1
|
Di Iorio E, Circelli L, Angelico R, Torrent J, Tan W, Colombo C. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. CHEMOSPHERE 2022; 303:135172. [PMID: 35649442 DOI: 10.1016/j.chemosphere.2022.135172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Goethite, hematite, ferrihydrite, and other iron oxides bind through various sorption reactions with humic substances (HS) in soils creating nano-, micro-, and macro-aggregates with a specific nature and stability. Long residence times of soil organic matter (SOM) have been attributed to iron-humic substance (Fe-HS) complexes due to physical protection and chemical stabilization at the organic-mineral interface. Humic acids (HA) and fulvic acids (FA) contain many acidic functional groups that interact with Fe oxides through different mechanisms. Due to the numerous interactions between mineral Fe and natural SOM, much research has led into a better identification and definition of HS. In this review, we first focus on the surface colloidal properties of Fe oxides and their reactivity toward HS. These minerals can be efficiently identified by usual techniques, such as XRD, FTIR spectroscopy, XAS, Mössbauer, diffuse reflectance spectroscopies (DRS), HRTEM, ATM, NanoSIMS. Second, we present the recent state of art regarding the adsorption/precipitation of HS onto iron mineral surfaces and their effects on binding metalloid and trace elements. Finally, we consider future research directions based on recent scientific literature, with particular focus on the ability of Fe nano-particles to increase Fe bioavailability, improve carbon sequestration, reduce greenhouse gas emissions, and decrease the impact of persistent organic and inorganic pollutants. The methodology in this field has rapidly developed over the last decade. However, new procedures to estimate the nature of Fe-HA bonds will be important contributions in clarifying the role of natural iron oxides in soil for carbon stabilization.
Collapse
Affiliation(s)
- Erika Di Iorio
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy.
| | - Luana Circelli
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| | - José Torrent
- Departamento de Agronomía, Universidad de Córdoba. Edificio C4, Campus de Rabanales, 14071, Córdoba, Spain
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Claudio Colombo
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, V. De Sanctis, I-86100, Campobasso (CB), Italy
| |
Collapse
|
2
|
Hao L, Li L, Yu S, Liu J. Humic acid-coated hydrated ferric oxides-polymer nanocomposites for heavy metal removal in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155427. [PMID: 35469889 DOI: 10.1016/j.scitotenv.2022.155427] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Water pollution by toxic heavy metals poses a threat to the environment and human bodies. Herein, a novel hydrated ferric oxide nanoparticle (HFO) based hybrid adsorbent was fabricated for the removal of toxic Cu(II), Cd(II) and Pb(II) from water. HFOs were immobilized into a porous resin D-201, and then this nanocomposite HFO-D201 was coated with humic acid (HA) to enhance the binding sites of target metals. Both HFOs and HA contribute to the sequestration of heavy metals. The as-synthesized hybrid adsorbent HA-HFO-D201 exhibited excellent performance on the removal of Cu(II), Cd(II), and Pb(II) in a pH range of 3-9, while no Fe leaching was observed. The presence of natural organic matter (20 mg C/L) has limited influences on the adsorption, and more than 85% of the target metals can be removed after treatment. HA-HFO-D201 showed preferable adsorption toward Cu(II) and Pb(II) (1 mg/L) from the background Ca2+ solution at much higher concentrations (100 mg/L), while the retention of Cd(II) (1 mg/L) decreased to some extent. Fixed-bed column experiments exhibited that the treatment capacities of HA-HFO-D201 are 90 bed volumes (BV) for Cd(II), 410 BV for Pb(II) and > 800 BV for Cu(II) of simulated contaminated water to meet the WHO drinking water standard. Meanwhile, depleted HA-HFO-D201 can be readily regenerated by a chelating agent Na2EDTA for repeated use. The hybrid adsorbent HA-HFO-D201 has excellent potential to remove heavy metals in water treatment systems.
Collapse
Affiliation(s)
- Liteng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Li Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Xiao Y, Tang W, Peijnenburg WJGM, Zhang X, Wu J, Xu M, Xiao H, He Y, Luo L, Yang G, Chen C, Tu L. Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114770. [PMID: 35202947 DOI: 10.1016/j.jenvman.2022.114770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs), heavy metals and natural organic matter may co-exist in the water bodies. Currently, knowledge on their interaction effects on the behaviors and fates of NPs and heavy metal ions is rather limited, which is critical to comprehensively understand their environmental risk. In this study, the aggregation, solubility and Cd-adsorption of CuO NPs co-existing with humic acid (HA) and Cd2+ upon different solution pH and contact sequences were determined. In the ternary systems of CuO NPs, HA and Cd2+, pH was more important than the contact sequence of the components in affecting the NP aggregation, while the contact sequence was a predominant factor in determining the NP solubility. Pre-equilibration of CuO NPs and HA before addition of Cd2+ resulted in the highest solubility and lowest aggregation of the NPs, relative to other sequences of addition of the components. The adsorption capacity of CuO NPs for Cd-ions increased with an increasing pH value from 5 to 9. HA significantly enhanced the Cd-adsorption capacity of CuO NPs at pH 7 and 9, while at pH 5 a non-significant effect was observed. The results are helpful to better estimate the behaviors and fates of CuO NPs and Cd2+ when they coexisting in natural waters.
Collapse
Affiliation(s)
- Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Wei Tang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720, BA, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300, RA, Leiden, the Netherlands
| | - Xiaohong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jun Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Min Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
4
|
Gong D, Bai X, Weng Y, Kang M, Huang Y, Li F, Chen Y. Phytotoxicity of binary nanoparticles and humic acid on Lactuca sativa L. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:586-597. [PMID: 35289347 DOI: 10.1039/d2em00014h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoplastics and metal oxide nanoparticles are serious threats that inevitably enter the environment. Their similar particle properties likely lead to interaction and thus cause more unpredictable ecotoxicity to organisms. In this study, it was found that polystyrene nanoplastics (PS NPs) aggravate the toxic effect of iron oxide nanoparticles (Fe2O3 NPs) on Lactuca sativa L. by inducing severe oxidative stress and root deformation, and the expansion of damaged cells from the xylem to the epidermis was observed using confocal laser scanning. Exposure to PS NPs + Fe2O3 NPs correspondingly elevated iron accumulation in the roots and leaves by 1.39 and 1.17 times compared to the amount observed with Fe2O3 NPs individually. Examination of the physicochemical properties, iron ion release, and molecular interactions of the NPs indicated that PS NPs interact with Fe2O3 NPs to form heteroaggregates and facilitate leaching of iron ions, which resulted in aggravating the toxic effect. These were alleviated by the addition of humic acid (HA), which dispersed the heteroaggregates and reduced the release of iron ions. The findings in the present study provide new perspectives for the ecotoxicological risk of binary nano-pollution in the natural environment.
Collapse
Affiliation(s)
- Dongqing Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Fengjie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yanling Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
5
|
He H, Cao J, Fei X, Duan N. Dissolution magnitude and kinetics of ZnO nanoparticles mediated by water are dependent on O vacancy abundance: The environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147545. [PMID: 34004534 DOI: 10.1016/j.scitotenv.2021.147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Metal oxide nanoparticles (NPs) dissolution in water environment is an important issue with regard to their environmental behaviors. The metal ion dissolves from surface defective site, but the effect of defect abundance remains largely unknown. This study aims to reveal this effect using ZnO NPs and O vacancy as the model system. The abundance of O vacancy is modulated by using different precursors and changing calcination atmosphere and temperature. X-ray photoelectron spectroscopy characterization shows that surface O vacancy abundance is effectively modulated to be distributed in a wide range from 15.3% to 41.8%. The deviation of O/Zn mole-ratio from 1.00 is used to denote O vacancy abundance in the bulk crystal, and the deviation reaches up to 0.32. Experiments show that the kinetics and magnitude of ZnO NPs dissolution vary in H2O, which are highly dependent on O vacancy abundance. In comparison, the specific surface area and aggregation state take minor roles. Particularly, Zn2+ dissolution rate in the first hour is more linearly correlated with surface O vacancy abundance than with specific surface area. Defects and their abundances should thus be co-considered with other physicochemical properties to fully understand the dissolution behaviors of metal oxide NPs in water environment. This study is of significance in comprehensively assessing and predicting the environmental risk of metal oxide NPs.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Jianglin Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai 200092, PR China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore.
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Technology Center for Heavy Metal Cleaner Production Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
6
|
Demangeat E, Pédrot M, Dia A, Bouhnik-Le-Coz M, Roperch P, Compaoré G, Cabello-Hurtado F. Investigating the remediation potential of iron oxide nanoparticles in Cu-polluted soil-plant systems: coupled geochemical, geophysical and biological approaches. NANOSCALE ADVANCES 2021; 3:2017-2029. [PMID: 36133097 PMCID: PMC9417463 DOI: 10.1039/d0na00825g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/30/2021] [Indexed: 06/01/2023]
Abstract
Although the use of iron oxide nanoparticles (IONPs) has high potential in remediation and agriculture, a major hindrance to their use includes the risk of contamination of soil and water resources with underexplored effects of IONPs on biota. The fate, phytotoxicity and remediation potential of IONPs are investigated with soil column experiments using 7 nm-sized magnetite (Fe3O4) nanoparticles (magnNPs) and sunflower (Helianthus annuus). Control soil, magnNP-containing soil (10 g magnNPs per kg soil), copper-polluted soil (500 mg Cu per kg soil) and copper-polluted soil containing magnNPs (10 g magnNPs per kg soil and 500 mg Cu per kg soil) support sunflower growth for 57 and 95 days. In magnNP-exposed plants, the occurrence of magnNPs does not affect the growth of the vegetative aerial parts and photosynthetic efficiency. Decreased lipid peroxidation indicates an enhanced antioxidant enzymatic response of magnNP-exposed plants. In plants grown in Cu- and magnNP-Cu-soils, the physiological and biochemical impacts of excess copper are clearly identified, resulting in growth retardation, decreased pigment contents and photosynthetic efficiency, and increased lipid peroxidation and peroxidase (POD) activities. Based on magnetic susceptibility, a higher amount of magnNPs is detected after 57 days in the roots of magnNP-exposed plants (1400 mg kg-1) than in the roots of magnNP-Cu-exposed plants (920 mg kg-1). In the latter, magnNP internalization is likely hampered because of the plants' physiological responses to Cu toxicity. At the working Cu and magnNP concentrations, magnNPs neither decrease Cu accumulation in the plant tissues nor alleviate the overall growth retardation of sunflowers and certain phytotoxic effects induced by excess Cu. However, this study highlights several positive environmental aspects relative to magnNP use, including the harmless effects of magnNPs on sunflowers (1% magnNPs in soil) and the ability of magnNPs to influence Cu mobility in the soil (which could be even more pronounced at lower Cu concentration).
Collapse
Affiliation(s)
- E Demangeat
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118 35000 Rennes France
| | - M Pédrot
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118 35000 Rennes France
| | - A Dia
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118 35000 Rennes France
| | - M Bouhnik-Le-Coz
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118 35000 Rennes France
| | - P Roperch
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118 35000 Rennes France
| | - G Compaoré
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118 35000 Rennes France
| | | |
Collapse
|