cold trapping effect causes Hg and POPs to be deposited on the TP by dry and wet deposition, making glaciers, permafrost, and snow the key sinks of Hg and POPs; (3) Hg and POPs can subsequently be released due to the melting of glaciers and permafrost; (4) bioaccumulation and biomagnification of Hg and POPs have been examined in the aquatic food chain; (5) ice cores and lake cores preserve the impacts of both regional emissions and glacial melting on Hg and POP migration. This implies that comprehensive models will be needed to evaluate the fate and toxicity of Hg and POPs on larger spatial and longer temporal scales to forecast their projected tendencies under diverse climate scenarios. Future policies and regulations should address the disrupted repercussions of inclusive CC such as weather extremes, floods and storms, and soil sustainable desertification on the fate of Hg and POPs. The present findings advocate the strengthening of the cross-national programs aimed at the elimination of Hg and POPs in polar (Arctic, Antarctic and TP) and certain mountainous (the Himalaya, Rocky Mountains, and Alps) ecosystems for better understanding the impacts of global warming on the accumulation of Hg/POPs in cold and remote areas.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zou X, Hou S, Wu S, Liu K, Huang R, Zhang W, Yu J, Zhan Z, Pang H. The first detection of organophosphate esters (OPEs) of a high altitude fresh snowfall in the northeastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155615. [PMID: 35508230 DOI: 10.1016/j.scitotenv.2022.155615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Due to the gradual phase-out of brominated flame retardants, the consumption of organophosphate esters (OPEs) as suitable alternatives has increased in recent years. These compounds could be trapped and accumulate in the widely developed glaciers such as Laohugou Glacier No. 12 in the Tibetan Plateau (TP), as snow is an effective scavenger of organic pollutants in the atmosphere. However, large gaps in knowledge still exist regarding the occurrence, distribution, and source analysis of OPEs in TP glaciers. In this study, eight surface snow samples collected at different altitudes on Laohugou Glacier No. 12 on the northeastern edge of the TP in order to investigate sources and distribution of OPEs. The results showed that the concentrations of ∑7OPEs varied from 54.53 ng/L to 169.15 ng/L, with a mean of 99.84 ng/L. ∑Chlorinated-OPEs (Cl-OPEs) were dominant in these samples, accounting for 83% of the total OPE concentrations. ∑OPEs concentration increases with altitude on Laohugou Glacier No. 12, implying an altitudinal magnification effect on OPEs deposition. Principal component analysis suggests that OPEs primarily originated from traffic emissions and their variations were largely driven by dust transport. Analyses of backward trajectories of air masses and the wind field indicate that these OPEs might have come from urban emissions northwest of Laohugou Glacier No. 12. This study provides the first valuable insight into the environmental behavior of OPEs in Tibetan glaciers.
Collapse
Affiliation(s)
- Xiang Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Shugui Hou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shuangye Wu
- Department of Geology and Environmental Geosciences, University of Dayton, Dayton, OH 45469, USA
| | - Ke Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Renhui Huang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Wangbin Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jinhai Yu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zhaojun Zhan
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hongxi Pang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Liu W, Zhang H, Liu Y, Li X, Lu H, Guo C, Xu J. Occurrence, distribution, and ecological risk of psychoactive substances in typical lakes and rivers in Qinghai-Tibet Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113928. [PMID: 35926407 DOI: 10.1016/j.ecoenv.2022.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, distribution, and ecological risks of psychoactive substances (PSs) in Qinghai-Tibet Plateau (QTP) was investigated in this study. The surface water samples were collected in July in 2020 from five major water bodies, and 9 PSs were determined by liquid chromatography-mass spectrometry. The mean concentrations of the total PSs were 2.19-96.86 ng/L in lakes and 4.56-34.47 ng/L in rivers. Amphetamine (AMP) was the predominant contaminant both in lakes and rivers with a mean concentration of 12.21 ± 22.76 ng/L and 9.83 ± 6.14 ng/L, respectively. The compositions of PSs in lakes and rivers were significantly different. AMP, methadone (MTD), 3,4-methylenedioxyamphetamine (MDA), and ketamine (KET) were the most detected contaminants in lakes, while in rivers AMP, MDA, heroin (HER), and methamphetamine (METH) were the most detected ones. Concentrations of AMP and MTD, the two predominant drugs, varied spatially, with the decreasing concentration of AMP in the order of Huangshui River > Yamzhog Yumco Lake > Qinghai Lake > Lhasa River > Namco Lake, and of MTD in the order of Qinghai Lake > Namco Lake > Huangshui River > Yamzhog Yumco Lake. The risk quotients (RQs) of PSs ranged from 4.44 × 10-6 to 4.32 × 10-2, indicating a low risk of PSs in the aquatic ecosystem in QTP. Compared with other research in the world, the contamination of psychoactive substances in the Qinghai-Tibet Plateau was at relatively low levels with low ecological risks.
Collapse
Affiliation(s)
- Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
23
|
Wu JY, Zhu T, Chen ZM, Guo JS, Hou XY, Wang DR, Zhang LX, Gao JM. Occurrence, seasonal variation, potential sources, and risks of organophosphate esters in a cold rural area in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155361. [PMID: 35460793 DOI: 10.1016/j.scitotenv.2022.155361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) in the environment have been the focus of increasing attention due to their ubiquity and potential toxicity. However, there is little information on the occurrence and characteristics of OPEs in rural areas, especially those with cold year-round temperatures and frozen soil in winter. In this study, environmental samples were collected, in summer and winter, from villages and towns in Northeast China differing in the types and intensities of their anthropogenic activities. The samples were analyzed for 12 OPEs. The results showed the widespread presence of alkyl-OPEs, Cl-OPEs, and aryl-OPEs in the water, soil, snow, and ice of the study sites. In summer, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the primary compounds in water and soil, respectively. The ∑12OPE concentration in three villages varied from 46.26 to 257.37 ng/L in water, and from 6.62 to 19.46 ng/g in soils. The ∑12OPE concentrations in water were lower in winter than summer, but conversely, ∑12OPE concentrations in frozen soils in winter were higher than those in soils in summer. In winter, there was a shift in the predominant OPEs in water and frozen soils, with dominance of TCEP and complex compounds, respectively. Obvious seasonal characteristics of the potential sources and ecological risks of OPEs in these areas were also determined, with more complex sources of OPEs seen in summer than winter. In summer, only 2-ethylhexyl diphenyl phosphate (EHDPP) in water posed a potential risk, while in summer and, especially, in winter, EHDPP and tris(2-ethylhexyl) phosphate posed potential risks in soils. The high ∑12OPE concentration in snow (56.77 ng/L) implied that wet deposition can amplify OPEs in other environmental compartments. This is the first systematic report on OPEs in a cold rural area. Our findings highlight the need for seasonal monitoring of OPEs in similar areas.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Tong Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhu-Man Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xian-Yu Hou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - De-Rui Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Li-Xia Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
24
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
25
|
Li Y, Xiong S, Hao Y, Yang R, Zhang Q, Wania F, Jiang G. Organophosphate esters in Arctic air from 2011 to 2019: Concentrations, temporal trends, and potential sources. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128872. [PMID: 35429759 DOI: 10.1016/j.jhazmat.2022.128872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Concentrations of seven organophosphate ethers (OPEs) were quantified in passive air samples deployed for eight consecutive one-year periods from August 2011 to August 2019 at seven sampling sites in the area of Ny-Ålesund, Svalbard, Arctic. Non-chlorinated and chlorinated OPEs were approximately equally abundant and the mean atmospheric concentration for the sum of OPEs was around 300 pg/m3. Levels of OPEs were two orders of magnitude higher than those of polybrominated diphenyl ethers in the sampling regions, likely a result of efficient long-range transport and higher environmental release rates. For the two most abundant compounds, tris(2-chloroethyl) phosphate and tris-n-butyl phosphate, increasing temporal trends in atmospheric concentrations were observed, with estimated doubling times of 2.9 and 4.2 years, respectively. Slightly elevated OPE levels at two sampling sites in the vicinity of a research station and the local airport suggest the possible influence of local contamination sources. Re-volatilization from glaciers may also influence levels of OPE in the Arctic atmosphere.
Collapse
Affiliation(s)
- Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Lyons R, Weatherly S, Waters J, Bentley J. Thermodynamics Affecting Glacier-Released 4-Nonylphenol Deposition in Alaska, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1623-1636. [PMID: 35404492 PMCID: PMC9324835 DOI: 10.1002/etc.5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 04/07/2022] [Indexed: 05/15/2023]
Abstract
Glaciers have recently been recognized as a secondary source of organic pollutants. As glacier melt rates increase, downstream ecosystems are at increasing risk of exposure to these pollutants. Nonylphenols (NPs) are well-documented anthropogenic persistent pollutants whose environmental prevalence and ecotoxicity make them of immediate concern to the health of humans and wildlife populations. As glacier melt increases, transport of NPs to downstream environments will also increase. Snow, ice, meltwater, and till for five glaciers in the Chugach National Forest and Kenai Fjords National Park, Alaska, USA, were investigated for the presence of 4-nonylphenol (4NP). Average concentrations for snow, ice, meltwater, and glacial till were 0.77 ± .017 µg/L snow water, 0.75 ± .006 µg/L, 0.26 ± .053 µg/L, and 0.016 ± .004 µg/g, respectively. All samples showed the presence of 4NP. Deposition of 4NP downstream from glaciers will depend more on the ionic strength of the water than organic carbon to drive partitioning and deposition. Laboratory studies of partition coefficients showed that ionic strength contributed 59% of the driving force behind partitioning, while organic carbon contributed 36%. Evidence was found for interaction between organic carbon and the aqueous phase. The 4NP Setschenow constants (Ks ) were determined for particle types with varying percentages of organic carbon. Values of Ks increased with the percentage of organic carbon. These relationships will shape further studies of 4NP deposition into the environment downstream of glacier outflow. Environ Toxicol Chem 2022;41:1623-1636. © The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rebecca Lyons
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| | - Shaun Weatherly
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| | - Jason Waters
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| | - Jim Bentley
- Department of Chemistry, College of Arts and SciencesUniversity of RedlandsRedlandsCaliforniaUSA
| |
Collapse
|
27
|
García-Solorio L, Muro C, De La Rosa I, Amador-Muñoz O, Ponce-Vélez G. Organochlorine pesticides and polychlorinated biphenyls in high mountain lakes, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49291-49308. [PMID: 35217954 DOI: 10.1007/s11356-022-19177-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the El Sol and the La Luna alpine lakes. The lakes are located in central Mexico, in the crater of the Nevado de Toluca volcano. The El Sol and the La Luna lakes are extremely relevant in Mexico and in the world because they are recognized as pristine regions and environmental reservoirs. Samples of atmospheric aerosol, sediment, plankton, and Tubifex tubifex (sludge worm) were collected at three different sample locations for three years (2017, 2018, and 2019) at three different times of year, meaning that the weather conditions at the time of sampling were different. Pollutants were analysed by gas chromatography-mass spectrometry with negative chemical ionisation (GC-MS/NCI). Endosulfan was the most frequent and abundant pollutant, showing the highest peaks of all. Atmospheric aerosol revealed Σ2 = 45 pg/m3, including α and β, while sediment lakes displayed α, β and endosulfan sulfate as Σ3 = 1963 pg/g, whereas plankton and Tubifex tubifex showed Σ2 = 576 pg/g and 540 pg/g for α and β respectively. Results of endosulfan ratios (α/β) and (α-β/endosulfan sulfate) suggest that both fresh and old discharges continue to arrive at the lakes. This study shows for the first time the pollution levels of OCP and PCB in high mountain lakes in Mexico. These results that must be considered by policy makers to mitigate their use in the various productive activities of the region.
Collapse
Affiliation(s)
- Liliana García-Solorio
- División de Estudios de Posgrado E Investigación, Tecnológico Nacional de México, Instituto Tecnológico de Toluca, Toluca, México
| | - Claudia Muro
- División de Estudios de Posgrado E Investigación, Tecnológico Nacional de México, Instituto Tecnológico de Toluca, Toluca, México.
| | - Isaías De La Rosa
- División de Estudios de Posgrado E Investigación, Tecnológico Nacional de México, Instituto Tecnológico de Toluca, Toluca, México
| | - Omar Amador-Muñoz
- Centro de Ciencias de La Atmósfera, Universidad Nacional Autónoma de México, Cd. de México, 04510, México
| | - Guadalupe Ponce-Vélez
- Instituto de Ciencias del Mar Y Limnología, Universidad Autónoma de México, Cd. de México, 04510, México
| |
Collapse
|
28
|
Xie J, Tao L, Wu Q, Bian Z, Wang M, Li Y, Zhu G, Lin T. Bioaccumulation of organochlorine pesticides in Antarctic krill (Euphausia superba): Profile, influencing factors, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128115. [PMID: 34959217 DOI: 10.1016/j.jhazmat.2021.128115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Accumulation of organochlorine pesticides (OCPs) in Antarctic krill (Euphausia superba), a keystone species in the Southern Ocean, is potentially harmful to the Antarctic ecosystem and human health. In the current study, we collected E. superba specimens (including muscle and carapace tissues) from Bransfield Strait in northern Antarctic Peninsula and South Georgia to analyze the profile, influencing factors and mechanisms of OCPs bioaccumulation in them. Results indicated that the biological traits (δ13C, δ15N and lipid contents) of krill were significantly affected by habitat. There may exist growth dilution of OCPs in Antarctic krill and no fresh OCPs input in Antarctica, except for endosulfan I. Based on lipid-normalized concentrations, no significant differences were observed between the two regions at most sampling sites. However, OCP levels showed tissue and sex dependence. Boosted regression trees (BRTs) and partial least squares structural equation models (PLS-SEMs) were built to better investigate the main factors affecting the bioaccumulation of OCPs. Lipid content, negatively correlated with OCP levels, was the main factor. In vitro silicon modeling indicated that CYP3A4 metabolism capacity in krill contributed to the OCP residues except for endosulfan I. The results of this study expand current knowledge of OCPs in Antarctic marine biota, as well as their influencing factors and potential mechanisms.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihe Bian
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengqiu Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guoping Zhu
- Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China; Polar Marine Ecosystem Group, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
29
|
Cao X, Huo S, Zhang H, Ma C, Zheng J, Wu F, Song S. Seasonal variability in multimedia transport and fate of benzo[a]pyrene (BaP) affected by climatic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118404. [PMID: 34699921 DOI: 10.1016/j.envpol.2021.118404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The impact of meteorological factors on the transport behavior and distribution of volatile and semi-volatile organic pollutants has become an area of increasing concern. Here, we analyzed seasonal variation in climatic variables including wind, temperature, and precipitation to quantitatively assess the impact of these factors on the multimedia transport and fate of BaP in the continental region of China using a Berkeley-Trent (BETR) model. The advective rates of air exhibited an increasing trend of autumn (1.830 mol/h) < summer (1.975 mol/h) < winter (2.053 mol/h) < spring (2.405 mol/h) in association with increasing wind speed, indicating that lower atmospheric BaP concentrations are present in regions with high wind speeds and advective rates. The air-soil transport rates (0.08-45.55 mol/h) in winter were higher than in summer (0.07-32.41 mol/h), while low winter temperatures accelerate BaP accumulation in terrestrial ecosystems due to cold deposition. Cold deposition effects were more evident in northern regions than in southern regions. Further, increasing precipitation enhanced air-soil and soil-freshwater transport rates with the correlation coefficients of r = 0.445 and r = 0.598 respectively, while decreasing the air-vegetation transport rates (r = 0.475), thereby contributing to the accumulation of BaP in soils and freshwaters. In the light of the potential dispersion of BaP pollution at regional and global scales affected by these key climatic factors, this indirectly indicated the impact of future climate change on the BaP transport. Thus, flexible policy interventions should be enacted to slow future climate change.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; Beijing Normal University, Beijing, 100874, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jiaqi Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
30
|
Shen MW, Chen HC, Chen ST. A Pest or Otherwise? Encounter of Oryctes rhinoceros (Coleoptera: Scarabaeidae) with Persistent Organic Pollutants. INSECTS 2021; 12:insects12090818. [PMID: 34564258 PMCID: PMC8467767 DOI: 10.3390/insects12090818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary A native, widely spread beetle, Oryctes rhinoceros, in Southeast Asia may clean up some of the persistent organic pollutants (POPs) for us if guarded in a controlled manner. Some xenobiotics persisting in our environment may cause harmful effects to the living creatures within their food web via a so-called “bioaccumulation effect”. The encounter of wild creatures with the POPs appears inevitable. Luckily, this study revealed that the proper breeding of the commonly seen beetle could degrade more than 95% of some studied POPs simply by ingestion. The beetle larvae tolerated different POPs at various extents, yet through an acclimation operation, the beetle’s mortality rate could be greatly reduced. Even though O. rhinoceros is considered a pest for some valuable corps, its removal of POPs in a natural, efficient and passive (i.e., fewer energy inputs) manner makes this alternative promising and deserving of further explorations. Abstract The potential use of invertebrates as bioreactors to treat environmental pollutants is promising and of great interest. Three types of the persistent organic pollutants (POPs), namely pentachlorophenol (PCP), PAHs (naphthalene and phenanthrene) and dieldrin (DLN), were spiked in soil and treated by using Oryctes rhinoceros larvae, a known pest of coconut trees in southeast Asia, and also the indicators of POP toxicity and the fate and degradability of the ingested POPs were assessed. The larvae were tested at various levels of the POPs and went through an acclimation process. Without acclimation, the tolerance limits of the larvae toward PCP, PAHs and DLN were 200, 100 and 0.1 mg/kg-soil, respectively, yet with acclimation, the tolerance levels increased to 800, 400 and 0.5 mg/kg-soil, respectively. Biodegradation rates of all the tested POPs were >90% by week 2, with <5% and nearly 0% remaining in the feces and body of the larvae, respectively. The results suggest that the use of the beetle larvae in soil POP decontamination is doable.
Collapse
Affiliation(s)
- Meng-Wei Shen
- Ph.D. Program in Engineering Science and Technology, College of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Hung-Chuan Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Shyi-Tien Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-601-1000 (ext. 32327); Fax: +886-7-601-1061
| |
Collapse
|
31
|
Research status and regulatory challenges of persistent organic pollutants in Sierra Leone. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Fu J, Fu K, Chen Y, Li X, Ye T, Gao K, Pan W, Zhang A, Fu J. Long-Range Transport, Trophic Transfer, and Ecological Risks of Organophosphate Esters in Remote Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10192-10209. [PMID: 34263594 DOI: 10.1021/acs.est.0c08822] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate esters (OPEs) have been a focus in the field of environmental science due to their large volume production, wide range of applications, ubiquitous occurrence, potential bioaccumulation, and worrisome ecological and health risks. Varied physicochemical properties among OPE analogues represent an outstanding scientific challenge in studying the environmental fate of OPEs in recent years. There is an increasing number of studies focusing on the long-range transport, trophic transfer, and ecological risks of OPEs. Therefore, it is necessary to conclude the OPE pollution status on a global scale, especially in the remote areas with vulnerable and fragile ecosystems. The present review links together the source, fate, and environmental behavior of OPEs in remote areas, integrates the occurrence and profile data, summarizes their bioaccumulation, trophic transfer, and ecological risks, and finally points out the predominant pollution burden of OPEs among organic pollutants in remote areas. Given the relatively high contamination level and bioaccumulation/biomagnification behavior of OPEs, in combination with the sensitivity of endemic species in remote areas, more attention should be paid to the potential ecological risks of OPEs.
Collapse
Affiliation(s)
- Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kehan Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Institute of Grain Science, Beijing 100053, China
| | - Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Tong Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ke Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
33
|
Pawlak F, Koziol K, Polkowska Z. Chemical hazard in glacial melt? The glacial system as a secondary source of POPs (in the Northern Hemisphere). A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:145244. [PMID: 33832784 DOI: 10.1016/j.scitotenv.2021.145244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 05/24/2023]
Abstract
Toxicity of compounds belonging to persistent organic pollutants (POPs) is widely known, and their re-emission from glaciers has been conclusively demonstrated. However, the harmful effects associated with such secondary emissions have yet to be thoroughly understood, especially in the spatial and temporal context, as the existing literature has a clear sampling bias with the best recognition of sites in the European Alps. In this review, we elaborated on the hazards associated with the rapid melting of glaciers releasing organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs). To this end, we collated knowledge on: (1) the varying glacier melt rate across the Northern Hemisphere, (2) the content of POPs in the glacial system components, including the less represented areas, (3) the mechanisms of POPs transfer through the glacial system, including the importance of immediate emission from snow melt, (4) risk assessment associated with POPs re-emission. Based on the limited existing information, the health risk of drinking glacial water can be considered negligible, but consuming aquatic organisms from these waters may increase the risk of cancer. Remoteness from emission sources is a leading factor in the presence of such risk, yet the Arctic is likely to be more exposed to it in the future due to large-scale processes shifting atmospheric pollution and the continuous supply of snow. For future risk monitoring, we recommend to explore the synergistic toxic effects of multiple contaminants and fill the gaps in the spatial distribution of data.
Collapse
Affiliation(s)
- Filip Pawlak
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krystyna Koziol
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Zaneta Polkowska
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
34
|
Lebelo K, Malebo N, Mochane MJ, Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5795. [PMID: 34071295 PMCID: PMC8199310 DOI: 10.3390/ijerph18115795] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Historically, chemicals exceeding maximum allowable exposure levels have been disastrous to underdeveloped countries. The global food industry is primarily affected by toxic chemical substances because of natural and anthropogenic factors. Food safety is therefore threatened due to contamination by chemicals throughout the various stages of food production. Persistent Organic Pollutants (POPs) in the form of pesticides and other chemical substances such as Polychlorinated Biphenyls (PCBs) have a widely documented negative impact due to their long-lasting effect on the environment. This present review focuses on the chemical contamination pathways along the various stages of food production until the food reaches the consumer. The contamination of food can stem from various sources such as the agricultural sector and pollution from industrialized regions through the air, water, and soil. Therefore, it is imperative to control the application of chemicals during food packaging, the application of pesticides, and antibiotics in the food industry to prevent undesired residues on foodstuffs. Ultimately, the protection of consumers from food-related chemical toxicity depends on stringent efforts from regulatory authorities both in developed and underdeveloped nations.
Collapse
Affiliation(s)
- Kgomotso Lebelo
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Ntsoaki Malebo
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Mokgaotsa Jonas Mochane
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Muthoni Masinde
- Centre for Sustainable SMART Cities, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa;
| |
Collapse
|
35
|
Hoang AQ, Tu MB, Takahashi S, Kunisue T, Tanabe S. Snakes as bimonitors of environmental pollution: A review on organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144672. [PMID: 33513507 DOI: 10.1016/j.scitotenv.2020.144672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Monitoring data on organic pollutants published between the late 1960s and 2020 are reviewed to provide comprehensive and updated insights into their bioaccumulation characteristics, sources, and fate in snakes. Multiple organic pollutant classes including pesticides, polychlorinated biphenyls, chlorinated paraffins, dioxin-related compounds, alkanes, polycyclic aromatic hydrocarbons, flame retardants, plasticizers, etc., were detected in various aquatic and terrestrial snake species with concentrations and patterns varying between species and locations. In general, higher concentrations of organic pollutants were found in snakes collected from contaminated sites (e.g., densely populated, pesticide-treated, and waste processing areas), suggesting that snakes can serve as good biomonitors of environmental pollution caused by organic contaminants. Factors influencing concentrations and patterns of organic pollutants in snakes are discussed, providing an overview of current understanding about their accumulation, transformation, and elimination processes. Potential negative effects associated with organic pollutants in snakes and their predators are also considered. Based on such discussions, research gaps and future perspectives on the utilization of snake biomonitoring studies are addressed, heading towards an effective monitoring and assessment scheme for a variety of legacy and emerging organic pollutants in the environment.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
36
|
Riaz R, de Wit CA, Malik RN. Persistent organic pollutants (POPs) in fish species from different lakes of the lesser Himalayan region (LHR), Pakistan: The influence of proximal sources in distribution of POPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143351. [PMID: 33183795 DOI: 10.1016/j.scitotenv.2020.143351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Fish dwelling in remote mountain water systems are sensitive to long term exposure of POPs and can be used as an important bioindicator of POPs pollution in fragile mountain ecosystems. Current study aimed to investigate the concentrations and patterns of organic pollutants in fish tissues from different lakes of the Lesser Himalayan Region (LHR). OCPs, PCBs, PBDEs were analyzed in four common edible fish species of the LHR: Oncorhynchus mykiss, Labeo rohita, Hypophthalmichthys molitrix and Orechromis aureus. The fish were collected from lakes with different types of catchment areas (glacial, non-glacial mountain region and urban region) and extent of anthropogenic influence. The levels OCPs, PCBs and PBDEs analyzed in the selected fish species were in range of 0.21-587, 6.4-138 and 1.2-14 ng g-1 lw, respectively. The ∑DDTs, higher chlorinated PCBs, tetra- and penta-BDEs were more prevalent in urban and remote lakes whereas pp'-DDE, lower chlorinated PCBs and BDE-47 and -99 were predominant in fish species from glacial lakes. ∑DDTs, ∑PCBs and ∑PBDEs showed statistically significant differences (p < 0.05) among species, trophic guilds (carnivore, herbivore and omnivore) and feeding regimes (surface, bottom and column feeder) and ∑HCH showed a significant difference only among trophic guilds. The stable isotope values of δ 15N and δ13C differed significantly among species for ∑HCH, ∑PCBs, ∑PBDEs (p < 0.05) and ∑DDT (p < 0.01). The range of δ13C values (-34 to -19‰) indicated the importance of littoral and pelagic sources of dietary carbon. Trophic position and dietary proxies were identified as important variables for explaining the variability of the studied compounds. Kohonen self-organizing maps (SOM) showed that in addition to trophic position and other physiological characteristics of fish, that the type of lakes and proximal sources of POPs were the most important predictors for distribution of organic contaminants in fish samples from LHR.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden..
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| |
Collapse
|
37
|
Zhao Y, Chen YP, Macdonald DW, Li J, Ma QY. Organochlorine compounds pose health risks to the Qinling Giant Panda (Ailuropoda melanoleuca qinlingensis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116427. [PMID: 33445128 DOI: 10.1016/j.envpol.2021.116427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
To assess organochlorine compound (OC) contamination, its possible sources, and adverse health impacts on giant pandas, we collected soil, bamboo, and panda fecal samples from the habitat and research center of the Qinling panda (Ailuropoda melanoleuca qinlingensis)-the rarest recognized panda subspecies. The polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations were comparatively low which suggests that moderate sources of OC pollution currently. OC levels were lower in samples from nature reserve than in those collected from pandas held in captivity, and OC levels within the reserve increased between functional areas in the order: core, buffer and experimental. The distribution patterns, and correlation analyses, combined with congener distributions suggested PCBs and OCPs originated from similar sources, were dispersed by similar processes, being transported through atmosphere and characterized by historical residues. Backward trajectory analyses results, and detected DRINs (aldrin, dieldrin, endrin and isodrin) both suggest long-range atmospheric transport of pollution source. PCBs pose potential cancer risk, and PCB 126 was the most notable toxicant as assessed be the high carcinogenic risk index. We provide data for health risk assessment that can guide the identification of priority congeners, and recommend a long-term monitoring plan. This study proposes an approach to ecotoxicological threats whereby giant pandas may be used as sentinel species for other threatened or endangered mammals. By highlighting the risks of long-distance transmission of pollutants, the study emphasizes the importance of transboundary cooperation to safeguard biodiversity.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, 710061, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Oxon, OX13 5QL, UK
| | - Yi-Ping Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, 710061, China.
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Oxon, OX13 5QL, UK
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qing-Yi Ma
- Shaanxi Wild Animal Research Center, Zhouzhi, Xi'an, 710402, China
| |
Collapse
|
38
|
Li H, Bu D, Gao Y, Zhu N, Wu J, Chen X, Fu J, Wang Y, Zhang A, Jiang G. Long-range atmospheric transport and alpine condensation of short-chain chlorinated paraffins on the southeastern Tibetan Plateau. J Environ Sci (China) 2021; 99:275-280. [PMID: 33183706 DOI: 10.1016/j.jes.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 05/22/2023]
Abstract
Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins (SCCPs). The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau. The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight (lw) and appeared to have an increasing trend with altitude. For congeners, C10 dominated among all the congener groups. The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient (Koa). C10 congeners showed an increasing trend with altitude, whereas C13 congeners were negatively correlated with altitude. Volumetric bioconcentration factors (BCF) of SCCPs reached 8.71 in lichens, which were higher than other semivolatile organic compounds (SVOCs) such as organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hexabromocyclododecane (HBCD). These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Jinan 250014, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Duo Bu
- Department of Chemistry & Environmental Science, Tibet University, Lhasa 850000, China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nali Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Jinan 250014, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
39
|
Yang R, Xie T, Wang P, Li Y, Zhang Q, Jiang G. Historical trends of PCBs and PBDEs as reconstructed in a lake sediment from southern Tibetan Plateau. J Environ Sci (China) 2020; 98:31-38. [PMID: 33097155 DOI: 10.1016/j.jes.2020.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
High-altitude lake sediment can be used as a natural archive to reconstruct the history of pollutants. In this work, the temporal distribution of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were determined using a high-resolution gas chromatography coupled with high-resolution mass spectrometer (HRGC/HRMS) in an alpine lake sediment core collected from the southern Tibetan Plateau (TP) to examine whether the expected decreasing trends due to the implementation of the international Conventions could be observed. The concentrations of PCBs and PBDEs in the sediment core were in the range of 11.8-142 pg/g dw and ND-457 pg/g dw, and their fluxes were in the range of 2.51-31.7 ng/(m2·yr) and ND-43.2 ng/(m2·yr), respectively. The prevalence of low-chlorinated (tri-CB) PCBs and low-brominated (tri- to tetra-) PBDEs in most sections of the sediment profiles was observed, suggesting that the light molecular weight PCBs and PBDEs have most likely reached lake sediments by long-range atmospheric transport from distant sources. Despite the restrictions on their applications, the sediment records for the concentrations and fluxes showed no corresponding decreasing trend with restrictions for PCBs, which suggested that these POPs (e.g., PCBs) were still emitted to the environment owing to the influence of primary or secondary emissions. To our knowledge, this is the first report on input history of atmospheric PCBs and PBDEs recorded in TP Lake sediment.
Collapse
Affiliation(s)
- Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Ting Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
40
|
Huang K, Liang J, Wang J, Ouyang Y, Wang R, Tang T, Luo Y, Tao X, Yin H, Dang Z, Lu G. Effect of nitrate on the phototreatment of Triton X-100 simulated washing waste containing 4,4'-dibromodiphenyl ether: Kinetics, products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139247. [PMID: 32438183 DOI: 10.1016/j.scitotenv.2020.139247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effects of nitrate on the ultraviolet (UV) treatment of simulated washing wastes containing Trion X-100 (TX-100) surfactant and 4,4'-dibromodiphenyl ether (BDE-15) pollutant. The presence of nitrate accelerated the photodegradation of BDE-15 and TX-100, because they reacted with reactive oxygen species (ROS) produced from conversion between nitrate and nitrite. Due to nitrite having a stronger radical quenching property than nitrate, nitrite hindered TX-100 decay while the photodegradation rate of BDE-15 was similar to that in the presence of nitrate. This indicated that nitrate/nitrite affected BDE-15 photodegradation by photosensitization and TX-100 loss by ROS attack. An increased TX-100 concentration increased the loss of total inorganic nitrogen possibly owing to an increase in organic nitrogen formation through TX-100 nitration reactions. At pH < 7 HOONO rapidly isomerized to NO3-, and at pH = 7-9 it homolyzed to ONOO-, which increased OH production to decay the BDE-15 and TX-100 and also increased NO2- formation. BDE-15 mainly underwent debromination, and some rearrangement, ring formation, nitration and hydroxylation products were detected, indicating that the produced OH and NO2 attacked the BDE-15 and products. Furthermore, broken-chain, carboxylation, hydroxylation and nitro products were detected by Liquid chromatography high resolution mass spectrometry (LC-HRMS). Escherichia coli was used to assess the toxicity of washing waste containing nitrate: the presence of nitrate will increase the wastes' toxicity during UV treatment. Therefore, the presence of nitrate is deleterious to the UV treatment of washing wastes, and it is important to remove nitrates and nitrites from washing waste before UV irradiation.
Collapse
Affiliation(s)
- Kaibo Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanxi Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yusen Luo
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xueqin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
41
|
Huang H, Li J, Zhang Y, Chen W, Ding Y, Chen W, Qi S. How persistent are POPs in remote areas? A case study of DDT degradation in the Qinghai-Tibet Plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114574. [PMID: 33618471 DOI: 10.1016/j.envpol.2020.114574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) can undergo long-range atmospheric transport (LRAT) and deposit in remote areas. How persistent are POPs in remote areas? To answer this question, we measured two parent-DDTs and eight metabolites in soil and air along a transect in the Qinghai-Tibet Plateau, China, to quantitatively evaluate the degree of degradation of DDTs. DDTs were ubiquitous in soil and air with the total DDT concentrations (Σ10DDTs) ranging 37.7-70,100 pg g-1 dw and 3.4-175 pg m-3, respectively. The air-soil equilibrium status indicated that the forest/basin soil was a source for most DDTs, while the plateau soil was a sink receiving DDTs from the LRAT and photodegradation in the air (for metabolites). The metabolites accounted for avg. 64.1% of Σ10DDTs in soil, with avg. 93.2% from local degradation, implying the overall high degradation of DDTs. With the significant degradation, the continuous input via LRAT was deemed to be the main reason for the stable level (persistence) of POPs in the Qinghai-Tibet Plateau. Therefore, we emphasize the importance of source control for the risk management of POPs. POPs in the environment might decline rapidly due to a reduction in source input and significant degradation as indicated by our study.
Collapse
Affiliation(s)
- Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
42
|
Sun X, Zhang X, Muir DCG, Zeng EY. Identification of Potential PBT/POP-Like Chemicals by a Deep Learning Approach Based on 2D Structural Features. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8221-8231. [PMID: 32484664 DOI: 10.1021/acs.est.0c01437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying potential persistent organic pollutants (POPs) and persistent, bioaccumulative, and toxic (PBT) substances from industrial chemical inventories are essential for chemical risk assessment, management, and pollution control. Inspired by the connections between chemical structures and their properties, a deep convolutional neural network (DCNN) model was developed to screen potential PBT/POP-like chemicals. For each chemical, a two-dimensional molecular descriptor representation matrix based on 2424 molecular descriptors was used as the model input. The DCNN model was trained via a supervised learning algorithm with 1306 PBT/POP-like chemicals and 9990 chemicals currently known as non-POPs/PBTs. The model can achieve an average prediction accuracy of 95.3 ± 0.6% and an F-measurement of 79.3 ± 2.5% for PBT/POP-like chemicals (positive samples only) on external data sets. The DCNN model was further evaluated with 52 experimentally determined PBT chemicals in the REACH PBT assessment list and correctly recognized 47 chemicals as PBT/non-PBT chemicals. The DCNN model yielded a total of 4011 suspected PBT/POP like chemicals from 58 079 chemicals merged from five published industrial chemical lists. The proportions of PBT/POP-like substances in the chemical inventories were 6.9-7.8%, higher than a previous estimate of 3-5%. Although additional PBT/POP chemicals were identified, no new family of PBT/POP-like chemicals was observed.
Collapse
Affiliation(s)
- Xiangfei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xianming Zhang
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario Canada, M1C 1A4
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario Canada L7S 1A
| | - Derek C G Muir
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario Canada L7S 1A
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou 510632, China
| |
Collapse
|
43
|
Zhu T, Wang X, Lin H, Ren J, Wang C, Gong P. Accumulation of Pollutants in Proglacial Lake Sediments: Impacts of Glacial Meltwater and Anthropogenic Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7901-7910. [PMID: 32496767 DOI: 10.1021/acs.est.0c01849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With global warming, the melting of glaciers can result in the release of pollutants into the environment. For remote Alpine lakes, both atmosphere-deposited anthropogenic pollutants and glacier-released pollutants can eventually sink in the sediment. To date, there has, to the best of our knowledge, been no attempt at quantifying the contributions of these processes to the accumulation of pollutants in glacial lake sediment. To fill this gap, a semi-enclosed proglacial lake located in the southern Tibetan Plateau was chosen and a 28 cm sediment core, which can be dated back to 1836, was used to explore the temporal trends of trace elements, Hg, and black carbon (BC) during the past two centuries. Geochemical indicators (Rb/Sr, Ti-Zr-Hf, and sedimentary rate) in sediment showed an overall continuous warming of the lake, while the temporal trends of fluxes of toxic elements and BC were broadly associated with their emission patterns. By using a positive matrix factorization model, the contribution of the anthropogenic source rose from <10% in the 1850s to >40% after the 1980s. However, the signal of glacial meltwater release was also distinct, and the greatest contribution of ice-snow meltwater reached up to 61% in the 1950s. Regarding the most recent two decades, 90% of pollutant deposition in the Tibetan sediment can be attributed to the combined forces of primary emissions and glacial release.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Lin
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Ren
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Research Institute of Transition of Resource-Based Economics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
| | - Chuanfei Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Gong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Luo Y, Sun J, Wang P, Li Y, Li H, Xiao K, Yang R, Zhang Q, Jiang G. Age dependence accumulation of organochlorine pesticides and PAHs in needles with different forest types, southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137176. [PMID: 32059305 DOI: 10.1016/j.scitotenv.2020.137176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
In this study, organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in needle leaves with different ages were measured in three prevalent coniferous forests including spruce, fir and pinus in southeast Tibetan Plateau (TP) to investigate accumulation behavior of persistent organic pollutants (POPs) during entire growth cycle of needles. The accumulation concentration of POPs was higher in pinus and fir needles than in spruce needles. Concentrations for most of OCPs significantly increased with needle ages, especially dichlorodiphenyltrichloroethane (DDT) and its metabolites showed more remarkable increasing trend than hexachlorocyclohexane isomers (HCHs) and hexachlorobenzene (HCB) in the three tree species. However, age dependence accumulation of PAHs was not observed in most cases, possibly due to its easier degradation property and the influence by dramatic change of ambient atmospheric concentration of PAHs. The lipid normalized concentrations in needles exhibited similar accumulation pattern with that of dry weight basis. The controlling factors for concentration variation in needles were identified using multiple linear regression. The suitability of these needle species acting as potential passive sampler for atmospheric POPs was evaluated. The different-age needles could reflect atmospheric OCP concentrations in the past long-term trend. Findings of this study provide guidance in use of needle as passive samples for the background monitoring of the atmospheric contamination at remote and poorly accessible locations such as the TP.
Collapse
Affiliation(s)
- Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Honghua Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
45
|
Jin R, Bu D, Liu G, Zheng M, Lammel G, Fu J, Yang L, Li C, Habib A, Yang Y, Liu X. New classes of organic pollutants in the remote continental environment - Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. ENVIRONMENT INTERNATIONAL 2020; 137:105574. [PMID: 32078871 DOI: 10.1016/j.envint.2020.105574] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons are carcinogenic and ubiquitous environmental organic pollutants. The abundance and sources of these compounds have not been studied in remote environments. We collected and analyzed air, soil, lichen, and moss samples from the Tibetan Plateau. Concentrations of chlorinated polycyclic aromatic hydrocarbons were 0.78-4.16 pg/m3 in air, 3.11-297 pg/g in soil, 260-741 pg/g in lichens, and 338-934 pg/g in mosses. Concentrations of brominated polycyclic aromatic hydrocarbons were 0.15-0.59 pg/m3 in air, 0.61-72.3 pg/g in soil, 33.5-64.9 pg/g in lichens, and 20.5-72.5 pg/g in mosses. The dominant congeners were 9- and 2-chlorophenanthrene, 1-chloropyrene, 3-chlorofluoranthene, and 1-bromopyrene. We found correlations between congener concentrations in lichens and in air, and lichens effectively predicted near-ground atmospheric concentrations of the pollutants. The enrichment of photochemically stable compounds in high-altitude environments is influenced by their physicochemical properties. Principal component analysis with multivariate linear regression of chlorinated polycyclic aromatic hydrocarbons measured in lichens provided an assessment of the relative source contributions, and suggested that in Medog County of Tibetan Plateau, 48% was likely from long-range combustion sources, 26% was from local burning sources, and 26% was from photochemical formation.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Duo Bu
- Department of Chemistry & Environmental Science, Tibet University, Lhasa, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
46
|
Aslam SN, Huber C, Asimakopoulos AG, Steinnes E, Mikkelsen Ø. Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1127-1138. [PMID: 31390703 DOI: 10.1016/j.scitotenv.2019.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Despite being a remote location, the Arctic is a major receptor for anthropogenic pollution transported from the mid-latitudes. Vegetation and underlying organic soils in the Norwegian Arctic, Svalbard were used to study the occurrences of polychlorinated biphenyls (PCBs) and trace elements. In this study, current concentrations of PCBs and trace elements, namely, Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Sb, U and Zn in the terrestrial compartments of Svalbard are presented. Samples were collected from Adventdalen near Longyearbyen and from areas in proximity to Ny-Ålesund. There was significant variability in soil organic matter (SOM) among the soils analysed (5.0%-72.1%), with the highest values detected in Ny-Ålesund. The concentrations of Al, As, Cr Cu, Fe, Pb and Ni were associated with the geology of the local bedrock. The concentrations of all elements, except for Cd, Hg and Zn, were higher in soils than those in the overlying vegetation layers. Mean concentrations of ∑PCBs were significantly higher in vegetation (6.90 ± 0.81 ng g-1 dw) than the underlying organic soils (3.70 ± 0.36 ng g-1 dw). An inverse correlation of PCBs with the elements originating from the local bedrock indicated that their concentrations were potentially impacted by atmospheric deposition. PCBs and Cd were strongly associated, proposing a potential concomitant source of origin in Svalbard. Concentrations of PCBs and trace elements measured herein were below the proposed guidelines for Norwegian soil quality.
Collapse
Affiliation(s)
- Shazia N Aslam
- Department of Chemistry, NTNU, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| | - Carolin Huber
- Department of Chemistry, NTNU, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | | | - Eiliv Steinnes
- Department of Chemistry, NTNU, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Øyvind Mikkelsen
- Department of Chemistry, NTNU, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
47
|
Li H, Bu D, Fu J, Gao Y, Cong Z, Zhang G, Wang Y, Chen X, Zhang A, Jiang G. Trophic Dilution of Short-Chain Chlorinated Paraffins in a Plant-Plateau Pika-Eagle Food Chain from the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9472-9480. [PMID: 31310123 DOI: 10.1021/acs.est.9b00858] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Little is currently known about the trophic transfer behavior of short-chain chlorinated paraffins (SCCPs) in terrestrial ecosystems. The trophodynamics of SCCPs were investigated in a typical terrestrial food chain (plant-plateau pika-eagle) from the interior of the Tibetan Plateau with an altitude of 4730 m. Pervasive contamination by SCCPs was found in the Tibetan Plateau samples, and the average concentrations of SCCPs in soil, plant, plateau pika, eagle, and gut content of eagle samples were 81.6 ± 31.1, 173 ± 70.3, 258 ± 126, 108 ± 59.6, and 268 ± 93.9 ng/g (average ± standard deviation, dry weight, dw), respectively. The trophic magnification factor (TMF) of SCCPs was 0.37, implying the trophic dilution of SCCPs in this terrestrial food chain. The TMF values of individual congener groups were positively correlated with the values of log Kow, log Koa and biotransformation half-life. As a result of long-range transport, SCCPs congeners with low molecular weight dominated in Tibetan Plateau species (C10+11 congeners = 76.9%, Cl5+6+7 congeners = 71.5%), which could partly explain the low biomagnification factors (BMFs) of SCCPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Duo Bu
- Department of Chemistry & Environmental Science , Tibet University , Lhasa 850000 , China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Guoshuai Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes , Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytic Instrument , Qilu University of Technology (Shandong Academy of Science) , Jinan 250014 , China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|