1
|
Duan X, Chen Z, Liao J, Wen M, Yue Y, Liu L, Li X, Long L. The association analysis between exposure to volatile organic compounds and fatty liver disease in US Adults. Dig Liver Dis 2024:S1590-8658(24)01045-4. [PMID: 39426902 DOI: 10.1016/j.dld.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/15/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Limited epidemiological research has explored the associations between ambient volatile organic compounds (VOCs) and fatty liver disease (FLD). This study aimed to explore the associations between VOCs and FLD and liver function biomarkers. We obtained urinary concentrations of VOCs metabolites from NHANES. METHODS Weighted logistic regression models were employed to investigate the relationships between VOCs and FLD risk, including alcoholic FLD (AFLD) and non-alcoholic FLD (NAFLD). The associations of VOCs and liver function biomarkers were also investigated using weighted linear regression. RESULTS Among the 2050 participants, 774 were classified as having FLD. After adjustment, each log-transformed SD increase in N-Acetyl-S-(2-carboxyethyl)-l-cysteine (CEMA), 2-Aminothiazoline-4-carboxylicacid (ATCA), and trans-trans-muconic-acid (MUCA) had a OR (95%CI) of 1.30 (1.06-1.61; P-trend=0.014), 1.34 (1.12-1.61; P-trend=0.002), and 1.22 (1.01-1.47; P-trend=0.035), respectively. ATCA and MUCA were associated with higher risks of NAFLD (OR=1.47, 95%CI: 1.20-1.79, and OR=1.26, 95%CI: 1.02-1.56, respectively). VOCs were positively associated with gamma glutamyl transaminase (GGT) and C-reactive protein (CRP), while inversely associated with albumin, total protein and alanine aminotransferase (ALT) (P < 0.05). CONCLUSIONS Urinary metabolites of VOCs have been found to be strongly correlated with a higher risk of FLD and NFALD, and impaired liver function. These novel findings merit further prospective studies to comprehend the effect of VOCs on liver diseases.
Collapse
Affiliation(s)
- Xiaoxia Duan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Laboratory of Child and Adolescent Psychiatry, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Chen
- Department of Microbiology Laboratory, Chengdu Municipal Center for Disease Control and Pevention, Chengdu, China
| | - Juan Liao
- Department of Gastroenterology, West China School of public health and West China Forth Hospital, Sichuan University, Chengdu, China
| | | | - Yong Yue
- Chengdu Hi-Tech Development Zone Center for Disease Control and Prevention, Chengdu, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaojing Li
- Chengdu Jinjiang Center for Disease Control and Prevention, Chengdu, China
| | - Lu Long
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Cui Y, Liu B, Yang Y, Kang S, Wang F, Xu M, Wang W, Feng Y, Hopke PK. Primary and oxidative source analyses of consumed VOCs in the atmosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134894. [PMID: 38909463 DOI: 10.1016/j.jhazmat.2024.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
Consumed VOCs are the compounds that have reacted to form ozone and secondary organic aerosol (SOA) in the atmosphere. An approach that can apportion the contributions of primary sources and reactions to the consumed VOCs was developed in this study and applied to hourly VOCs data from June to August 2022 measured in Shijiazhuang, China. The results showed that petrochemical industries (36.9 % and 51.7 %) and oxidation formation (20.6 % and 35.6 %) provided the largest contributions to consumed VOCs and OVOCs during the study period, whereas natural gas (5.0 % and 7.6 %) and the mixed source of liquefied petroleum gas and solvent use (3.1 % and 4.2 %) had the relatively low contributions. Compared to the non-O3 pollution (NOP) period, the contributions of oxidation formation, petrochemical industries, and the mixed source of gas evaporation and vehicle emissions to the consumed VOCs during the O3 pollution (OP) period increased by 2.8, 3.8, and 9.3 times, respectively. The differences in contributions of liquified petroleum gas and solvent use, natural gas, and combustion sources to consumed VOCs between OP and NOP periods were relatively small. Transport of petrochemical industries emissions from the southeast to the study site was the primary consumed pathway for VOCs emitted from petrochemical industries.
Collapse
Affiliation(s)
- Yaqi Cui
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Yufeng Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Sicong Kang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Fuquan Wang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Man Xu
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Wei Wang
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
3
|
Zhao D, Wang Q, Hui Y, Liu Y, Wang F, Chu B. Characteristics, sources, and health risks of volatile organic compounds in different functional regions of Shenyang. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173148. [PMID: 38735334 DOI: 10.1016/j.scitotenv.2024.173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The concentration of 56 volatile organic compounds (VOCs) in the ambient air of Shenyang was continuously monitored at four sites in 2021. The characteristics, sources, secondary pollution potential and health risks of VOCs in different functional regions of Shenyang were discussed. The results indicate that the concentration of VOCs in industrial regions was significantly higher than that in non-industrial regions, with a mean of 41.09 ± 69.82 parts per billion volumes (ppbv) compared to 19.99 ± 17.86 ppbv (commercial & residential region in urban fringe), 27.51 ± 28.81 ppbv (educational & scenic region) and 29.71 ± 23.97 ppbv (commercial & residential region in urban center). The positive matrix factorization (PMF) model was utilized to assign the sources of VOCs in Shenyang, and six factors were recognized: gasoline vehicles (34.8 %), diesel vehicles (28.3 %), combustion (11.4 %), biogenic emissions (9.7 %), industrial processes (8.2 %), and fuel evaporation (7.7 %). The results of the reactivity evaluation indicated that the ozone (O3) formation potential (OFP) was primarily influenced by industrial processes (29.2 %), diesel vehicles (25.7 %), biogenic emissions (17.0 %). These three factors were also the top three contributors to secondary organic aerosol formation potential (SOAP), accounting for 44.2 %, 9.4 % and 30.3 %, respectively. At the all four sites, the non-carcinogenic and carcinogenic risks of VOCs ranged from 1.6 × 10-2 to 3.8 × 10-2 and from 2.3 × 10-6 to 3.3 × 10-6, respectively. And the main risks can be attributed to emissions from industrial processes and gasoline vehicles. These findings suggested to strengthen the control of vehicle emissions throughout all regions in Shenyang and industrial processes emissions in industrial regions.
Collapse
Affiliation(s)
- Di Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Qi Wang
- Department of Transfusion, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Yu Hui
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Yan Liu
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Fan Wang
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Eun DM, Han YS, Nam I, Chang Y, Lee S, Park JH, Gong SY, Youn JS. Ambient volatile organic compounds in the Seoul metropolitan area of South Korea: Chemical reactivity, risks and source apportionment. ENVIRONMENTAL RESEARCH 2024; 251:118749. [PMID: 38522743 DOI: 10.1016/j.envres.2024.118749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
The chemical reactivity, contribution of emission sources, and risk assessment of volatile organic compounds (VOCs) in the atmosphere of the Seoul metropolitan area (SMA) were analyzed. Datasets collected from 6 photochemical assessment monitoring stations (PAMS) of SMA from 2018 to 2021 were used. Alkenes and aromatics contributed significantly to ozone formation relative to the emission concentrations, and aromatics accounted for most of the secondary organic aerosols (SOA) formation in the SMA. The contributions of ozone and SOA formation were found to be notably higher at measurement stations in residential areas such as Guwol (GW) and Sosabon (SS) compared to other measurement stations. From the results of an emission source analysis, it was confirmed that anthropogenic sources such as combustion sources, vehicle exhaust, fuel evaporation, and solvent use had a significant effect at all measurement stations. Assessing the health risk, non-carcinogenic compounds were at acceptable level at all measurement stations. On the other hand, carcinogenic compounds were approaching risk level (10-4), thereby demanding immediate attention. The level of exposure to carcinogenic compounds increased by age group, and male was more vulnerable than female. It was found that SS had the highest level of exposure to carcinogens in the atmosphere of the population ages 60 or older. The health threat of the SMA population is expected due to direct exposure from inhalation of ambient toxic compounds and indirect exposure from ozone and PM2.5 formations through oxidation of VOCs. This study emphasizes the importance of addressing specific emission sources within the metropolitan area and developing comprehensive regional strategies to mitigate VOCs.
Collapse
Affiliation(s)
- Da-Mee Eun
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Yun-Sung Han
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ilkwon Nam
- Air Quality Research Division, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - YuWoon Chang
- Air Quality Research Division, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Sepyo Lee
- Air Quality Research Division, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Jeong-Hoo Park
- Air Quality Research Division, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Sung Yong Gong
- Climate, Air Quality and Safety Research Group/Division for Atmospheric Environment, Korea Environment Institute, Sejong, 30147, South Korea
| | - Jong-Sang Youn
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
5
|
Gao Z, Zhou X. A review of the CAMx, CMAQ, WRF-Chem and NAQPMS models: Application, evaluation and uncertainty factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123183. [PMID: 38110047 DOI: 10.1016/j.envpol.2023.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
With the gradual deepening of the research and governance of air pollution, chemical transport models (CTMs), especially the third-generation CTMs based on the "1 atm" theory, have been recognized as important tools for atmospheric environment research and air quality management. In this review article, we screened 2396 peer-reviewed manuscripts on the application of four pre-selected regional CTMs in the past five years. CAMx, CMAQ, WRF-Chem and NAQPMS models are well used in the simulation of atmospheric pollutants. In the simulation study of secondary pollutants such as O3, secondary organic aerosol (SOA), sulfates, nitrates, and ammonium (SNA), the CMAQ model has been widely applied. Secondly, model evaluation indicators are diverse, and the establishment of evaluation criteria has gone through the long-term efforts of predecessors. However, the model performance evaluation system still needs further specification. Furthermore, temporal-spatial resolution, emission inventory, meteorological field and atmospheric chemical mechanism are the main sources of uncertainty, and have certain interference with the simulation results. Among them, the inventory and mechanism are particularly important, and are also the top priorities in future simulation research.
Collapse
Affiliation(s)
- Zhaoqi Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Xuehua Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China.
| |
Collapse
|
6
|
Li Y, Wu Z, Ji Y, Chen T, Li H, Gao R, Xue L, Wang Y, Zhao Y, Yang X. Comparison of the ozone formation mechanisms and VOCs apportionment in different ozone pollution episodes in urban Beijing in 2019 and 2020: Insights for ozone pollution control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168332. [PMID: 37949143 DOI: 10.1016/j.scitotenv.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Ground-level ozone (O3) pollution has been a tough issue in urban areas of China in the past decade. Clarifying the formation mechanisms of O3 and the sources of its precursors is necessary for the effective prevention of O3 pollution. In this study, a comparative analysis of O3 formation mechanisms and VOCs apportionment for five O3 pollution episodes was carried out at two urban sites (CRAES and CGZ) in Beijing in 2019 and 2020 by applying an observation-based modeling approach in order to obtain insights into O3 pollution control strategies. Results indicated that O3 pollution levels were generally more severe in 2019 than in 2020 during the observation periods. O3 formation at the two sites was both VOCs-limited on O3 polluted days and non-O3 polluted days. Stronger atmospheric oxidation capacity and ROx radicals cycling processes were found on O3 polluted days which could accelerate the local production of O3, and local photochemical production dominated the observed O3 concentrations at the two sites even on non-O3 polluted days. Emission reduction of VOCs should be a priority for mitigating O3 pollution, and alkenes and biogenic VOCs was the priority species at the CRAES and CGZ sites, respectively. Additionally, the reduction of oxygenated VOCs should also be important for the ozone control. Gasoline exhaust at the CRAES site, and solvent utilization and fuel evaporation at the CGZ site were main anthropogenic sources of VOCs. Therefore, local control measures should be further strengthened and differentiated control strategies of VOCs in the aspects of area, time, sources and species should be adopted in urban Beijing in the future. Overall, the findings of this study could provide a scientific understanding of the causes of O3 pollution and significant guidelines for formulating O3 control strategies from the perspective of different ozone pollution episodes in urban Beijing.
Collapse
Affiliation(s)
- Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianshu Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yafei Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yuxi Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Yao D, Wang Y, Bai Z, Cheng M, Tang G, Liu Y, Zhuoga D, Yu H, Bian J, Wang Y. Vertical distribution of VOCs in the boundary layer of the Lhasa valley and its impact on ozone pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122786. [PMID: 37871738 DOI: 10.1016/j.envpol.2023.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023]
Abstract
To investigate the vertical distribution of volatile organic compounds (VOCs) concentrations in the Lhasa valley region, an intensive measurement campaign was first conducted in summer using a tethered balloon. The results showed that the average concentration of surface VOCs was 49.1 ± 30.1 ppbv, alkanes and aromatics were the main components. Notably, a very large discrepancy in VOCs was obtained between the wet (71.6 ± 25.9 ppbv) and dry (25.6 ± 8.0 ppbv) episodes, which was attributed to the atmospheric stability and diffusion capacity. Moreover, the total VOC (TVOCs) concentration declined under fluctuations, but it rapidly increased with height in the afternoon during the wet episode (2.50 ppbv/100 m, R2 = 0.47). According to the PMF results, combustion was the dominant emission source, additionally, the contribution of solvent coating in the wet episode and the background in the dry episode increased with height. Moreover, the O3 concentration increased with height, and the decrease in LNOx-OH could effectively prevent the occurrence of high O3 values. This study indicated that low wind speeds and high humidity levels highly likely cause the accumulation of atmospheric VOCs under static and stable conditions, while the control of high O3 concentrations must still greatly consider summertime NOx emissions in Lhasa.
Collapse
Affiliation(s)
- Dan Yao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yinghong Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixuan Bai
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Mengtian Cheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuting Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhuoga
- Tibet Institute of Plateau Atmospheric Environmental Science, Lhasa, 850000, China
| | - Hao Yu
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jianchun Bian
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yuesi Wang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Morino Y, Iijima A, Chatani S, Sato K, Kumagai K, Ikemori F, Ramasamy S, Fujitani Y, Kimura C, Tanabe K, Sugata S, Takami A, Ohara T, Tago H, Saito Y, Saito S, Hoshi J. Source apportionment of anthropogenic and biogenic organic aerosol over the Tokyo metropolitan area from forward and receptor models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166034. [PMID: 37595930 DOI: 10.1016/j.scitotenv.2023.166034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
Organic aerosol (OA) is a dominant component of PM2.5, and accurate knowledge of its sources is critical for identification of cost-effective measures to reduce PM2.5. For accurate source apportionment of OA, we conducted field measurements of organic tracers at three sites (one urban, one suburban, and one forest) in the Tokyo Metropolitan Area and numerical simulations of forward and receptor models. We estimated the source contributions of OA by calculating three receptor models (positive matrix factorization, chemical mass balance, and secondary organic aerosol (SOA)-tracer method) using the ambient concentrations, source profiles, and production yields of OA tracers. Sensitivity simulations of the forward model (chemical transport model) for precursor emissions and SOA formation pathways were conducted. Cross-validation between the receptor and forward models demonstrated that biogenic and anthropogenic SOA were better reproduced by the forward model with updated modules for emissions of biogenic volatile organic compounds (VOC) and for SOA formation from biogenic VOC and intermediate-volatility organic compounds than by the default setup. The source contributions estimated by the forward model generally agreed with those of the receptor models for the major OA sources: mobile sources, biomass combustion, biogenic SOA, and anthropogenic SOA. The contributions of anthropogenic SOA, which are the main focus of this study, were estimated by the forward and receptor models to have been between 9 % and 15 % in summer 2019. The observed percent modern carbon data indicate that the amounts of anthropogenic SOA produced during daytime have substantially declined from 2007 to 2019. This trend is consistent with the decreasing trend of anthropogenic VOC, suggesting that reduction of anthropogenic VOC has been effective in reducing anthropogenic SOA in the atmosphere.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Akihiro Iijima
- Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan
| | - Satoru Chatani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kimiyo Kumagai
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Fumikazu Ikemori
- Nagoya City Institute for Environmental Sciences, 5-16-8 Toyoda, Minami-ku, Nagoya, Aichi 457-0841, Japan
| | - Sathiyamurthi Ramasamy
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Chisato Kimura
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Seiji Sugata
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akinori Takami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Toshimasa Ohara
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Hiroshi Tago
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Yoshinori Saito
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| |
Collapse
|
9
|
Wu Y, Liu B, Meng H, Dai Q, Shi L, Song S, Feng Y, Hopke PK. Changes in source apportioned VOCs during high O 3 periods using initial VOC-concentration-dispersion normalized PMF. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165182. [PMID: 37385502 DOI: 10.1016/j.scitotenv.2023.165182] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Ambient volatile organic compounds (VOCs) concentrations are affected by emissions, dispersion, and chemistry. This work developed an initial concentration-dispersion normalized PMF (ICDN-PMF) to reflect the changes in source emissions. The effects of photochemical losses for VOC species were corrected by estimating the initial data, and then applying dispersion normalization to reduce the impacts of atmospheric dispersion. Hourly speciated VOC data measured in Qingdao from March to May 2020 were utilized to test the method and had assessed its effectiveness. Underestimated solvent use and biogenic emissions contributions due to photochemical losses during the O3 pollution (OP) period reached 4.4 and 3.8 times the non-O3 pollution (NOP) period values, respectively. Increased solvent use contribution due to air dispersion during the OP period was 4.6 times the change in the NOP period. The influence of chemical conversion and air dispersion on the gasoline and diesel vehicle emissions was not apparent during either period. The ICDN-PMF results suggested that biogenic emissions (23.1 %), solvent use (23.0 %), motor-vehicle emissions (17.1 %), and natural gas and diesel evaporation (15.8 %) contributed most to ambient VOCs during the OP period. Biogenic emissions and solvent use contributions during the OP period increased by 187 % and 135 % compared with the NOP period, respectively, whereas that of liquefied petroleum gas substantially decreased during the OP period. Controlling solvent use and motor-vehicles could be effective in controlling VOCs in the OP period.
Collapse
Affiliation(s)
- Yutong Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - He Meng
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Laiyuan Shi
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
10
|
Nelson D, Choi Y, Sadeghi B, Yeganeh AK, Ghahremanloo M, Park J. A comprehensive approach combining positive matrix factorization modeling, meteorology, and machine learning for source apportionment of surface ozone precursors: Underlying factors contributing to ozone formation in Houston, Texas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122223. [PMID: 37481031 DOI: 10.1016/j.envpol.2023.122223] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ozone concentrations in Houston, Texas, are among the highest in the United States, posing significant risks to human health. This study aimed to evaluate the impact of various emissions sources and meteorological factors on ozone formation in Houston from 2017 to 2021 using a comprehensive PMF-SHAP approach. First, we distinguished the unique sources of VOCs in each area and identified differences in the local chemistry that affect ozone production. At the urban station, the primary sources were n_decane, biogenic/industrial/fuel evaporation, oil and gas flaring/production, industrial emissions/evaporation, and ethylene/propylene/aromatics. At the industrial site, the main sources were industrial emissions/evaporation, fuel evaporation, vehicle-related sources, oil and gas flaring/production, biogenic, aromatic, and ethylene and propylene. And then, we performed SHAP analysis to determine the importance and impact of each emissions factor and meteorological variables. Shortwave radiation (SHAP values are ∼5.74 and ∼6.3 for Milby Park and Lynchburg, respectively) and humidity (∼4.87 and ∼4.71, respectively) were the most important variables for both sites. For the urban station, the most important emissions sources were n_decane (∼2.96), industrial emissions/evaporation (∼1.89), and ethylene/propylene/aromatics (∼1.57), while for the industrial site, they were oil and gas flaring/production (∼1.38), ethylene/propylene (∼1.26), and industrial emissions/evaporation (∼0.95). NOx had a negative impact on ozone production at the urban station due to the NOx-rich chemical regime, whereas NOx had positive impacts at the industrial site. The study's findings suggest that the PMF-SHAP approach is efficient, inexpensive, and can be applied to other similar applications to identify factors contributing to ozone-exceedance events. The study's results can be used to develop more effective air quality management strategies for Houston and other cities with high levels of ozone.
Collapse
Affiliation(s)
- Delaney Nelson
- Department of Earth and Atmospheric Science, University of Houston, Texas, USA
| | - Yunsoo Choi
- Department of Earth and Atmospheric Science, University of Houston, Texas, USA.
| | - Bavand Sadeghi
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, 20740, USA; Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, 20740, USA
| | | | - Masoud Ghahremanloo
- Department of Earth and Atmospheric Science, University of Houston, Texas, USA
| | - Jincheol Park
- Department of Earth and Atmospheric Science, University of Houston, Texas, USA
| |
Collapse
|
11
|
Cho SB, Song SK, Shon ZH, Moon SH. Evaluation of air quality simulation with a coupled atmosphere-ocean model: A case study on natural marine and biogenic emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163021. [PMID: 36965729 DOI: 10.1016/j.scitotenv.2023.163021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
In this study, a chemical transport model (i.e., Community Multi-scale Air Quality (CMAQ) modeling system with brute-force method (BFM)) was used in combination with atmosphere-ocean coupling to evaluate the impact of natural emissions (e.g., marine dimethyl sulfide (DMS), sea salt aerosol (SSA), and biogenic compounds) on the air quality of South Korea in the spring of 2019 (May 1-31). Overall, the coupled simulation results exhibited good agreement with the observations for meteorological fields and air quality (fine particulate matter (PM2.5) and ozone (O3)) compared to those obtained using the non-coupled simulation. The coupling effect in the study area tended to be strong in the presence of relatively strong winds (≥4 m s-1). The mean contributions of natural marine (DMS and SSA) and biogenic emissions to total PM2.5 mass reached ~8.2 % over the marine area and ~ 9.1 % over the land area, respectively. On average, biogenic emissions contributed 8.6 %, 29.3 % (and 27.3 %) to the concentrations of O3, secondary organic aerosol (SOA) (and organic carbon (OC)), respectively, over the land area. Isoprene and monoterpene contributed 40 % and 20 %, respectively, to biogenic SOA production over the land area and biogenic SOA accounted for 1.7 % and 7.8 % of the total O3 and PM2.5, respectively. Secondary aerosol formation was enhanced by gas-to-particle conversion processes due to the coupling effect. Therefore, this modeling study confirmed the non-negligible impact of natural emissions on the air quality in the study area. In addition, the study area is likely to be associated with VOC-limited conditions because of significantly enhanced photochemical O3 production owing to biogenic emissions.
Collapse
Affiliation(s)
- Seong-Bin Cho
- Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Keun Song
- Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Zang-Ho Shon
- Department of Environmental Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Soo-Hwan Moon
- Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
12
|
Bui LT, Nguyen NHT, Nguyen PH. Chronic and acute health effects of PM 2.5 exposure and the basis of pollution control targets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79937-79959. [PMID: 37291347 DOI: 10.1007/s11356-023-27936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Ho Chi Minh City (HCMC) is changing and expanding quickly, leading to environmental consequences that seriously threaten human health. PM2.5 pollution is one of the main causes of premature death. In this context, studies have evaluated strategies to control and reduce air pollution; such pollution-control measures need to be economically justified. The objective of this study was to assess the socio-economic damage caused by exposure to the current pollution scenario, taking 2019 as the base year. A methodology for calculating and evaluating the economic and environmental benefits of air pollution reduction was implemented. This study aimed to simultaneously evaluate the impacts of both short-term (acute) and long-term (chronic) PM2.5 pollution exposure on human health, providing a comprehensive overview of economic losses attributable to such pollution. Spatial partitioning (inner-city and suburban) on health risks of PM2.5 and detailed construction of health impact maps by age group and sex on a spatial resolution grid (3.0 km × 3.0 km) was performed. The calculation results show that the economic loss from premature deaths due to short-term exposure (approximately 38.86 trillion VND) is higher than that from long-term exposure (approximately 14.89 trillion VND). As the government of HCMC has been developing control and mitigation solutions for the Air Quality Action Plan towards short- and medium-term goals in 2030, focusing mainly on PM2.5, the results of this study will help policymakers develop a roadmap to reduce the impact of PM2.5 during 2025-2030.
Collapse
Affiliation(s)
- Long Ta Bui
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | - Nhi Hoang Tuyet Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phong Hoang Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Khoshakhlagh AH, Yazdanirad S, Mousavi M, Gruszecka-Kosowska A, Shahriyari M, Rajabi-Vardanjani H. Summer and winter variations of BTEX concentrations in an oil refinery complex and health risk assessment based on Monte-Carlo simulations. Sci Rep 2023; 13:10670. [PMID: 37393319 PMCID: PMC10314937 DOI: 10.1038/s41598-023-37647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
The summer and winter concentrations of BTEX pollutants were investigated in various workplaces of an oil Refinery, Iran. In total 252 air samples from the breathing zones of the following employees were collected: supervisors, safetymen, repairmen, site men, and all workers. Carcinogenic and non-carcinogenic risk values were calculated based on the USEPA methodology using Monte Carlo simulations. BTEX concentrations were higher in the summer than in the winter season for all workstations, especially for toluene and ethylbenzene. The mean values of exposure to benzene for repairmen and site men were higher than threshold limit value of 1.60 mg/m3 for both seasons. Non-carcinogenic risk (HQ) values calculated for summer season for benzene, ethylbenzene, and xylene in all workstations, as well as for toluene for repairmen and site men exceeded acceptable level of 1. In winter season the mean HQ values for benzene and xylene in all workstations, for toluene for repairmen and site men, and for ethylbenzene for supervisors, repairmen, and site men were also > 1. For all workstations definite carcinogenic risk was indicated as calculated LCR values for benzene and ethylbenzene exposure were higher than 1 × 10-4 in both summer and winter seasons.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Yazdanirad
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Occupational Health, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mahdi Mousavi
- Student Research Committee, Faculty of Health, Isfahan University of Medical Science, Isfahan, Iran
| | - Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | | | - Hassan Rajabi-Vardanjani
- Department of Occupational Health, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Jang E, Choi S, Yoo E, Hyun S, An J. Impact of shipping emissions regulation on urban aerosol composition changes revealed by receptor and numerical modelling. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2023; 6:52. [PMID: 37274460 PMCID: PMC10226717 DOI: 10.1038/s41612-023-00364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
Various shipping emissions controls have recently been implemented at both local and national scales. However, it is difficult to track the effect of these on PM2.5 levels, owing to the non-linear relationship that exists between changes in precursor emissions and PM components. Positive Matrix Factorisation (PMF) identifies that a switch to cleaner fuels since January 2020 results in considerable reductions in shipping-source-related PM2.5, especially sulphate aerosols and metals (V and Ni), not only at a port site but also at an urban background site. CMAQ sensitivity analysis reveals that the reduction of secondary inorganic aerosols (SIA) further extends to inland areas downwind from ports. In addition, mitigation of secondary organic aerosols (SOA) in coastal urban areas can be anticipated either from the results of receptor modelling or from CMAQ simulations. The results in this study show the possibility of obtaining human health benefits in coastal cities through shipping emission controls.
Collapse
Affiliation(s)
- Eunhwa Jang
- Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616 Republic of Korea
| | - Seongwoo Choi
- Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616 Republic of Korea
| | - Eunchul Yoo
- Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616 Republic of Korea
| | - Sangmin Hyun
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan, 49111 Republic of Korea
| | - Joongeon An
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201 Republic of Korea
| |
Collapse
|
15
|
Zeng X, Han M, Ren G, Liu G, Wang X, Du K, Zhang X, Lin H. A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou. CHEMOSPHERE 2023; 334:139001. [PMID: 37220798 DOI: 10.1016/j.chemosphere.2023.139001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
To understand the characteristics, source apportionment, and regional transport of volatile organic compounds (VOCs) and ozone (O3) in a typical city with severe air pollution in central China, we observed and analyzed 115 VOC species at an urban site in Zhengzhou from 29 July to 26 September 2021. During this period, observation- and emission-based approaches revealed that Zhengzhou was in a VOC-limited regime. The average concentration of total VOCs (TVOCs) was 162.25 ± 71.42 μg/m3, dominated by oxygenated VOCs (OVOCs, 34.49%), alkanes (24.29%), and aromatics (19.49%). Six VOC sources were identified using positive matrix factorization (PMF) model, including paint solvent usage (25.32%), secondary production (24.11%), industrial production (19.22%), vehicle exhaust (16.18%), biogenic emission (8.87%), and combustion (6.30%). To assess the regional contribution and source apportionment of VOCs and O3, Comprehensive Air Quality Model with Extensions (CAMx) with the Ozone Source Apportionment Technology (OSAT) was used for simulation. Results showed that the VOCs were significantly affected by local emissions (about 70%), while O3 was mainly attributed to regional and super-regional transport. Regarding multi-directional regional transport of VOCs and O3, dominant contributions were from the northeast and east-northeast directions, and O3 contributions were also predominantly from the east and east-southeast directions. In terms of source apportionment, the transportation and industrial sectors (including solvent usage) were the major contributors to O3 and VOCs. To alleviate VOCs and O3 pollution, transportation and industrial emission reduction should be strengthened, and regional coordination, especially from the northeast to east-southeast directions, should be emphasized in addition to local management.
Collapse
Affiliation(s)
- Xiaoxi Zeng
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Mengjuan Han
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Ge Ren
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China.
| | - Gege Liu
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Xiaoning Wang
- Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Kailun Du
- Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Xiaodong Zhang
- Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Hong Lin
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| |
Collapse
|
16
|
Guo Y, Deng X, Dai K, Deng M, He J, Si H, Xu X, Niu Z, Wang C, Yao W, Hao C. Benchmark dose estimation based on oxidative damage in Chinese workers exposed to benzene series compounds. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104150. [PMID: 37207490 DOI: 10.1016/j.etap.2023.104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
This study evaluated the effects of BTEX exposure on oxidative stress; it analyzed the correlation between oxidative stress and peripheral blood counts and estimated the benchmark dose (BMD) of BTEX compounds. This study recruited 247 exposed workers and 256 controls; physical examination data were collected and serum oxidative stress levels were measured. Relationships between BTEX exposure and biomarkers were analyzed using Mann-Whitney U, generalized linear model, and chi-square trend tests. Environmental Protection Agency Benchmark Dose Software was used to calculate the BMD and lower confidence limit of the BMD (BMDL) for BTEX exposure. The total antioxidant capacity (T-AOC) correlated positively with peripheral blood counts, and negatively with the cumulative exposure dose. On using T-AOC as the outcome variable, the estimated BMD and BMDL for BTEX exposure were 3.57 mg/m3 and 2.20 mg/m3, respectively. Based on T-AOC, the calculated occupational exposure limit of BTEX was 0.055 mg/m3.
Collapse
Affiliation(s)
- Yonghua Guo
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuedan Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Dai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meng Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing He
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huifang Si
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiao Xu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhuoya Niu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chen Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Changfu Hao
- Department of Child and Adolescence Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
17
|
Zhan J, Ma W, Song B, Wang Z, Bao X, Xie HB, Chu B, He H, Jiang T, Liu Y. The contribution of industrial emissions to ozone pollution: identified using ozone formation path tracing approach. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2023; 6:37. [PMID: 37214635 PMCID: PMC10186276 DOI: 10.1038/s41612-023-00366-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Wintertime meteorological conditions are usually unfavorable for ozone (O3) formation due to weak solar irradiation and low temperature. Here, we observed a prominent wintertime O3 pollution event in Shijiazhuang (SJZ) during the Chinese New Year (CNY) in 2021. Meteorological results found that the sudden change in the air pressure field, leading to the wind changing from northwest before CNY to southwest during CNY, promotes the accumulation of air pollutants from southwest neighbor areas of SJZ and greatly inhibits the diffusion and dilution of local pollutants. The photochemical regime of O3 formation is limited by volatile organic compounds (VOCs), suggesting that VOCs play an important role in O3 formation. With the developed O3 formation path tracing (OFPT) approach for O3 source apportionment, it has been found that highly reactive species, such as ethene, propene, toluene, and xylene, are key contributors to O3 production, resulting in the mean O3 production rate (PO3) during CNY being 3.7 times higher than that before and after CNY. Industrial combustion has been identified as the largest source of the PO3 (2.6 ± 2.2 ppbv h-1), with the biggest increment (4.8 times) during CNY compared to the periods before and after CNY. Strict control measures in the industry should be implemented for O3 pollution control in SJZ. Our results also demonstrate that the OFPT approach, which accounts for the dynamic variations of atmospheric composition and meteorological conditions, is effective for O3 source apportionment and can also well capture the O3 production capacity of different sources compared with the maximum incremental reactivity (MIR) method.
Collapse
Affiliation(s)
- Junlei Zhan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Boying Song
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zongcheng Wang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaolei Bao
- Hebei Chemical & Pharmaceutical College, Shijiazhuang, 050026 China
- Hebei Provincial Academy of Environmental Sciences, Shijiazhuang, 050037 China
- Bayin Guoleng Vocational and Technical College, Korla, 841002 China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Biwu Chu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Tao Jiang
- Hebei Provincial Meteorological Technical Equipment Center, Shijiazhuang, 050021 China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
18
|
Zhao F, Peng Y, Huang L, Li Z, Tu W, Wu B. Fugitive emissions of volatile organic compounds from the pharmaceutical industry in China based on leak detection and repair monitoring, atmospheric prediction, and health risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:1-14. [PMID: 37102223 DOI: 10.1080/10934529.2023.2204806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/19/2023]
Abstract
In this study, a leak detection and repair program was conducted on five pharmaceutical factories in China to analyze the volatile organic compounds (VOCs) emission characteristics of leaking equipment. The results indicated that the monitored components were mainly flanges, accounting for 70.23% of the total, and open-ended lines were the components most prone to leaks. The overall percentage of VOCs emissions reduction after the repair was 20.50%, and flanges were the most repairable components, with an average emission reduction of 47.5 kg/a for each flange. In addition, atmospheric predictions were conducted for the VOCs emissions before and after the repair of the components at the research factories. The atmospheric predictions showed that emissions from equipment and facilities have a noticeable impact on VOCs concentration at boundary and the emissions are positively correlated with the pollution source strength. The hazard quotient of the investigated factories was lower than the acceptable risk level set by the US Environmental Protection Agency (EPA). The quantitative assessment of the lifetime cancer risk showed that the risk levels of factories A, C, and D exceeded the EPA's acceptable risk level, and the on-site workers were exposed to inhalation cancer risk.
Collapse
Affiliation(s)
- Fang Zhao
- Consulting Department, Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, China
- Chongqing Huitian Environmental Protection Engineering Co., LTD, Chongqing, China
| | - Yao Peng
- Consulting Department, Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, China
| | - Lin Huang
- Consulting Department, Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, China
- Chongqing Huitian Environmental Protection Engineering Co., LTD, Chongqing, China
| | - Ziwei Li
- Consulting Department, Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, China
| | - Weinan Tu
- Consulting Department, Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, China
- Chongqing Huitian Environmental Protection Engineering Co., LTD, Chongqing, China
| | - Biao Wu
- Consulting Department, Chongqing Research Academy of Eco-Environmental Sciences, Chongqing, China
| |
Collapse
|
19
|
Asif Z, Chen Z, Haghighat F, Nasiri F, Dong J. Estimation of Anthropogenic VOCs Emission Based on Volatile Chemical Products: A Canadian Perspective. ENVIRONMENTAL MANAGEMENT 2023; 71:685-703. [PMID: 36416924 PMCID: PMC9685044 DOI: 10.1007/s00267-022-01732-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) in urban areas are of great interest due to their significant role in forming ground-level ozone and adverse public health effects. Emission inventories usually compile the outdoor VOCs emission sources (e.g., traffic and industrial emissions). However, considering emissions from volatile chemical products (e.g., solvents, printing ink, personal care products) is challenging because of scattered data and the lack of an effective method to estimate the VOCs emission rate from these chemical products. This paper aims to systematically analyse potential sources of VOCs emission in Canada's built environment, including volatile chemical products. Also, spatial variation of VOCs level in the ambient atmosphere is examined to understand the VOC relationship with ozone and secondary organic aerosol formation. The study shows that VOCs level may vary among everyday microenvironments (e.g., residential areas, offices, and retail stores) depending on the frequency of product consumption, building age, ventilation condition, and background ambient concentration in the atmosphere. However, it is very difficult to establish VOC speciation and apportionment to different volatile chemical products that contribute most significantly to exposure and target subpopulations with elevated levels. Thus, tracer compounds can be used to identify inventory sources at the consumer end. A critical overview highlights the limitations of existing VOC estimation methods and possible approaches to control VOC emissions. The findings provide crucial information to establish an emission inventory framework for volatile chemical products at a national scale and enable policymakers to limit VOCs emission from various volatile chemical products.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada.
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| | - Fuzhan Nasiri
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| | - Jinxin Dong
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| |
Collapse
|
20
|
Peng Q, Li L, Sun J, He K, Zhang B, Zou H, Xu H, Cao J, Shen Z. VOC emission profiles from typical solid fuel combustion in Fenhe River Basin: Field measurements and environmental implication. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121172. [PMID: 36731736 DOI: 10.1016/j.envpol.2023.121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study examined volatile organic compounds (VOCs) emitted from the combustion of seven typical biomass fuel types in a traditional stove, elevated kang, and biomass furnace and from the combustion of three types of coal in coal furnaces. The results revealed that emission factors (EFs) of VOCs emitted from combustion processes ranged from 48.8 ± 29.1 mg/kg (for anthracite combustion in an outdoor boiler) to 5700 ± 6040 mg/kg (for sesame straw combustion in a traditional stove). Changing the fuel type engendered a more significant EF reduction (82.7%) than changing the stove type (51.8%). The emitted VOCs (including oxygenated VOCs, OVOCs) can be ordered as follows (in descending order) in terms of proportion: OVOCs > alkenes > aromatic VOCs > alkanes > halo hydrocarbons > alkynes. These results indicate solid fuel combustion processes warrant attention because they produce high OVOC emissions. The ozone formation potential (OFP) values derived for VOCs emitted from solid fuel combustion ranged from 5.83 ± 0.72 to 1910 ± 1750 mg/kg. Clean fuel and clean stove technologies both exhibited >80% efficiency levels in reducing OFP emissions (e.g., 80.6% reduction for the optimal fuel; 89.4% reduction for a clean stove). Therefore, the difference between VOC emission profiles from different combustion technologies should not be ignored. This study also noted substantial differences between VOC emissions from residential combustion and industrial combustion. Accordingly, attention should be paid to the local characteristics of fuels and stoves and to VOC emissions from residential combustion.
Collapse
Affiliation(s)
- Qin Peng
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lizhen Li
- United Taize (Shanxi) Environmental Technology Development Co., Ltd., Taiyuan, 030006, China
| | - Jian Sun
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Kun He
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haijiang Zou
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongmei Xu
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Zhenxing Shen
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
21
|
Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume. Processes (Basel) 2023. [DOI: 10.3390/pr11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Volatile organic compounds (VOCs) in cooking oil fumes need to be efficiently removed due to the significant damage they cause to the environment and human health. This review discusses the emission characteristics, which are influenced by different cooking temperatures, cooking oils, and cuisines. Then, various cooking oil fume purification methods are mainly classified into physical capture, chemical decomposition, and combination methods. VOCs removal rate, system operability, secondary pollution, application area, and cost are compared. The catalytic combustion method was found to have the advantages of high VOC removal efficiency, environmental protection, and low cost. Therefore, the last part of this review focuses on the research progress of the catalytic combustion method and summarizes its mechanisms and catalysts. The Marse-van Krevelen (MVK), Langmuir-Hinshelwood (L-H), and Eley-Rideal (E-R) mechanisms are analyzed. Noble metal and non-noble metal catalysts are commonly used. The former showed excellent activity at low temperatures due to its strong adsorption and electron transfer abilities, but the high price limits its application. The transition metals primarily comprise the latter, including single metal and composite metal catalysts. Compared to single metal catalysts, the interaction between metals in composite metal catalysts can further enhance the catalytic performance.
Collapse
|
22
|
Gu X, Chen K, Cai M, Yin Z, Liu X, Li X. Study on the Fingerprint and Atmospheric Activity of Volatile Organic Compounds from Typical Industrial Emissions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3517. [PMID: 36834214 PMCID: PMC9965789 DOI: 10.3390/ijerph20043517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
China is prone to severe surface ozone pollution in summer, so it is very important to understand the source of volatile organic compounds (VOCs) to control ozone formation. In this work, the emission characteristics of 91 VOC components from the plastic products industry, packaging and printing industries, printing ink industry, furniture manufacturing and vehicle manufacturing industries were studied. The results show that there are significant differences between these sources, and for the plastic products industry, alkanes (48%) are the most abundant VOCs. The main emission species in the packaging and printing industry are OVOCs (36%) and alkanes (34%). The proportion of OVOCs in the printing ink (73%) and furniture manufacturing industries (49%) is dominated by VOC emissions; aromatic hydrocarbons (33%), alkanes (33%), and OVOCs (17%) are the main emission species in the vehicle manufacturing industry. At the same time, the ozone generation potential (OFP) and secondary organic aerosol formation potential (SOA) of anthropogenic VOC emissions were evaluated, and the top 10 contributors to OFP and SOA were identified. Toluene, o-xylene, and m-xylene had a significant tendency to form OFP or SOA. Then, a health risk assessment of VOC components was carried out. These data can supplement the existing VOC emission characteristics of anthropogenic emissions, thus enriching the research progress of VOC emission sources.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Kaitao Chen
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Min Cai
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Zhongyi Yin
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| |
Collapse
|
23
|
Liang S, Gao S, Wang S, Chai W, Chen W, Tang G. Characteristics, sources of volatile organic compounds, and their contributions to secondary air pollution during different periods in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159831. [PMID: 36336049 DOI: 10.1016/j.scitotenv.2022.159831] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Continuous measurements of volatile organic compounds (VOCs), ozone (O3), fine particulate matter (PM2.5), and related parameters were conducted between April 2020 and March 2021 in Beijing, China, to characterize potential sources of VOCs and their impacts on secondary organic aerosols (SOAs) and O3 levels. The annual average mixing ratio of VOCs was 17.4 ± 10.1 ppbv, with monthly averages ranging from 11.6 to 25.2 ppbv. According to the empirical kinetic modeling approach (EKMA), O3 formation during O3 season was "VOCs-limited", while it was in a "transition" regime during O3 pollution episodes. In the O3 season, higher ozone formation potential (OFP) of m/p-xylene, o-xylene, toluene, isopentane, and n-butane were evident during O3 pollution episodes, in line with the increasing contributions of solvent usage and coating, as well as gasoline evaporation to OFP obtained through a matrix factorization model (PMF). Aromatics contributed the most to the secondary organic aerosol formation potential (SOAFP). In the non-O3 season, the contribution of vehicle exhaust to SOAFP elevated on hazy days, thereby revealing the importance of traffic-derived VOCs for PM2.5 pollution. Our results indicate that the prior control of different VOC sources should vary by season, thereby facilitating the synergistic control of O3 and PM2.5 in Beijing.
Collapse
Affiliation(s)
- Siyuan Liang
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Song Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuai Wang
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Wenxuan Chai
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Wentai Chen
- Nanjing Intelligent Environmental Science and Technology Co., Ltd., Nanjing 211800, China
| | - Guigang Tang
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|
24
|
Choi YH, Lee JY, Moon KW. Exposure to volatile organic compounds and polycyclic aromatic hydrocarbons is associated with the risk of non-alcoholic fatty liver disease in Korean adolescents: Korea National Environmental Health Survey (KoNEHS) 2015-2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114508. [PMID: 36621033 DOI: 10.1016/j.ecoenv.2023.114508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent liver diseases among adolescents. Several animal studies have suggested that volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) increase NAFLD risk. However, few epidemiological studies have confirmed the association between VOCs, PAHs and NAFLD in the general adolescent population. Therefore, we analyzed 798 adolescents from the Korean National Environmental Health Survey (KoNEHS), 2015-2017, to examine the associations of urinary metabolites of VOCs and PAHs with serum alanine aminotransferase (ALT) activity and NAFLD prevalence. We performed linear regression, logistic regression, and Bayesian kernel machine regression (BKMR) to evaluate the association of urinary VOCs and PAHs metabolites with ALT levels and NAFLD prevalence. After adjusting for all covariates, urinary benzylmercapturic acid and 2-hydroxyfluorene levels were found to increase ALT activity and NAFLD prevalence. Additionally, the BKMR analyses showed a significantly positive overall effect on ALT activity and NAFLD prevalence with urinary concentrations of VOCs and PAHs metabolites, with 2-hydroxyfluorene as the biggest contributor. Our study suggests that exposure to low-level VOCs and PAHs may have a detrimental effect on NAFLD risk in adolescents. Given the increasing prevalence of NAFLD in adolescents, future cohort studies are confirmed to comprehend the effect of these chemicals on NAFLD risk.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
| | - Ju-Yeon Lee
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea; Department of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
25
|
Kim SJ, Lee SJ, Lee HY, Son JM, Lim HB, Kim HW, Shin HJ, Lee JY, Choi SD. Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156344. [PMID: 35654203 DOI: 10.1016/j.scitotenv.2022.156344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric volatile organic compounds (VOCs) in Seoul, the capital of South Korea, have attracted increased attention owing to their emission, secondary formation, and human health risk. In this study, we collected 24 hourly samples once a month at an urban site in Seoul for a year (a total of 288 samples) using a sequential tube sampler. Analysis results revealed that toluene (9.08 ± 8.99 μg/m3) exhibited the highest annual mean concentration, followed by ethyl acetate (5.55 ± 9.09 μg/m3), m,p-xylenes (2.79 ± 4.57 μg/m3), benzene (2.37 ± 1.55 μg/m3), ethylbenzene (1.81 ± 2.27 μg/m3), and o-xylene (0.91 ± 1.47 μg/m3), indicating that these compounds accounted for 77.8-85.6% of the seasonal mean concentrations of the total (Σ59) VOCs. The concentrations of the Σ59 VOCs were statistically higher in spring and winter than in summer and fall because of meteorological conditions, and the concentrations of individual VOCs were higher during the daytime than nighttime owing to higher human activities during the daytime. The conditional bivariate probability function and concentration weighted trajectory analysis results suggested that domestic effects (e.g., vehicular exhaust and solvents) exhibited a dominant effect on the presence of VOCs in Seoul, as well as long-range atmospheric transport of VOCs. Further, the most important secondary organic aerosol formation potential (SOAFP) compounds included benzene, toluene, ethylbenzene, and m,p,o-xylenes, and the total SOAFP of nine VOCs accounted for 5-29% of the seasonal mean PM2.5 concentrations. The cancer and non-cancer risks of the selected VOCs were below the tolerable (1 × 10-4) and acceptable (Hazard quotient: HQ < 1) levels, respectively. Overall, this study highlighted the feasibility of the sequential sampling of VOCs and hybrid receptor modeling to further understand the source-receptor relationship of VOCs.
Collapse
Affiliation(s)
- Seong-Joon Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Jin Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Min Son
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyung-Bae Lim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hyeon-Woong Kim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
26
|
Khajeh Hoseini L, Jalilzadeh Yengejeh R, Mohammadi Rouzbehani M, Sabzalipour S. Health risk assessment of volatile organic compounds (VOCs) in a refinery in the southwest of Iran using SQRA method. Front Public Health 2022; 10:978354. [PMID: 36176512 PMCID: PMC9514116 DOI: 10.3389/fpubh.2022.978354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023] Open
Abstract
Oil industries, such as oil refineries, are important sources of volatile organic compound production. These compounds have significant health effects on human health. In this study, a health risk assessment is carried out on volatile organic compounds (VOCs) in the recovery oil plant (ROP) unit of a refinery in southwest Iran. It was performed using the SQRA method including respiratory risk for chronic daily intake (CDI) of VOCs and cancer risk and non-cancer risk indices. Five locations in the area of oil effluents and five locations in the refinery area (control samples) were considered for evaluation. The sampling was done according to the standard NIOSH-1501 and SKC pumps. The gas chromatography/flame ionization detector (GC/FID) method was used to extract VOCs. The cancer slope factor (CSF) and respiratory reference dose (RFC) were calculated in addition to the respiratory risk (CDI). The end result shows that a significant difference was observed between the concentrations of volatile organic compounds in the two groups of air (P < 0.05). The SQRA risk assessment showed that the risk levels of benzene for workers in the pit area were very high (4-5). Health hazard levels were also evaluated as high levels for toluene (2-4) and moderate levels for xylene and paraxylene (1-3). The cancer risk assessment of volatile organic compounds recorded the highest level of cancer risk for benzene in the range of petroleum effluents (>1). Also, a non-cancer risk (HQ) assessment revealed that benzene had a significant health risk in the range of oil pits (2-3). Based on the results, petroleum industries, including refineries, should conduct health risk assessment studies of volatile organic compounds. The units that are directly related to the high level of VOCs should be considered sensitive groups, and their employees should be under special management to reduce the level of exposure to these compounds and other hazardous compounds.
Collapse
Affiliation(s)
| | - Reza Jalilzadeh Yengejeh
- Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran,*Correspondence: Reza Jalilzadeh Yengejeh
| | | | - Sima Sabzalipour
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
27
|
Xiong Y, Huang Y, Du K. Health Risk-Oriented Source Apportionment of Hazardous Volatile Organic Compounds in Eight Canadian Cities and Implications for Prioritizing Mitigation Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12077-12085. [PMID: 35939835 DOI: 10.1021/acs.est.2c02558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditionally, environmental authorities make regulatory policies for controlling volatile organic compound (VOC) pollution based on the mitigation of dominant VOC sources. However, the emission from each VOC source has a unique combination of VOC species of different toxicities. Without quantitatively assessing the health risk associated with each source, the effectiveness of the mitigation policy could be undermined. To address this shortcoming, we developed a new health risk-oriented source apportionment method that can provide quantitative health risk assessment and source-specific mitigation strategies for hazardous VOCs. We estimated that the integrated inhalation cancer risk (ICR) of hazardous VOCs was 7.7 × 10-5 in Western Canada, indicating a 100% likelihood of exceeding Health Canada's acceptable risk level (1.0 × 10-5). Anthropogenic sources were responsible for 56.3-73.8% of cancer risks across eight Canadian cities except for the regional background island, where natural sources contributed over 77% to the integrated ICR. Thus, substantial environmental and health cobenefits could be achieved via reducing the ambient levels of benzene and 1,3-butadiene by 39.3-75.7 and 14-69.3%, respectively, and mitigating emissions from fuel combustion (by 31.3-54.1%), traffic source (3.0-36.8%), and other anthropogenic sources (5.3-20.1%) in Western Canada. Our study has significant implications for prioritizing air pollution mitigation policies, especially for quantitative reduction of hazardous air pollutants.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
28
|
Yang Y, Liu B, Hua J, Yang T, Dai Q, Wu J, Feng Y, Hopke PK. Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. ENVIRONMENT INTERNATIONAL 2022; 165:107330. [PMID: 35671590 DOI: 10.1016/j.envint.2022.107330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Highly time-resolved data for volatile organic compounds (VOCs) can now be monitored. Source analyses of such high time-resolved concentrations provides key information for controlling VOC emissions. This work reviewed the literature on VOCs source analyses published from 2015 to 2021, and assesses the state-of-the-art and the existing issues with these studies. Gas chromatography system and direct-inlet mass spectrometry are the main monitoring tools. Quality control (QC) of the monitoring process is critical prior to analysis. QC includes inspection and replacement of instrument consumables, calibration curve corrections, and reviewing the data. Approximately 54% published papers lacked details on the quantitative evaluation of the effectiveness of QC measures. Among the reviewed works, the number of monitored species varied from 5 to 119, and fraction of papers with more than 90 monitored species increased yearly. US EPA PMF v5.0 was the most commonly used (∼86%) for VOC source analyses. However, conventional source apportionment directly uses the measured VOCs and may be problematic given the impacts of dispersion and photochemical losses, uncertainty setting of VOCs data, factor resolution, and factor identification. Excluding species with high-reactivity or estimation of corrected concentrations were often applied to reduce the influence of photochemical reactions on the results. However, most reports did not specify the selection criteria or the specific error fraction values in the uncertainty estimation. Model diagnostic indexes were used in 99% of the reports for PMF analysis to determine the factor resolution. Due to lack of known local source profiles, factor identification was mainly achieved using marker species and characteristic species ratios. However, multiple sources had high-collinearity and the same species were often used to identify different sources. Vehicle emissions and fuel evaporation were the primary contributors to VOCs around the world. Contribution of coal combustion in China was substantially higher than in other countries.
Collapse
Affiliation(s)
- Yang Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Jing Hua
- Tianjin Ecology and Environment Bureau, Tianjin 300191, China
| | - Tao Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Jianhui Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
29
|
Feng Y, Ding D, Xiao A, Li B, Jia R, Guo Y. Characteristics, influence factors, and health risk assessment of volatile organic compounds through one year of high-resolution measurement at a refinery. CHEMOSPHERE 2022; 296:134004. [PMID: 35181418 DOI: 10.1016/j.chemosphere.2022.134004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
From January 2020 to December 2020, high-resolution data of volatile organic compound (VOC) concentrations were monitored by online instruments at a petroleum refinery. The measurement results showed that the external contaminants, meteorological conditions and photochemical reactions had a great influence on the VOC data measured in the petroleum refineries. Some significant differences were observed in the emission composition of different refineries, while propene (34.2%), propane (10.2%), n-butane (5.6%), i-pentane (5.0%) were the dominant species emitted from the refinery in this study. The correlations between compounds with similar atmospheric lifetimes were strong (R2 > 0.9), which indicated that the diagnostic ratios of these compounds could be used as indicators to identify the refinery emission source. Chronic health effects of non-carcinogenic risk results showed that acrolein had the highest non-carcinogenic risk and other compound-specific health risks may be of less concern in the refining area. Halogenates and aromatics accounted for 97.4% of the total carcinogenic risk values, while 1,2-dibromoethane, chloromethane, benzene, trichloromethane, 1,2-dichloroethane contributed approximately 80% of the total carcinogenic risk assessment values. This research has recorded valuable data about the VOC emission characteristics from the perspective of the high-resolution monitoring of the petroleum refinery. The results of this work will provide a reference to accurately quantify and identify the emission of petroleum refineries and further throw some light on effective VOC abatement strategies.
Collapse
Affiliation(s)
- Yunxia Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China.
| | - Dewu Ding
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Anshan Xiao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Bo Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Runzhong Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Yirong Guo
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| |
Collapse
|
30
|
Li C, Liu Y, Cheng B, Zhang Y, Liu X, Qu Y, An J, Kong L, Zhang Y, Zhang C, Tan Q, Feng M. A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O 3 formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150247. [PMID: 34562762 DOI: 10.1016/j.scitotenv.2021.150247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Observations of volatile organic compounds (VOCs) are a prerequisite for evaluating the effectiveness of government efforts targeting VOC pollution. Here, based on the one-year online VOC measurement in 2018 in Beijing, systematic analyses and model simulation were conducted to illuminate VOC characteristics, emission sources, regional hotspots and behaviours in response to O3 formation. The observed mean VOC concentration in 2018 was 29.12 ± 17.64 ppbv declined distinctly compared to that in 2015 and 2016. Vehicle exhaust (39.95%), natural gas/liquefied petroleum gas (22.04%) and industrial sources (20.64%) were the main contributors to VOCs in Beijing. Regional transport, mainly from the south-south-east (SSE) and south-south-west (SSW), quantitatively contributed 36.65%-55.06% to VOCs based on our developed method. O3 sensitivity tended to be in the transition regime in summer identified by ground-based and satellite observations. Strong solar radiation along with high temperature and low humidity aggravated O3 pollution that was further intensified by regional transport from southern polluted regions. The model simulation determined that turning off CH3CHO related reactions brought about the most predominantly short-term and long-run O3 reduction, indicating that control policies in VOC species should be tailored, instead of one-size-fits-all. Overall, region-collaborated and active VOC-species-focused strategies on VOC controls are imperative.
Collapse
Affiliation(s)
- Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bingfen Cheng
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuepeng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Liuwei Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| |
Collapse
|
31
|
Song SK, Shon ZH, Bae MS, Cho SB, Moon SH, Kim HS, Son YB, Lee CR. Effects of natural and anthropogenic emissions on the composition and toxicity of aerosols in the marine atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150928. [PMID: 34655634 DOI: 10.1016/j.scitotenv.2021.150928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The impacts of natural dimethyl sulfide (DMS) and ship emissions on marine environments and particulate matter (PM) over the western and southern sea areas around South Korea were studied based on field campaigns from August-September 2017 and May-June 2018 using the Community Multi-scale Air Quality v5.3.2 modeling system. DMS oxidation enhanced the concentrations of both sulfur dioxide (SO2) and sulfate (SO42-) in PM2.5 by 6.2-6.4% and 2.9-3.6%, respectively, in the marine atmosphere during the study period, whereas it slightly decreased nitrate (NO3-) concentrations (by -1.3%), compared to the simulation without DMS oxidation chemistry. Furthermore, ship emissions increased the concentrations of SO42-, NO3-, and NH4+ by 4.5%, 23%, and 7.3%, respectively. Methane sulfonic acid concentration was 0.17 μg m-3, suggesting the importance of the addition channel in the DMS oxidation pathway. The model simulation indicated that ship emissions in the target area contributed dominantly to non-sea-salt SO42-, and the marine DMS emission source was non-negligible. The geographical distribution of PM toxicity (aerosol oxidative potential) was assessed in the marine atmosphere during the study period.
Collapse
Affiliation(s)
- Sang-Keun Song
- Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Zang-Ho Shon
- Department of Environmental Engineering, Dong-Eui University, Busan 47340, Republic of Korea.
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Seong-Bin Cho
- Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Soo-Hwan Moon
- Department of Earth and Marine Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Heon-Sook Kim
- Department of Environmental Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Young Baek Son
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Republic of Korea
| | - Chang-Rae Lee
- Marine Research Center, National Park Research Institute, Yeosu 59723, Republic of Korea
| |
Collapse
|
32
|
Masi M, Nissim WG, Pandolfi C, Azzarello E, Mancuso S. Modelling botanical biofiltration of indoor air streams contaminated by volatile organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126875. [PMID: 34411961 DOI: 10.1016/j.jhazmat.2021.126875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Botanical filtration is a biological-based treatment method suitable for removing hazardous volatile organic compounds (VOCs) from air streams, based on forcing an air flow through a porous substrate and foliage of a living botanical compartment. The pathways and removal mechanisms during VOC bioremediation have been largely investigated; however, their mathematical representation is well established only for the non-botanical components of the system. In this study, we evaluated the applicability of such a modelling scheme to systems which include a botanical compartment. We implemented a one-dimensional numerical model and performed a global sensitivity analysis to measure the input parameters influence on the transient and steady biofilter responses. We found that the most sensitive parameters on the transient-state behaviour were the mass transfer coefficient between gas and solid surfaces, and the fraction of solid surfaces covered by the biofilm; the steady-state response was primarily influenced by the biofilm specific surface area and the fraction of surfaces covered by the biofilm. We calibrated the identified set of parameters and successfully validated the model against data from a pilot-scale installation. The results showed that the application of the model to systems with a botanical compartment is feasible, although under a strict set of assumptions.
Collapse
Affiliation(s)
- Matteo Masi
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy.
| | - Werther Guidi Nissim
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Camilla Pandolfi
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Elisa Azzarello
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Stefano Mancuso
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| |
Collapse
|
33
|
Niu Y, Yan Y, Li J, Liu P, Liu Z, Hu D, Peng L, Wu J. Establishment and verification of anthropogenic volatile organic compound emission inventory in a typical coal resource-based city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117794. [PMID: 34329059 DOI: 10.1016/j.envpol.2021.117794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A few studies on volatile organic compound (VOC) emission inventories in coal resource-based cities have been reported, and previous emission inventories lacked verification. Herein, using Yangquan as a case study, emission factor (EF) method and "(tracer ratio) TR - positive matrix factorization (PMF)" combined method based on atmospheric data were used to establish and verify the VOC emission inventory in coal resource-based cities, respectively. The total VOC emissions in Yangquan were 9283.2 t [-40.0%, 62.1%] in 2018, with industrial processes being the major contributors. Alkanes (35.8%), aromatics (25.0%), and alkenes (19.8%) were the main compounds in the emission inventory. The verification results for both species emission and source structure were in agreement, indicating the accuracy of VOC emission inventory based on EF method to a certain extent. However, for some species (ethane, propane, benzene, and acetylene), the EF method indicated emissions lower than those obtained from the TR results. Furthermore, the summer-time emission contribution from fossil fuel combustion indicated by the EF method (23.4%) was lower than that obtained from the PMF results (38.4%). Overall, these discrepancies could be attributed to the absence of a coal gangue source in the EF method. The verification results determined the accuracy of the VOC emission inventory and identified existing problems in the estimation of the VOC emission inventory in coal resource-based cities. In particular, not accounting for the coal gangue emissions may result in an underestimation of VOC emissions in coal resource-based cities. Thus, coal gangue emissions should be considered in future research.
Collapse
Affiliation(s)
- Yueyuan Niu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yulong Yan
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jing Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, USA
| | - Peng Liu
- Ecological Environmental Protection Service Center of Shanxi Province, Shanxi, 030009, China
| | - Zhuocheng Liu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Dongmei Hu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lin Peng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jing Wu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
34
|
Sun J, Shen Z, Zhang B, Zhang L, Zhang Y, Zhang Q, Wang D, Huang Y, Liu S, Cao J. Chemical source profiles of particulate matter and gases emitted from solid fuels for residential cooking and heating scenarios in Qinghai-Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117503. [PMID: 34090071 DOI: 10.1016/j.envpol.2021.117503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Incomplete combustion of solid fuels (animal dung and bituminous coal) is a common phenomenon during residential cooking and heating in the Qinghai-Tibetan Plateau (QTP), resulting in large amounts of pollutants emitted into the atmosphere. This study investigated the pollutant emissions from six burning scenarios (heating and cooking with each of the three different fuels: yak dung, sheep dung, and bitumite) in the QTP's pastoral dwellings. Target pollutants such as carbon monoxide (CO), gas-phase polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), fine particles (PM2.5, particulate matter with an aerodynamic diameter < 2.5 μm), carbonaceous aerosols, water-soluble ions, and particle-phase PAHs were investigated. Emission factors (EFs) (mean ± standard deviation) of PM2.5 from the six scenarios were in the range of 1.21 ± 0.47-7.03 ± 1.95 g kg-1, of which over 60% mass fractions were carbonaceous aerosols. The ratio of organic carbon to elemental carbon ranged from 9.6 ± 2.7-33.4 ± 11.5 and 81.7 ± 30.4-91.9 ± 29.0 for dung and bitumite burning, respectively. These values were much larger than those reported in the literature, likely because of the region's high altitudes-where the oxygen level is approximately 65% of that at the sea level-thus providing a deficient air supply to stoves. However, the toxicity and carcinogenicity of PAHs emitted from solid fuel combustion in the QTP are significant, despite a slightly lower benzo(a)pyrene-equivalent carcinogenic potency (Bapeq) in this study than in the literature. The gas-to-particle partitioning coefficient of PAHs and VOC emission profiles in the QTP differed significantly from those reported for other regions in the literature. More attention should be paid to the emissions of PAH derivatives (oxygenated PAHs and nitro-PAHs), considering their enhanced light-absorbing ability and high BaPeq from solid fuel combustion in the QTP.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China.
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Diwei Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yu Huang
- The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Suixin Liu
- The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Junji Cao
- The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| |
Collapse
|
35
|
Johnston JE, Okorn K, Van Horne YO, Jimenez A. Changes in neighborhood air quality after idling of an urban oil production site. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:967-980. [PMID: 34037015 DOI: 10.1039/d1em00048a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oil and gas development is occurring in urban, densely populated neighborhoods; however, the impacts of these operations on neighborhood air quality are not well characterized. In this research, we leveraged ambient air monitoring adjacent to an oil and gas production site in Los Angeles, California during active and idle periods. This study analyzed continuous methane (CH4) and non-methane hydrocarbon (NMHC) measurements, together with triggered grab samples and 24 hour integrated canister samples collected by the South Coast Air Quality Management District. Ambient air pollutant levels and trends were evaluated during active and idle well operations to assess changes in neighborhood air quality after the suspension of oil and gas production. We find that mean concentrations of methane, NMHC, benzene, toluene, ethylbenzene, xylenes, styrene, n-hexane, n-pentane, ethane, and propane decreased following the stop in production activities. Using a source apportionment approach, we observed that the "natural gas" drilling source contributed 23.7% to the total VOCs measured during the active phase, and only 0.6% to the total measured VOCs in the idle phase. Near urban oil and gas production sites, residents may face poorer air quality due to the oil and gas activities which may pose adverse health and environmental risks among proximate communities.
Collapse
Affiliation(s)
- Jill E Johnston
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Kristen Okorn
- Department of Environmental Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Yoshira Ornelas Van Horne
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Amanda Jimenez
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
36
|
Jin C, Sun S, Yang D, Sheng W, Ma Y, He W, Li G. Anaerobic digestion: An alternative resource treatment option for food waste in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146397. [PMID: 33743457 DOI: 10.1016/j.scitotenv.2021.146397] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
With the implementation of zero-waste city and waste classification in China, a large amount of food waste (FW) began to appear in concentration, and there was an urgent requirement for appropriate and efficient treatment technology. Traditional FW disposal methods (landfill and incineration) could cause several environmental problems, so resource recycling has become the main development trend of FW in China. In recent years, anaerobic digestion (AD) technology for FW resource treatment has attracted much attention due to its advantages such as the ability to obtain clean energy, low carbon emissions, and suitability for large-scale treatment compared with other recycling technologies (composting, feed, and breeding insects). Chinese policy is conducive to the development of AD for FW, which has the potential to produce methane and achieve economic and environmental benefits. This paper presents an overview of the researches, application situations, and perspectives for the AD of FW resource treatment in China. The bibliometric analysis shows that China has the most interest in the AD of FW compared to other countries, and the amount and characteristics analysis of FW indicates that FW is suitable for treatment by AD. At the same time, this review analyzes the influence factors, methods to promote AD, working mechanism, secondary pollution of AD. Besides, the article introduces and analyzes the current policies, application status, economic and environmental benefits, and problems of AD for FW resource treatment in China. AD is considered as an alternative resource treatment technology for FW, although there are still several problems such as odors, digestate, etc. In the future, China should focus on the reform of management policy, the implementation of the AD circular economy model, and the research of the biorefinery model based on AD technology.
Collapse
Affiliation(s)
- Chenxi Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Shiqiang Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weijie Sheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yadong Ma
- Shanghai Ecoacell Environment Technology Co., Ltd., Shanghai 200062, PR China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
37
|
Kermani M, Asadgol Z, Gholami M, Jafari AJ, Shahsavani A, Goodarzi B, Arfaeinia H. Occurrence, spatial distribution, seasonal variations, potential sources, and inhalation-based health risk assessment of organic/inorganic pollutants in ambient air of Tehran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1983-2006. [PMID: 33216310 DOI: 10.1007/s10653-020-00779-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluated the concentrations, spatial distribution, seasonal variations, potential sources, and risk assessment of organic/inorganic pollutants in ambient air of Tehran city. Totally, 180 air samples were taken from 9 sampling stations from March 2018 to March 2019 and were analyzed to determine the concentrations of organic pollutants (BTEX compounds and PM2.5-bound PAHs) plus inorganic pollutants (PM2.5-bound metals and asbestos fibers). The results revealed that the mean concentrations of ∑ PAHs, BTEX, ∑ heavy metals, and asbestos fibers were 5.34 ng/m3, 60.55 µg/m3, 8585.12 ng/m3, and 4.13 fiber/ml in the cold season, respectively, and 3.88 ng/m3, 33.86 µg/m3, 5682.61 ng/m3, and 3.21 fiber/ml in the warm season, respectively. Source apportionment of emission of the air pollutants showed that PAHs are emitted from diesel vehicles and industrial activities. BTEX and asbestos are also released mainly by vehicles. The results of the inhalation-based risk assessment indicated that the carcinogenic risk of PAHs, BTEX, and asbestos exceeded the recommended limit by The US environmental protection agency (US EPA) and WHO (1 × 10-4). The risk of carcinogenesis of heavy metal of lead and chromium also exceeded the recommended limit. Thus, proper management strategies are required to control the concentration of these pollutants in Tehran's ambient air in order to maintain the health of Tehran's citizens.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Asadgol
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Hormozgan, Iran.
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
38
|
Cui J, Liu S, Xue H, Wang X, Hao Z, Liu R, Shang W, Zhao D, Ding H. Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Zhao PP, Chen J, Yu HB, Cen BH, Wang WY, Luo MF, Lu JQ. Insights into propane combustion over MoO3 promoted Pt/ZrO2 catalysts: The generation of Pt-MoO3 interface and its promotional role on catalytic activity. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Feng Y, Xiao A, Jia R, Zhu S, Gao S, Li B, Shi N, Zou B. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115026. [PMID: 32593904 DOI: 10.1016/j.envpol.2020.115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The accuracy and reliability of volatile organic compound (VOC) emission data are essential for assessing emission characteristics and their potential impact on air quality and human health. This paper describes a new method for determining VOC emission data by multipoint sampling from various process units inside a large-scale refinery. We found that the emission characteristics of various production units were related to the raw materials, products, and production processes. Saturated alkanes accounted for the largest fraction in the continuous catalytic reforming and wastewater treatment units (48.0% and 59.2%, respectively). In the propene recovery unit and catalytic cracking unit, alkenes were the most dominant compounds, and propene provided the largest contributions (57.8% and 23.0%, respectively). In addition, n-decane (12.6%), m,p-xylene (12.4%), and n-nonane (8.9%) were the main species in the normal production process of the delayed coking unit. Assessments of photochemical reactivity and carcinogenic risk were carried out, and the results indicate that VOC emissions from the propene recovery unit and catalytic cracking unit should be controlled to reduce the ozone formation potential; in addition, alkenes are precedent-controlled pollutants. The cancer risk assessments reveal that 1,2-dibromoethane, benzene, 1,2-dichloroethane, and chloroform were the dominant risk contributors, and their values were much higher than the standard threshold value of 1.0 × 10-6 but lower than the significant risk value defined by the US Supreme Court. Based on the VOC composition and a classification algorithm, the samples were classified into eight main groups that corresponded to different process units in the petroleum refinery. In conclusion, this work provides valuable data for investigating process-specific emission characteristics of VOCs and performing associated assessments of photochemical reactivity and carcinogenic risk in petrochemical refineries.
Collapse
Affiliation(s)
- Yunxia Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China.
| | - Anshan Xiao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Runzhong Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Shengjie Zhu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Shaohua Gao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Bo Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Ning Shi
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Bing Zou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| |
Collapse
|
41
|
Andreão WL, Pinto JA, Pedruzzi R, Kumar P, Albuquerque TTDA. Quantifying the impact of particle matter on mortality and hospitalizations in four Brazilian metropolitan areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110840. [PMID: 32501238 DOI: 10.1016/j.jenvman.2020.110840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Air quality management involves investigating areas where pollutant concentrations are above guideline or standard values to minimize its effect on human health. Particulate matter (PM) is one of the most studied pollutants, and its relationship with health has been widely outlined. To guide the construction and improvement of air quality policies, the impact of PM on the four Brazilian southeast metropolitan areas was investigated. One-year long modeling of PM10 and PM2.5 was performed with the WRF-Chem model for 2015 to quantify daily and annual PM concentrations in 102 cities. Avoidable mortality due to diverse causes and morbidity due to respiratory and circular system diseases were estimated concerning WHO guidelines, which was adopted in Brazil as a final standard to be reached in the future; although there is no deadline set for its implementation yet. Results showed satisfactory representation of meteorology and ambient PM concentrations. An overestimation in PM concentrations for some monitoring stations was observed, mainly in São Paulo metropolitan area. Cities around capitals with high modelled annual PM2.5 concentrations do not monitor this pollutant. The total avoidable deaths estimated for the region, related to PM2.5, were 32,000 ± 5,300 due to all-cause mortality, between 16,000 ± 2,100 and 51,000 ± 3,000 due non-accidental causes, between 7,300 ± 1,300 and 16,700 ± 1,500 due to cardiovascular disease, between 4,750 ± 900 and 10,950 ± 870 due ischemic heart diseases and 1,220 ± 330 avoidable deaths due to lung cancer. Avoidable respiratory hospitalizations were greater for PM2.5 among 'children' age group than for PM10 (all age group) except in São Paulo metropolitan area. For circulatory system diseases, 9,840 ± 3,950 avoidable hospitalizations in the elderly related to a decrease in PM2.5 concentrations were estimated. This study endorses that more restrictive air quality standards, human exposure, and health effects are essential factors to consider in urban air quality management.
Collapse
Affiliation(s)
- Willian Lemker Andreão
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Janaina Antonino Pinto
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil; Faculty of Mobility Engineering, Federal University of Itajubá, Itabira, 35903-087, Brazil; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Rizzieri Pedruzzi
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Taciana Toledo de Almeida Albuquerque
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil; Post Graduation Program on Environmental Engineering, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
42
|
Dörter M, Odabasi M, Yenisoy-Karakaş S. Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139201. [PMID: 32402909 DOI: 10.1016/j.scitotenv.2020.139201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Total of 69 volatile organic compounds (VOCs) including both biogenic (isoprene, monoterpenes and oxygenated compounds) and anthropogenic ones were investigated in Bolu plateau by passive sampling technique. The main objective of this study was to determine spatial distributions, seasonal variations and possible sources for a wide variety of VOCs. Two-week passive sampling campaigns were performed in the winter and summer of 2017. Anthropogenic VOCs were predominant with a high percentage of contribution, 91% and 69% for winter and summer, respectively. Relatively higher concentrations of biogenic VOCs during the summer campaign were found to be related to higher solar intensity, temperature and amount of broad-leaved tree species. Benzaldehyde, toluene, phenol, benzene, hexane, decanal, benzothiazole, dodecane and acetophenone were anthropogenic VOCs with higher concentrations. Among biogenic VOCs, hexanal, alpha-pinene and limonene were found to be in higher concentrations. Spatial distribution maps were drawn for each VOC. Elevated concentrations of VOCs around the city center and major roads indicate that emissions from domestic heating activities and vehicular emissions can be significant sources of VOCs. The results were also supported by Positive Matrix Factorization (PMF) analyses and G-score distribution maps. Solvent evaporation, wood-coal combustion, biogenic emissions (pine, grain, grass), city atmosphere (styrene emissions from plastic production), biogenic (hornbeam, pine, juniper) and vehicle emissions were the identified as the primary VOC sources in Bolu plateau, contributing 31%, 22%, 8.0%, 8.0%, 13%, and 18%, respectively to the total VOC concentrations.
Collapse
Affiliation(s)
- Melike Dörter
- Department of Chemistry, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Mustafa Odabasi
- Department of Environmental Engineering, Dokuz Eylül University, Izmir, Turkey
| | | |
Collapse
|
43
|
Li Z, Ho KF, Yim SHL. Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138243. [PMID: 32298889 DOI: 10.1016/j.scitotenv.2020.138243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
High temporal-resolution VOC concentration data can provide detailed and important temporal variations of VOC species and emission sources, which is not possible when using coarse temporal-resolution data. In this study, we utilized the positive matrix factorization (PMF) model to conduct source apportionment of hourly concentrations of nineteen VOC species and CO measured at the Mong Kok air quality monitoring station, operated by the Hong Kong Environmental Protection Department, from January 2013 to December 2014. The PMF analysis of the hourly dataset (PMF_Hourly) identified five sources, including liquefied petroleum gas (LPG) (contribution of 45%), gasoline exhaust (21%), combustion (20%), biogenic emission (9%), and paint solvents (6%). The diurnal patterns of VOC emissions from identified sources are likely to be affected by the strength of emissions, variation of the planetary boundary layer height, and photochemical reactions. In addition, the PMF analyses of hourly and 24-hour averaged data of the hourly-resolved data (PMF_Hourly and PMF_Daily) were generally comparable, but the time series of VOC emissions from PMF_Hourly could not be well captured by PMF_Daily for two local VOC sources of gasoline exhaust and LPG. This study highlights the benefit of high temporal-resolution measurement data in apportioning VOC sources, hence providing critical information on VOC emission sources (e.g., diurnal variations) for controlling VOC emissions effectively.
Collapse
Affiliation(s)
- Zhiyuan Li
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
44
|
Chen J, Yi J, Ji Y, Zhao B, Ji Y, Li G, An T. Enhanced H-abstraction contribution for oxidation of xylenes via mineral particles: Implications for particulate matter formation and human health. ENVIRONMENTAL RESEARCH 2020; 186:109568. [PMID: 32344213 DOI: 10.1016/j.envres.2020.109568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/23/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Xylenes are important aromatic hydrocarbons having broad industrial emissions and profound implication to air quality and human health. Generally, homogeneous atmospheric oxidation of xylenes is initiated by hydroxyl radical (OH) resulting in minor H-abstraction and major OH-addition pathways. However, the effect of mineral particles on the homogeneous atmospheric oxidation mechanism of xylenes is still not well understood. In the present study, the heterogeneous atmospheric oxidation of xylenes on mineral particles (TiO2) is examined in detail. Both the experimental data and theoretical calculations are combined to achieve the feast. The experimental results detected a major H-abstraction (≥87.18%) and minor OH-addition (≤12.82%) pathways for the OH-initiated heterogeneous oxidation of three xylenes on TiO2 under ultraviolet (UV) irradiation. Theoretical calculations demonstrated favorable H-abstraction on methyl group of xylenes by surface OH with large exothermic energies, because of the reason that their methyl group rather than the phenyl ring is more occupied by TiO2 via hydrogen bonding. Furthermore, the particle monitor and acute risk assessment results indicated that the H-abstraction products significantly enhance the formation of particulate matter and health risk to human beings. Taken together, these results indicate that the atmospheric oxidation mechanism of xylenes is altered in the presence of mineral particles, highlighting the necessity to re-evaluate its implication in the environment and human health.
Collapse
Affiliation(s)
- Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Jiajing Yi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Baocong Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongpeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
45
|
Xiong Y, Du K. Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137698. [PMID: 32169644 DOI: 10.1016/j.scitotenv.2020.137698] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 05/26/2023]
Abstract
The common regulatory approach for managing ground-level ozone (O3) formation is based upon reducing the emission of total VOC in VOC limited regions, and the emission of NOx in NOx limited regions. However, the characteristic VOC species emitted from different sources are of different ozone formation potentials (OFP). Without an in-depth understanding of the relative OFP contributions from specific sources, the effectiveness of the existing approach for controlling ground-level O3 at the regional scale is limited. This study collected and analyzed five years (2012-2016) of monitoring data for 56 most photochemically reactive VOC species at Port Moody, an industrial city in Metro Vancouver, Canada that has experienced elevated O3 levels in its ambience. Source-specific contributions to OFP were quantified for major VOC emitters to deliberate the underlying causes of elevated O3 recently observed in this populated region. Six sources were identified using the positive matrix factorization (PMF) model, consisting of fuel production and combustion, fuel evaporation, vehicle exhaust, industrial coatings/solvents, petrochemical source, and other industrial emission. Although the top three contributors to total VOCs are fuel production and combustion (34.5%), fuel evaporation (21.4%), and vehicle exhaust (20.6%), the top three contributors to OFP are fuel production and combustion (27.1%), vehicle exhaust (23.7%), and industrial coatings/solvents (17.2%). Additionally, potential source contribution function (PSCF) analysis was conducted to generate the geographical distribution of VOC and OFP sources in different seasons. The results revealed that, in the Metro Vancouver area, the OFP hotspots have been significantly different from the VOC emission hotspots. In general, regional sources, especially those located in the northeastern direction of Metro Vancouver, have greater influence on the VOCs levels. However, OFP has been predominantly affected by transportation and industrial sources at the local scale. Therefore, to formulate effective strategies for reducing ground-level O3, the seasonal and spatial variations of major OFP sources should be assessed by the regulatory authorities.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
46
|
Zheng G, Liu J, Shao Z, Chen T. Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: A case study of Suzhou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113546. [PMID: 31708279 DOI: 10.1016/j.envpol.2019.113546] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The process of anaerobic digestion in food waste treatment plants generates a large amount of volatile organic compounds (VOCs). Long-term exposure to this exhaust gas can pose a threat to the health of workers and people living nearby. In this study, VOCs emitted from different working units in a food waste anaerobic digestion plant were monitored for a year. Variations in VOCs emitted from each unit were analyzed and a health risk assessment was conducted for each working unit. The results show that the concentration of VOCs in different units varied greatly. The highest cumulative concentration of VOCs appeared in the hydrothermal hydrolysis unit (3.49 × 104 μg/m3), followed by the sorting/crushing room (8.97 × 103 μg/m3), anaerobic digestion unit (6.21 × 102 μg/m3), and biogas production unit (2.01 × 102 μg/m3). Oxygenated compounds and terpenes were the major components of the emitted VOCs, accounting for more than 98% of total VOC emissions. The carcinogenic risk in the plant exceeded the safety threshold (ILCR<1 × 10-6), while the non-carcinogenic risk was within the acceptable range (HI < 1). The carcinogenic risk from the hydrothermal hydrolysis unit was the highest, reaching 4.4 × 10-5, and was labeled as "probable risk." The carcinogenic risk at the plant boundary was 1.2 × 10-5, indicating exhaust gases can cause a health threat to neighbors. Therefore, management VOCs in anaerobic digestion plants should receive more attention, and employees should minimize the time they spend in the hydrothermal hydrolysis unit.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Junwan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuze Shao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Shahsavani S, Shamsedini N, Tabatabaei HR, Hoseini M. Indoor radon concentrations in residential houses, processing factories, and mines in Neyriz, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:979-987. [PMID: 32030168 PMCID: PMC6985355 DOI: 10.1007/s40201-019-00413-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/05/2019] [Indexed: 05/28/2023]
Abstract
PURPOSE This study aimed to determine radon concentrations in mines, stone processing factories, residential houses, and public areas, as well as calculating its effective dose in Neyriz, Iran. METHOD A total of 74 alpha Track detectors (CR-39 detector) were installed at the desired locations based on the US-EPA's protocol. After 3 months the detectors were collected and delivered to a Radon Reference Laboratory for analyzing. RESULTS Mean ± SD, minimum and maximum radon concentrations in the sampling buildings were 29.93 ± 12.63, 10.33, and 66.76 Bq/m3, respectively. The effective annual dose was calculated to be 0.75 mSv/year, which was lower than the recommended value. Significant positive correlations were found between radon concentrations and some studied variables including smoking cigarettes, number of cigarettes smoked, duration of smoking, building's age, number of floors, having cracks, use of colors in the building, use of ceramic for flooring, use of stone for flooring, and gas consumption. The number of cigarettes smoked by the residents was the most important predictor of radon concentrations. Radon concentrations were lower than standard values in all sampling locations. CONCLUSION It is necessary to conduct further studies in the field of regional geology and determine the sources that release radon in these areas to prevent further increases in radon concentration due to the proximity and plurality of mines and factories.
Collapse
Affiliation(s)
- Samaneh Shahsavani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars water and Wastewater Company, Shiraz, Iran
| | - Hamid Reza Tabatabaei
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Sun J, Shen Z, Zhang L, Zhang Y, Zhang T, Lei Y, Niu X, Zhang Q, Dang W, Han W, Cao J, Xu H, Liu P, Li X. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. ENVIRONMENT INTERNATIONAL 2019; 133:105252. [PMID: 31678907 DOI: 10.1016/j.envint.2019.105252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Solid (biomass and coal) fuels burned for residential heating are major sources of atmospheric volatile organic compounds (VOCs). In this study, VOC samples were collected in-situ from chimneys in 10 typical heating scenarios in rural areas of the Guanzhong Plain. A modified SUMA canister approach was then employed, followed by gas chromatography/mass spectrometry analysis. Emission factors (EFs) (as received basis) of targeted non-methane VOCs (NMVOCs) varied from 90.3 ± 29.3 to 12300 ± 1510 mg kg-1 in descending order of fuel wood > maize straw > bitumite ≫ anthracite (p < 0.05). Both clean stove and coal briquetting technologies effectively reduced VOC EFs compared with traditional heating methods. The EFs of methane (CH4) had similar characteristics to those of NMVOCs. However, they yielded different correlations with CO because of their differing mechanisms of formation. Coefficient of divergence (CD) values showed that a semi-gasifier has a limited effect on changing VOC profiles compared with a traditional stove using the same fuels. However, different types of fuel produce CD values over 0.50, which should therefore be classified as different sub-categories in source apportionment models. Correlation analysis showed that volatile matter content (V%) and modified combustion efficiency (MCE) were the two primary factors influencing NMVOC and CH4 emissions. A stepwise linear regression analysis showed that V%, MCE, and element nitrogen content (N%) can be used to predict total VOC (TVOCs, including CH4 and NMVOCs) emissions with regression coefficients of 0.23, -72.8 and -6.53, respectively (R2 = 0.92, p < 0.001). Ozone formation potential (OFP) EFs from burning solid fuel ranged from 72 to 18680 mg kg-1, with an approximate 50% contribution from alkenes. VOCs from burning solid fuel were equivalent to 62 to 22200 mg kg-1 secondary organic aerosol formation potential (SOAP), most of which (>95%) were contributed by aromatics. A semi-gasifier and coal briquettes were effective in reducing TVOC emissions, even when used in conjunction with a traditional stove and fuels. It is estimated that over 15,000 ton year-1 emissions can be reduced in Guanzhong Plain by adopting a semi-gasifier and coal briquettes, resulting in a 57,000 and 65,000 ton year-1 reduction of OFP and SOAP emissions, respectively. These results demonstrate that the use of clean heating technologies in Guanzhong Plain has considerable potential in relation to emissions reduction and thus provides a feasible solution to mitigate VOCs and related secondary pollutants emitted by residential solid fuel burning.
Collapse
Affiliation(s)
- Jian Sun
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Dang
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China
| | - Wenping Han
- Environmental Monitoring Station of Fufeng County, West Street of Fufeng County, 722200, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
49
|
Wei ZS, He YM, Huang ZS, Xiao XL, Li BL, Ming S, Cheng XL. Photocatalytic membrane combined with biodegradation for toluene oxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109618. [PMID: 31487569 DOI: 10.1016/j.ecoenv.2019.109618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Photocatalytic membrane coupled to biodegradation offers potential for degrading volatile organic compounds (VOCs) in photocatalytic membrane biofilm reactor. An intimately coupled photocatalysis and biodegradation reactor was operated in continuous operation for 500 days to treat simulated waste gas containing toluene. Toluene removal efficiency obtained 99%, with the elimination capacity of 550 g m-3·h-1. Membrane photocatalysis coupled to biodegradation was created to improve toluene removal from 11 to 20%. The dominant genera were Lysinibacillus, Hydrogenophaga, Pseudomonas at 30 d, Rudaea, Dongia, Litorilinea at 230 d xyl, Tod, Tcb, Bed, Tmo, Tbu, Tou, Dmp, Cat were functional genes of toluene metabolism, as shown by16S rDNA and metagenomic sequencing. Photocatalysis destroyed part of the toluene into biodegradable intermediates that were immediately mineralized by microorganisms in biofilm, some toluene was directly degraded by toluene degrading bacterial community into carbon dioxide and water. The novel hybrid photocatalytic membrane biofilm reactor is a cost-effective and robust alternative to VOCs treatment.
Collapse
Affiliation(s)
- Z S Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Y M He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Z S Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - X L Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - B L Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - S Ming
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - X L Cheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
50
|
Zhao P, Li X, Liao W, Wang Y, Chen J, Lu J, Luo M. Understanding the Role of NbOx on Pt/Al2O3 for Effective Catalytic Propane Oxidation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peipei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xue Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Wenmin Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yuejuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jiqing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Mengfei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|