1
|
Simarro-Gimeno C, Pitarch E, Albarrán F, Rico A, Hernández F. Ten years of monitoring pharmaceuticals and pesticides in the aquatic environment nearby a solid-waste treatment plant: Historical data, trends and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125496. [PMID: 39647768 DOI: 10.1016/j.envpol.2024.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
The emission of contaminants of emerging concern (CECs) from wastewater treatment plants has been extensively studied; however, less attention has been paid to municipal solid waste treatment plants (MSWTPs), which can also be a potential source for CECs into surface water (SW) and groundwater (GW) ecosystems. In this work, the environmental impact of a MSWTP located in the province of Castelló, Spain, was studied along a period of ten years (from 2012 to 2022). A total of 173 water samples (including SW and GW) collected from the surrounding of this plant were monitored for 93 compounds (pharmaceuticals and pesticides) by using liquid chromatography coupled to tandem mass spectrometry with triple quadrupole. This study reveals the presence of several pharmaceuticals (e.g. primidone, gabapentin, azithromycin, clarithromycin, tramadol), particularly in GW samples collected near areas related to composting and storage of biostabilized material. The presence of antibiotic residues in GW raises concerns about the potential development of antimicrobial resistance. In addition, agricultural activities in the study area emerge as potential contributor to GW pollution by pesticides, as the MSWTP is located in an important agricultural area where citrus is the predominant crop. Some compounds that are currently prohibited for agricultural use (e.g. atrazine, simazine, chlorpyrifos) were also found, which highlights the importance of continuing their monitoring to assess their long-term environmental impacts. Several pesticide and pharmaceutical compounds exceeded the threshold values established by the EU groundwater directive. Therefore, a hazard assessment for GW ecosystems and for humans drinking contaminated GW resources was conducted. Our data indicated that some organophosphate insecticides (i.e., chlorpyrifos, carbofuran, pyridaphention) may pose high risks for groundwater crustaceans, while the risks for the human population were considered to be very low.
Collapse
Affiliation(s)
- Claudia Simarro-Gimeno
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | | | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain.
| |
Collapse
|
2
|
Battaglin W, Bradley P, Weissinger R, Blackwell B, Cavallin J, Villeneuve D, DeCicco L, Kinsey J. Changes in chemical occurrence, concentration, and bioactivity in the Colorado River before and after replacement of the Moab, Utah wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166231. [PMID: 37586530 DOI: 10.1016/j.scitotenv.2023.166231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Long-term (2010-19) water-quality monitoring on the Colorado River downstream from Moab Utah indicated the persistent presence of Bioactive Chemicals (BC), such as pesticides and pharmaceuticals. This stream reach near Canyonlands National Park provides critical habitat for federally endangered species. The Moab wastewater treatment plant (WWTP) outfall discharges to the Colorado River and is the nearest potential point-source to this reach. The original WWTP was replaced in 2018. In 2016-19, a study was completed to determine if the new plant reduced BC input to the Colorado River at, and downstream from, the outfall. Water samples were collected before and after the plant replacement at sites upstream and downstream from the outfall. Samples were analyzed for as many as 243 pesticides, 109 pharmaceuticals, 20 hormones, 51 wastewater indicator chemicals, 20 metals, and 8 nutrients. BC concentrations, hazard quotients (HQs), and exposure activity ratios (EARs) were used to identify and prioritize contaminants for their potential to have adverse biological effects on the health of native and endangered wildlife. There were 22 BC with HQs >1, mostly metals and hormones; and 23 BC with EARs >0.1, mostly hormones and pharmaceuticals. Most high HQs or EARs were associated with samples collected at the WWTP outfall site prior to its replacement. Discharge from the new plant had reduced concentrations of nutrients, hormones, pharmaceuticals, and other BC. For example, all 16 of the hormones detected at the WWTP outfall site had maximum concentrations in samples collected prior to the WWTP replacement. The WWTP replacement had less effect on instream concentrations of metals and pesticides, BC whose sources are less directly tied to domestic wastewater. Study results indicate that improved WWTP technology can create substantial reductions in concentrations of non-regulated BC such as pharmaceuticals, in addition to regulated contaminants such as nutrients.
Collapse
|
3
|
Fang C, Fang L, Di S, Yu Y, Wang X, Wang C, Jin Y. Characterization of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-induced cardiotoxicity in larval zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163595. [PMID: 37094682 DOI: 10.1016/j.scitotenv.2023.163595] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 μg/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 μg/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 μg/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 μg/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 μg/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liya Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
4
|
Pronschinske MA, Corsi SR, Hockings C. Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques. PLoS One 2023; 18:e0286571. [PMID: 37267346 DOI: 10.1371/journal.pone.0286571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
In an investigation of pharmaceutical contamination in the Lac du Flambeau Chain of Lakes (hereafter referred to as "the Chain"), few contaminants were detected; only eight pharmaceuticals and one pesticide were identified among the 110 pharmaceuticals and other organic contaminants monitored in surface water samples. This study, conducted in cooperation with the Lac du Flambeau Tribe's Water Resource Program, investigated these organic contaminants and potential biological effects in channels connecting lakes throughout the Chain, including the Moss Lake Outlet site, adjacent to the wastewater treatment plant lagoon. Of the 6 sites monitored and 24 samples analyzed, sample concentrations and contaminant detection frequencies were greatest at the Moss Lake Outlet site; however, the concentrations and detection frequencies of this study were comparable to other pharmaceutical investigations in basins with similar characteristics. Because established water-quality benchmarks do not exist for the pharmaceuticals detected in this study, alternative screening-level water-quality benchmarks, developed using two U.S. Environmental Protection Agency toxicological resources (ToxCast database and ECOTOX knowledgebase), were used to estimate potential biological effects associated with the observed contaminant concentrations. Two contaminants (caffeine and thiabendazole) exceeded the prioritization threshold according to ToxCast alternative benchmarks, and four contaminants (acetaminophen, atrazine, caffeine, and carbamazepine) exceeded the prioritization threshold according to ECOTOX alternative benchmarks. Atrazine, an herbicide, was the most frequently detected contaminant (79% of samples), and it exhibited the strongest potential for biological effects due to its high estimated potency. Insufficient toxicological information within ToxCast and ECOTOX for gabapentin and methocarbamol (which had the two greatest concentrations in this study) precluded alternative benchmark development. This data gap presents unknown potential environmental impacts. Future research examining the biological effects elicited by these two contaminants as well as the others detected in this study would further elucidate the ecological relevance of the water chemistry results generated though this investigation.
Collapse
Affiliation(s)
- Matthew A Pronschinske
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin, United States of America
| | - Steven R Corsi
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin, United States of America
| | - Celeste Hockings
- Water Resource Program, Lac du Flambeau Band of Lake Superior Chippewa Indians, Lac du Flambeau, Wisconsin, United States of America
| |
Collapse
|
5
|
O'Rourke K, Virgiliou C, Theodoridis G, Gika H, Grintzalis K. The impact of pharmaceutical pollutants on daphnids - A metabolomic approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104157. [PMID: 37225008 DOI: 10.1016/j.etap.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Pharmaceuticals have been classified as emerging contaminants in the aquatic ecosystem, mainly due to their increased use and improper disposal. A significant range of pharmaceutical compounds and their metabolites have been globally detected in surface waters and pose detrimental effects to non-target organisms. Monitoring pharmaceutical water pollution relies on the analytical approaches for their detection, however, such approaches are limited by their sensitivity limit and coverage of the wide range pharmaceutical compounds. This lack of realism in risk assessment is bypassed with effect-based methods, which are complemented by chemical screening and impact modelling, and are able to provide mechanistic insight for pollution. Focusing on the freshwater ecosystem, in this study we evaluated the acute effects on daphnids for three distinct groups of pharmaceuticals; antibiotics, estrogens, and a range of commonly encountered environmentally relevant pharmaceutical pollutants. Combining several endpoints such as mortality, biochemical (enzyme activities) and holistic (metabolomics) we discovered distinct patterns in biological responses. In this study, changes in enzymes of metabolism e.g. phosphatases and lipase, as well as the detoxification enzyme, glutathione-S-transferase, were recorded following acute exposure to the selected pharmaceuticals. A targeted analysis of the hydrophilic profile of daphnids revealed mainly the up-regulation of metabolites following metformin, gabapentin, amoxicillin, trimethoprim and β-estradiol. Whereas gemfibrozil, sulfamethoxazole and oestrone exposure resulted in the down-regulation of majority of metabolites.
Collapse
Affiliation(s)
- Katie O'Rourke
- School of Biotechnology, Dublin City University, Republic of Ireland.
| | - Christina Virgiliou
- Department of Chemical Engineering, Laboratory of Analytical Chemistry, and Center for Interdisciplinary Research and Innovation (CIRI-AUTH) Biomic_AUTh, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Greece; FoodOmicsGR, Research Infrastructure, Aristotle University Node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001,Greece.
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece; Biomic AUTH, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, Thessaloniki GR 57001, Greece.
| | | |
Collapse
|
6
|
Molecular Responses of Daphnids to Chronic Exposures to Pharmaceuticals. Int J Mol Sci 2023; 24:ijms24044100. [PMID: 36835510 PMCID: PMC9964447 DOI: 10.3390/ijms24044100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Pharmaceutical compounds are among several classes of contaminants of emerging concern, such as pesticides, heavy metals and personal care products, all of which are a major concern for aquatic ecosystems. The hazards posed by the presence of pharmaceutical is one which affects both freshwater organisms and human health-via non-target effects and by the contamination of drinking water sources. The molecular and phenotypic alterations of five pharmaceuticals which are commonly present in the aquatic environment were explored in daphnids under chronic exposures. Markers of physiology such as enzyme activities were combined with metabolic perturbations to assess the impact of metformin, diclofenac, gabapentin, carbamazepine and gemfibrozil on daphnids. Enzyme activity of markers of physiology included phosphatases, lipase, peptidase, β-galactosidase, lactate dehydrogenase, glutathione-S-transferase and glutathione reductase activities. Furthermore, targeted LC-MS/MS analysis focusing on glycolysis, the pentose phosphate pathway and the TCA cycle intermediates was performed to assess metabolic alterations. Exposure to pharmaceuticals resulted in the changes in activity for several enzymes of metabolism and the detoxification enzyme glutathione-S-transferase. Metabolic perturbations on key pathways revealed distinct groups and metabolic fingerprints for the different exposures and their mixtures. Chronic exposure to pharmaceuticals at low concentrations revealed significant alterations of metabolic and physiological endpoints.
Collapse
|
7
|
Kośmider K, Kamieniak M, Czuczwar SJ, Miziak B. Second Generation of Antiepileptic Drugs and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043873. [PMID: 36835284 PMCID: PMC9964930 DOI: 10.3390/ijms24043873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Epilepsy is a chronic disease of the central nervous system characterized by recurrent epileptic seizures. As a result of epileptic seizure or status epilepticus oxidants are excessively formed, which may be one of the causes of neuronal death. Given the role of oxidative stress in epileptogenesis, as well as the participation of this process in other neurological conditions, we decided to review the latest state of knowledge regarding the relationship between selected newer antiepileptic drugs (AEDs), also known as antiseizure drugs, and oxidative stress. The literature review indicates that drugs enhancing GABA-ergic transmission (e.g., vigabatrin, tiagabine, gabapentin, topiramate) or other antiepileptics (e.g., lamotrigine, levetiracetam) reduce neuronal oxidation markers. In particular, levetiracetam may produce ambiguous effects in this regard. However, when a GABA-enhancing drug was applied to the healthy tissue, it tended to increase oxidative stress markers in a dose-dependent manner. Studies on diazepam have shown that it exerts a neuroprotective effect in a "U-shaped" dose-dependent manner after excitotoxic or oxidative stress. Its lower concentrations are insufficient to protect against neuronal damage, while higher concentrations produce neurodegeneration. Therefore, a conclusion follows that newer AEDs, enhancing GABA-ergic neurotransmission, may act similarly to diazepam, causing neurodegeneration and oxidative stress when used in high doses.
Collapse
|
8
|
Schumann PG, Meade EB, Zhi H, LeFevre GH, Kolpin DW, Meppelink SM, Iwanowicz LR, Lane RF, Schmoldt A, Mueller O, Klaper RD. RNA-seq reveals potential gene biomarkers in fathead minnows ( Pimephales promelas) for exposure to treated wastewater effluent. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1708-1724. [PMID: 35938375 DOI: 10.1039/d2em00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluent greatly contributes to the generation of complex mixtures of contaminants of emerging concern (CECs) in aquatic environments which often contain neuropharmaceuticals and other emerging contaminants that may impact neurological function. However, there is a paucity of knowledge on the neurological impacts of these exposures to aquatic organisms. In this study, caged fathead minnows (Pimephales promelas) were exposed in situ in a temperate-region effluent-dominated stream (i.e., Muddy Creek) in Coralville, Iowa, USA upstream and downstream of a WWTP effluent outfall. The pharmaceutical composition of Muddy Creek was recently characterized by our team and revealed many compounds there were at a low microgram to high nanogram per liter concentration. Total RNA sequencing analysis on brain tissues revealed 280 gene isoforms that were significantly differentially expressed in male fish and 293 gene isoforms in female fish between the upstream and downstream site. Only 66 (13%) of such gene isoforms overlapped amongst male and female fish, demonstrating sex-dependent impacts on neuronal gene expression. By using a systems biology approach paired with functional enrichment analyses, we identified several potential novel gene biomarkers for treated effluent exposure that could be used to expand monitoring of environmental effects with respect to complex CEC mixtures. Lastly, when comparing the results of this study to those that relied on a single-compound approach, there was relatively little overlap in terms of gene-specific effects. This discovery brings into question the application of single-compound exposures in accurately characterizing environmental risks of complex mixtures and for gene biomarker identification.
Collapse
Affiliation(s)
| | - Emma B Meade
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| | - Hui Zhi
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Olaf Mueller
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Henry J, Bai Y, Kreuder F, Saaristo M, Kaslin J, Wlodkowic D. Sensory-Motor Perturbations in Larval Zebrafish ( Danio rerio) Induced by Exposure to Low Levels of Neuroactive Micropollutants during Development. Int J Mol Sci 2022; 23:ijms23168990. [PMID: 36012255 PMCID: PMC9409309 DOI: 10.3390/ijms23168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Due to increasing numbers of anthropogenic chemicals with unknown neurotoxic properties, there is an increasing need for a paradigm shift toward rapid and higher throughput behavioral bioassays. In this work, we demonstrate application of a purpose-built high throughput multidimensional behavioral test battery on larval stages of Danio rerio (zebrafish) at 5 days post fertilization (dpf). The automated battery comprised of the established spontaneous swimming (SS), simulated predator response (SPR), larval photomotor response (LPR) assays as well as a new thermotaxis (TX) assay. We applied the novel system to characterize environmentally relevant concentrations of emerging pharmaceutical micropollutants including anticonvulsants (gabapentin: 400 ng/L; carbamazepine: 3000 ng/L), inflammatory drugs (ibuprofen: 9800 ng/L), and antidepressants (fluoxetine: 300 ng/L; venlafaxine: 2200 ng/L). The successful integration of the thermal preference assay into a multidimensional behavioral test battery provided means to reveal ibuprofen-induced perturbations of thermal preference behaviors upon exposure during embryogenesis. Moreover, we discovered that photomotor responses in larval stages of fish are also altered by the as yet understudied anticonvulsant gabapentin. Collectively our results demonstrate the utility of high-throughput multidimensional behavioral ecotoxicity test batteries in prioritizing emerging risks associated with neuroactive drugs that can perturb neurodevelopment. Moreover, we showcase the added value of thermotaxis bioassays for preliminary screening of emerging contaminants.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna Saaristo
- Environmental Protection Authority Victoria, EPA Science, Macleod, VIC 3085, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
10
|
He Y, Zhu R, Cai Y, Zhang Y, Zhang Y, Pan S, Schneider RJ, Zhang Y. Transcriptomics and protein biomarkers reveal the detoxifying mechanisms of UV radiation for nebivolol toward zebrafish (Danio rerio) embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106241. [PMID: 35868139 DOI: 10.1016/j.aquatox.2022.106241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nebivolol (NEB), a β-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Rongwen Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujie Cai
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yiqun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, Berlin D-12489, Germany
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
11
|
Cheng Y, Zhang J, Gao F, Xu Y, Wang C. Protective effects of 5-aminolevulinic acid against toxicity induced by alpha-cypermethrin to the liver-gut-microbiota axis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113422. [PMID: 35305352 DOI: 10.1016/j.ecoenv.2022.113422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
To explore whether and how 5-aminolevulinic acid (ALA) can relieve the toxicity to the liver-gut-microbiota axis caused by alpha-cypermethrin (α-CP), adult zebrafish were exposed to α-CP (1.0 µg L-1) with or without 5.0 mg L-1 ALA supplementation. In the present work, the calculated LC50 of α-CP+ALA was 1.15 μg L-1, increasing about 1.16-fold compared with that of α-CP group (0.99 μg L-1), which indicated that ALA can alleviate the toxicity of α-CP. ALA also alleviated the histopathological lesions in the liver and gut induced by α-CP. Transcriptome sequencing of the liver showed that ALA rescues the differential expression of genes involved in the oxidation-reduction, heme metabolism, and complement activation pathways associated with dysfunctions induced by α-CP, and these findings were verified by RT-qPCR analysis and detection of the activities of enzymes in the liver-gut axis. The gut microbiota 16S rRNA sequencing results showed that α-CP alone induced gut microbial dysbiosis, which was efficiently antagonized by ALA due to decreasing the relative abundances of Cetobacterium and 3 major pathogens, and increasing the relative abundances of beneficial genera. Taken together, the results indicate that ALA might be a promising candidate for attenuating the adverse effects caused by pesticide-induced environmental pollution.
Collapse
Affiliation(s)
- Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Fei Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
He Y, Jia D, Du S, Zhu R, Zhou W, Pan S, Zhang Y. Toxicity of gabapentin-lactam on the early developmental stage of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117649. [PMID: 34182397 DOI: 10.1016/j.envpol.2021.117649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC50, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 μg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Sen Du
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Rongwen Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Wei Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China.
| |
Collapse
|
13
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
14
|
Choi Y, Lee JH, Kim K, Mun H, Park N, Jeon J. Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: Application of LC-HRMS based suspect and non-target screening. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123706. [PMID: 33254752 DOI: 10.1016/j.jhazmat.2020.123706] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
The present study was designed to identify recently (or rarely) recognized or unreported substances (RRS or URS) contained in the effluents from water treatment plants in two industrialized urban areas, Gumi and Daegu, in Korea. In addition to 30 initial targets, 72 substances were identified through suspect and non-target screening (SNTS). Among them were 4 RRSs and 22 URSs, respectively. The quantitative analyses were applied to 35 pharmaceuticals, 15 pesticides, 13 poly-/perfluorinated alkyl substances (PFASs), 2 organophosphate flame retardants (OPFRs), 2 corrosion inhibitors, and 3 metabolites. The highest average concentration was observed for benzotriazole, followed by those for niflumic acid, and metformin. Effluents from Gumi mainly contained benzotriazole and metformin whereas niflumic acid and tramadol were the major components in effluents from Daegu. According to a scoring system based on risk relevant parameters, higher priorities were given to telmisartan, PFOA, and cimetidine. Yet, priorities for some substances were area specific (e.g., benzotriazole from Gumi, PFASs from Daegu), reflecting differences in industry profiles and populations. Many of the RRSs and URSs were recognized as potential hazards. The new identifications and evaluations should be taken into consideration for constant monitoring and management, as do the previously recognized contaminants.
Collapse
Affiliation(s)
- Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Ji-Ho Lee
- National Institute of Chemical Safety, Daejeon, 34111, Republic of Korea
| | - Kyunghyun Kim
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hyunsaing Mun
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea.
| |
Collapse
|
15
|
Kim HM, Long NP, Min JE, Anh NH, Kim SJ, Yoon SJ, Kwon SW. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123005. [PMID: 32937704 DOI: 10.1016/j.jhazmat.2020.123005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern regarding the toxic effects of terrestrial nanoplastic contaminants. However, an all-encompassing phenotyping- and omics-based strategy for the toxicity assessment of nanoplastics with different surface properties on soil living organisms remains to be established. Herein, we devised a comprehensive phenotyping and multi-omic profiling method to examine the molecular disturbance of nanopolystyrene (PS)-exposed Caenorhabditis elegans. The exposure time was 24 h with either 1 μg/mL or 10 μg/mL of PS. We found that PS considerably affected the reproduction and locomotion, as well as increased the oxidative stress of worms regardless of their surface properties. Nevertheless, each type of PS affected the metabolome and lipidome of the nematodes differently. Uncharged PS (PS-N) triggered significant metabolic disturbances, whereas the metabolic influences from PS-NH2 and PS-COOH were subtle. The dysregulated transcriptome profiles of PS-N were strongly associated with the metabolic pathways. Besides, the altered expression of several genes associated with autophagy and longevity was observed. Collectively, we demonstrated that comprehensive phenotyping and omics-based profiling establish a practical framework that allows us to gain deeper insights into the maladaptive consequences of PS in nematodes. It can be utilized for the evaluation of other environmental contaminants in the terrestrial ecosystem.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Li C, Zhang X, Wei L, Wei D, Chen Z, Cao Z, Zhao Q, Chang CC. Molecular biological methods in environmental engineering. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1786-1793. [PMID: 32762138 DOI: 10.1002/wer.1432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Microbes are sensitive to environmental changes and can respond in a short time. Genomics, proteomics, transcriptomics, metabolomics, and multigroup association are used to characterize the composition, function, and metabolism of microorganisms, and to evaluate the environment according to the changes in microorganisms, which has important reference and guiding significance of environmental monitoring, management, and repair. In this paper, the application of molecular biological methods to study environmental microorganisms in the fields of wastewater treatment, pollution control, soil improvement, and environmental monitoring in 2019 is reviewed.
Collapse
Affiliation(s)
- Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Zhongxi Chen
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Zhenkun Cao
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Qiushi Zhao
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
17
|
Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2019; 31:617-622. [PMID: 31385878 DOI: 10.1097/bor.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW One of the most important advances in medical research over the past 20 years has been the emergence of technologies to assess complex biological processes on a global scale. Although a great deal of attention has been given to genome-scale genetics and genomics technologies, the utility of studying the proteome in a comprehensive way is sometimes under-appreciated. In this review, we discuss recent advances in proteomics as applied to dermatomyositis/polymyositis as well as findings from other inflammatory diseases that may enlighten our understanding of dermatomyositis/polymyositis. RECENT FINDINGS Proteomic approaches have been used to investigate basic mechanisms contributing to lung and skin disease in dermatomyositis/polymyositis as well as to the muscle disease itself. In addition, proteomic approaches have been used to identify autoantibodies targeting the endothelium in juvenile dermatomyositis. Studies from other inflammatory diseases have shown the promise of using proteomics to characterize the composition of immune complexes and the protein cargoes of exosomes. SUMMARY There are many relevant scientific and clinical questions in dermatomyositis/polymyositis that can be addressed using proteomics approaches. Careful attention to both methodology and analytic approaches are required to obtain useful and reproducible data.
Collapse
|