1
|
Holliman AG, Mackay L, Biancardi VC, Tao YX, Foradori CD. Atrazine's effects on mammalian physiology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-40. [PMID: 40016167 DOI: 10.1080/10937404.2025.2468212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Atrazine is a chlorotriazine herbicide that is one of the most widely used herbicides in the USA and the world. For over 60 years atrazine has been used on major crops including corn, sorghum, and sugarcane to control broadleaf and grassy weed emergence and growth. Atrazine has exerted a major economic and environmental impact over that time, resulting in reduced production costs and increased conservation tillage practices. However, widespread use and a long half-life led to a high prevalence of atrazine in the environment. Indeed, atrazine is the most frequent herbicide contaminant detected in water sources in the USA. Due to its almost ubiquitous presence and questions regarding its safety, atrazine has been well-studied. First reported to affect reproduction with potential disruptive effects which were later linked to the immune system, cancer, stress response, neurological disorders, and cardiovascular ailments in experimental models. Atrazine impact on multiple interwoven systems broadens the significance of atrazine exposure. The endeavor to uncover the mechanisms underlying atrazine-induced dysfunction in mammals is ongoing, with new genetic and pharmacological targets being reported. This review aims to summarize the prominent effects of atrazine on mammalian physiology, primarily focusing on empirical studies conducted in lab animal models and establish correlations with epidemiological human studies when relevant. In addition, current common patterns of toxicity and potential underlying mechanisms of atrazine action will be examined.
Collapse
Affiliation(s)
- Anna G Holliman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Gajendra G, Pulimi M, Natarajan C, Mukherjee A. Occurrence, Toxicodynamics, and Mechanistic Insights for Atrazine Degradation in the Environment. WATER, AIR, & SOIL POLLUTION 2024; 235:649. [DOI: 10.1007/s11270-024-07439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/11/2024] [Indexed: 01/12/2025]
|
3
|
Arabi S, Heidari-Beni M, Poursafa P, Roshanaei M, Kelishadi R. A review of the potential adverse health impacts of atrazine in humans. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0094. [PMID: 39279140 DOI: 10.1515/reveh-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Atrazine is a widely used chlorinated triazine herbicide in agricultural settings, which has raised concerns over its potential adverse effects on human health. The extensive application of atrazine has resulted in its pervasive presence in the environment, contaminating soil, groundwater, and surface water. While earlier research suggested that atrazine is unlikely to pose a health concern, recent evidence has indicated the necessity to reassess this point of view. This review aims to assess the recent evidence on atrazine's adverse effects on human health, focusing on (i) Cancer, (ii) Metabolic Diseases, (iii) Reproductive System, (iv) Neural System, and (v) Epigenetic Effects. Strategies to mitigate atrazine contamination and limitations of previous studies are also discussed. We strongly believe that further investigation is necessary to determine the potential detrimental consequences of atrazine in humans, particularly in developing countries, where herbicides are widely used without stringent safety regulations. Therefore, the current review will be beneficial for guiding future research and regulatory measures concerning the use of atrazine.
Collapse
Affiliation(s)
- Sina Arabi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minaalsadat Roshanaei
- School of Pharmacy and Pharmaceutical Sciences, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
4
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Zhao H, Xie J, Wu S, Zhao X, Sánchez OF, Min S, Rochet JC, Freeman JL, Yuan C. Elevated parkinsonism pathological markers in dopaminergic neurons with developmental exposure to atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168307. [PMID: 37949145 PMCID: PMC10843769 DOI: 10.1016/j.scitotenv.2023.168307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Atrazine (ATZ) is one of the most used herbicides in the US and a known endocrine disruptor. ATZ is frequently detected in drinking water, especially in Midwestern regions of the United States, exceeding the EPA regulation of maximum contamination level (MCL) of 3 ppb. Epidemiology studies have suggested an association between ATZ exposure and neurodegeneration. Less, however, is known about the neurotoxic mechanism of ATZ, particularly for exposures at a developmental stage. Here, we exposed floor plate progenitors (FPPs) derived from human induced pluripotent stem cells (hiPSCs) to low concentrations of ATZ at 0.3 and 3 ppb for two days followed by differentiation into dopaminergic (DA) neurons in ATZ-free medium. We then examined the morphology, activity, pathological protein aggregation, and transcriptomic changes of differentiated DA neurons. We observed significant decrease in the complexity of neurite network, increase of neuronal activity, and elevated tau- and α-synuclein (aSyn) pathologies after ATZ exposure. The ATZ-induced neuronal changes observed here align with pathological characteristics in Parkinson's disease (PD). Transcriptomic analysis further corroborates our findings; and collectively provides a strong evidence base that low-concentration ATZ exposure during development can elicit increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Xihui Zhao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, IN 47907, United States of America
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN 47907, United States of America
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN 47907, United States of America
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Center of Cancer Research, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
6
|
Mavaie P, Holder L, Skinner M. Identifying unique exposure-specific transgenerational differentially DNA methylated region epimutations in the genome using hybrid deep learning prediction models. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad007. [PMID: 38130880 PMCID: PMC10735314 DOI: 10.1093/eep/dvad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Exposure to environmental toxicants can lead to epimutations in the genome and an increase in differential DNA methylated regions (DMRs) that have been linked to increased susceptibility to various diseases. However, the unique effect of particular toxicants on the genome in terms of leading to unique DMRs for the toxicants has been less studied. One hurdle to such studies is the low number of observed DMRs per toxicants. To address this hurdle, a previously validated hybrid deep-learning cross-exposure prediction model is trained per exposure and used to predict exposure-specific DMRs in the genome. Given these predicted exposure-specific DMRs, a set of unique DMRs per exposure can be identified. Analysis of these unique DMRs through visualization, DNA sequence motif matching, and gene association reveals known and unknown links between individual exposures and their unique effects on the genome. The results indicate the potential ability to define exposure-specific epigenetic markers in the genome and the potential relative impact of different exposures. Therefore, a computational approach to predict exposure-specific transgenerational epimutations was developed, which supported the exposure specificity of ancestral toxicant actions and provided epigenome information on the DMR sites predicted.
Collapse
Affiliation(s)
- Pegah Mavaie
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752, USA
| | - Lawrence Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752, USA
| | - Michael Skinner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
7
|
Lu YS, Wen X, Chen J, He XR, Yu J, Qiu J, Qian YZ, Xu YY. Multiomics reveals new biomarkers and mechanistic insights into the combined toxicity effects of 2,2',4,4',5,5'-hexachlorobiphenyl and atrazine exposures in MCF-7 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122030. [PMID: 37336346 DOI: 10.1016/j.envpol.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Humans are constantly exposed to complicated chemical mixtures from the environment and food rather than being exposed to a single pollutant. The underlying mechanisms of the complicated combined toxicity of endocrine disrupting chemicals (EDCs) are still mainly unexplored. In this study, two representative EDCs, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and atrazine (ATZ), were selected to explore their combined effects on MCF-7 cell proliferation at environmental exposure concentrations by an integrated analysis of metabolomics and transcriptomics. The results showed that 1 μM ATZ and PCB153 combined exposure significantly accelerated MCF-7 cell growth by 18.2%. More than 400 metabolites detected by UHPLC-QTOF/MS were used to observe metabolism differences induced by binary mixtures. Metabolomics analysis verified that ATZ and PCB153 exposure alone or in combination could have an additive effect on metabolism and induce significant disruption to glycolysis, purine metabolism and the TCA cycle, which provide energy demand and biosynthetic substrates for cell proliferation. Compared to PCB153 and ATZ exposure alone, a combined effect was observed in purine and pyrimidine metabolic pathways. Hexokinase 3 (HK3) and cytochrome P450 19 subfamily A1 (CYP19A1) were identified as differentially expressed genes based on transcriptomic analysis. By integrating metabolome and transcriptome analysis, the proliferation effects of ATZ and PCB153 were induced at low doses in MCF-7 cells through potential interference with the downstream transcription signaling of CYP19A1. Furthermore, molecular docking indicated that PCB153 and ATZ directly affected CYP19A1. Altogether, the regulation of pivotal metabolites and differentially expressed genes could provide helpful information to reveal the mechanism by which PCB153 and ATZ affect MCF-7 cell proliferation.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xing Wen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Ju Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Xiao-Rong He
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
9
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
10
|
Qin S, Xia T, Li G, Gu L, Sun Y, Yang Z. Impact of atrazine on the dynamic response of Daphnia pulex populations to fish predation risk. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1068077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Herbicide pollution is persistent, which not only has a negative impact on individual organisms, but also may alter population dynamics and stability of interspecific relationships. Cladocerans, an important part of zooplankton, are often simultaneously exposed to environmental pollutants and predation risk in the aquatic environment. To evaluate the combined effects of atrazine and fish predation risk on the population traits of cladocerans, we exposed Daphnia pulex to different concentrations of atrazine (0, 0.05, 0.10, and 1.0 mg L−1) with or without fish (Rhodeus ocellatus) kairomone, recorded the key population traits, and fitted Gaussian model to population dynamics. Results showed that fish kairomone increased the population density at the end of the experiment and resting eggs production, and tended to decrease the total biomass and the average dry weight per individual of D. pulex. Atrazine reduced the total biomass, the average dry weight per individual, and resting eggs production of D. pulex populations. Atrazine also decreased the population density at the end of the experiment of D. pulex in fish kairomone treatment, and attenuated the promoting effect of fish kairomone on resting eggs production and the reduction of the total biomass. The findings highlighted the importance of considering the combined impact of environmental pollutants and predation risks on zooplankton populations.
Collapse
|
11
|
Horzmann KA, Lin LF, Taslakjian B, Yuan C, Freeman JL. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis. CHEMOSPHERE 2022; 308:136431. [PMID: 36126741 DOI: 10.1016/j.chemosphere.2022.136431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
Atrazine often contaminates drinking water sources, exceeding the maximum contaminant level established by the US Environmental Protection Agency at 3 parts per billion (ppb; μg/L). Atrazine is linked to endocrine disruption, neurotoxicity, and cancer, with delayed health effects observed after developmental exposure in line with the developmental origins of health and disease (DOHaD) hypothesis. To test the hypothesis that embryonic atrazine exposure induces delayed neurotoxicity in adult female zebrafish (Danio rerio), embryos were exposed to 0, 0.3, 3, or 30 ppb atrazine during embryogenesis (1-72 h post fertilization (hpf)) and raised to adults with no additional atrazine exposure. Behavioral outcomes were tested through a novel tank test, light-dark box, and open field test and indicated female zebrafish had more anxious phenotypes at 9 months post fertilization (mpf). Female brain transcriptomic analysis at 9 mpf found altered gene expression pathways related to organismal injury and cancer with beta-estradiol and estrogen receptor as top upstream regulators. These results were compared to 9 mpf male and 6 mpf female groups with the same atrazine embryonic exposures and showed differences in specific genes that were altered, but similarities in top molecular pathways. Molecular pathways associated with behavior were observed only in the 6 mpf transcriptomic profiles, suggesting prediction of observed behavioral outcomes at 9 mpf. The expression of genes associated with serotonin neurotransmission was also evaluated at 14 mpf to determine persistence; however, no significant changes were observed. Brain global methylation in 12 mpf zebrafish observed an increased percent 5 mC in females with embryonic 0.3 ppb atrazine exposure. Finally, the body length, body weight, and brain weight were determined at 14 mpf and were altered in all treatment groups. These results indicate that embryonic atrazine exposure does cause delayed neurotoxicity within the DOHaD framework, which is significant given atrazine's presence and persistence in the environment.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn AL, 36849, USA.
| | - Li F Lin
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Boghos Taslakjian
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Foong SY, Chan YH, Loy ACM, How BS, Tamothran AM, Yip AJK, Liew RK, Peng W, Alstrup AK, Lam SS, Sonne C. The nexus between biofuels and pesticides in agroforestry: Pathways toward United Nations sustainable development goals. ENVIRONMENTAL RESEARCH 2022; 214:113751. [PMID: 35753369 DOI: 10.1016/j.envres.2022.113751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| | | | - Andrew Jun Kit Yip
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- NV Western PLT, 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Aage Ko Alstrup
- Aarhus University Hospital, Department of Nuclear Medicine and PET, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
13
|
Liu W, Padhi A, Zhang X, Narendran J, Anastasio MA, Nain AS, Irudayaraj J. Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers. ACS NANO 2022; 16:10754-10767. [PMID: 35803582 PMCID: PMC9332347 DOI: 10.1021/acsnano.2c02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cancer cell nucleus deforms as it invades the interstitial spaces in tissues and the tumor microenvironment. While alteration of the chromatin structure in a deformed nucleus is expected and documented, the chromatin structure in the nuclei of cells on aligned matrices has not been elucidated. In this work we elucidate the spatiotemporal organization of heterochromatin in the elongated nuclei of cells on aligned nanofibers with stimulated emission depletion nanoscopy and fluorescence correlation spectroscopy. We show that the anisotropy of nuclei is sufficient to drive H3K9me3-heterochromatin alterations, with enhanced H3K9me3 nanocluster compaction and aggregation states that otherwise are indistinguishable from diffraction-limited microscopy. We interrogated the higher-order heterochromatin structures within major chromatin compartments in anisotropic nuclei and discovered a wider spatial dispersion of nanodomain clusters in the nucleoplasm and condensed larger nanoclusters near the periphery and pericentromeric heterochromatin. Upon examining the spatiotemporal dynamics of heterochromatin in anisotropic nuclei, we observed reduced mobility of the constitutive heterochromatin mark H3K9me3 and the associated heterochromatin protein 1 (HP1α) at the nucleoplasm and periphery regions, correlating with increased viscosity and changes in gene expression. Since heterochromatin remodeling is crucial to genome integrity, our results reveal an unconventional H3K9me3 heterochromatin distribution, providing cues to an altered chromatin state due to perturbations of the nuclei in aligned fiber configurations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Abinash Padhi
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaohui Zhang
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Jairaj Narendran
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Amrinder S. Nain
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Carbonized resin with Fe&Co bimetal for peroxymonosulfate activation to degrade atrazine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wang S, Bryan C, Xie J, Zhao H, Lin L, Tai JAC, Horzmann KA, Sanchez O, Zhang M, Freeman JL, Yuan C. Atrazine exposure in zebrafish induces aberrant genome-wide methylation. Neurotoxicol Teratol 2022; 92:107091. [DOI: 10.1016/j.ntt.2022.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023]
|
16
|
Zumpano R, Manghisi M, Polli F, D’Agostino C, Ietto F, Favero G, Mazzei F. Label-free magnetic nanoparticles-based electrochemical immunosensor for atrazine detection. Anal Bioanal Chem 2022; 414:2055-2064. [DOI: 10.1007/s00216-021-03838-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
|
17
|
Mendonca A, Sánchez O, Zhao H, Lin L, Min A, Yuan C. Development and application of novel BiFC probes for cell sorting based on epigenetic modification. Cytometry A 2022; 101:339-350. [PMID: 35001539 DOI: 10.1002/cyto.a.24530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
The epigenetic signature of cancer cells varies with disease progression and drug treatment, necessitating the study of these modifications with single cell resolution over time. The rapid detection and sorting of cells based on their underlying epigenetic modifications by flow cytometry can enable single cell measurement and tracking to understand tumor heterogeneity and progression warranting the development of a live-cell compatible epigenome probes. In this work, we developed epigenetic probes based on bimolecular fluorescence complementation (BiFC) and demonstrated their capabilities in quantifying and sorting cells based on their epigenetic modification contents. The sorted cells are viable and exhibit distinctive responses to chemo-therapy drugs. Notably, subpopulations of MCF7 cells with higher H3K9me3 levels are more likely to develop resistance to Doxorubicin. Subpopulations with higher 5mC levels, on the other hand, tend to be more responsive. Overall, we report for the first time, the application of novel split probes in flow cytometry application and elucidated the potential role of 5mC and H3K9me3 in determining drug responses.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Oscar Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Sánchez OF, Lin LF, Xie J, Freeman JL, Yuan C. Lead exposure induces dysregulation of constitutive heterochromatin hallmarks in live cells. Curr Res Toxicol 2021; 3:100061. [PMID: 35005634 PMCID: PMC8717252 DOI: 10.1016/j.crtox.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lead (Pb) is a heavy metal contaminant commonly found in air, soil, and drinking water due to legacy uses. Excretion of ingested Pb can result in extensive kidney damages due to elevated oxidative stress. Epigenetic alterations induced by exposure to Pb have also been implied but remain poorly understood. In this work, we assessed changes in repressive epigenetic marks, namely DNA methylation (meCpG) and histone 3 lysine 9 tri-methylation (H3K9me3) after exposure to Pb. Live cell epigenetic probes coupled to bimolecular fluorescence complementation (BiFC) were used to monitor changes in the selected epigenetic marks. Exposure to Pb significantly lowered meCpG and H3K9me3 levels in HEK293T cells suggesting global changes in constitutive heterochromatin. A heterodimeric pair of probes that tags chromatin regions enriched in both meCpG and H3K9me3 further confirmed our findings. The observed epigenetic changes can be partially attributed to aberrant transcriptional changes induced by Pb, such as overexpression of TET1 after Pb exposure. Lastly, we monitored changes in selected heterochromatin marks after removal of Pb and found that changes in these markers do not immediately recover to their original level suggesting potential long-term damages to chromatin structure.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Li F. Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Ishaq SL, Parada FJ, Wolf PG, Bonilla CY, Carney MA, Benezra A, Wissel E, Friedman M, DeAngelis KM, Robinson JM, Fahimipour AK, Manus MB, Grieneisen L, Dietz LG, Pathak A, Chauhan A, Kuthyar S, Stewart JD, Dasari MR, Nonnamaker E, Choudoir M, Horve PF, Zimmerman NB, Kozik AJ, Darling KW, Romero-Olivares AL, Hariharan J, Farmer N, Maki KA, Collier JL, O’Doherty KC, Letourneau J, Kline J, Moses PL, Morar N. Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice. mSystems 2021; 6:e0047121. [PMID: 34313460 PMCID: PMC8407420 DOI: 10.1128/msystems.00471-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- University of Maine, School of Food and Agriculture, Orono, Maine, USA
| | - Francisco J. Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Patricia G. Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carla Y. Bonilla
- Gonzaga University, Department of Biology, Spokane, Washington, USA
| | - Megan A. Carney
- University of Arizona, School of Anthropology, Tucson, Arizona, USA
| | - Amber Benezra
- Stevens Institute of Technology, Science and Technology Studies, Hoboken, New Jersey, USA
| | | | - Michael Friedman
- American International College of Arts and Sciences of Antigua, Antigua, Antigua and Barbuda, West Indies
| | - Kristen M. DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jake M. Robinson
- University of Sheffield, Department of Landscape Architecture, Sheffield, United Kingdom
| | - Ashkaan K. Fahimipour
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California, USA
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Melissa B. Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Laura Grieneisen
- Department of Genetics, Cell, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leslie G. Dietz
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Ashish Pathak
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Ashvini Chauhan
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Justin D. Stewart
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emily Nonnamaker
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mallory Choudoir
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Patrick F. Horve
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Naupaka B. Zimmerman
- University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Ariangela J. Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Weatherford Darling
- Social Science Program, University of Maine at Augusta, Augusta, Maine, USA
- University of Maine, Graduate School of Biomedical Science & Engineering, Bangor, Maine, USA
| | | | - Janani Hariharan
- Field of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Nicole Farmer
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Katherine A. Maki
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Jackie L. Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | - Jeffrey Letourneau
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | | | - Peter L. Moses
- Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Nicolae Morar
- Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
- Department of Philosophy, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
20
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
21
|
Liu Y, Zhang H, He X, Liu J. Genetically Engineered Methanotroph as a Platform for Bioaugmentation of Chemical Pesticide Contaminated Soil. ACS Synth Biol 2021; 10:487-494. [PMID: 33616380 DOI: 10.1021/acssynbio.0c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioaugmentation is a promising alternative in soil remediation. One challenge of bioaugmentation is that exogenous pollutant-degrading microbes added to soil cannot establish enough biomass to eliminate pollutants. Considering that methanotrophs have a growth advantage in the presence of methane, we hypothesize that genetically engineered methanotrophs could degrade contaminants efficiently in soil with methane. Here, methanotroph Methylomonas sp. LW13, herbicide bensulfuron-methyl (BSM), and two kinds of soil were chosen to confirm this hypothesis. The unmarked gene knock-in method was first developed for strain LW13. Then, BSM hydrolase encoding gene sulE was inserted into the chromosome of strain LW13, conferring it BSM-degrading ability. After inoculation, the cell amount of strain LW13-sulE in soil raised considerably (over 100 fold in 9 days) with methane provision; meanwhile, >90% of BSM in soil was degraded. This study provides a proof of the concept that genetically engineered methanotroph is a potential platform for soil remediation.
Collapse
Affiliation(s)
- Yongchuang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haili Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiangrong He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
22
|
Rider CV, McHale CM, Webster TF, Lowe L, Goodson WH, La Merrill MA, Rice G, Zeise L, Zhang L, Smith MT. Using the Key Characteristics of Carcinogens to Develop Research on Chemical Mixtures and Cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:35003. [PMID: 33784186 PMCID: PMC8009606 DOI: 10.1289/ehp8525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND People are exposed to numerous chemicals throughout their lifetimes. Many of these chemicals display one or more of the key characteristics of carcinogens or interact with processes described in the hallmarks of cancer. Therefore, evaluating the effects of chemical mixtures on cancer development is an important pursuit. Challenges involved in designing research studies to evaluate the joint action of chemicals on cancer risk include the time taken to perform the experiments because of the long latency and choosing an appropriate experimental design. OBJECTIVES The objectives of this work are to present the case for developing a research program on mixtures of environmental chemicals and cancer risk and describe recommended approaches. METHODS A working group comprising the coauthors focused attention on the design of mixtures studies to inform cancer risk assessment as part of a larger effort to refine the key characteristics of carcinogens and explore their application. Working group members reviewed the key characteristics of carcinogens, hallmarks of cancer, and mixtures research for other disease end points. The group discussed options for developing tractable projects to evaluate the joint effects of environmental chemicals on cancer development. RESULTS AND DISCUSSION Three approaches for developing a research program to evaluate the effects of mixtures on cancer development were proposed: a chemical screening approach, a transgenic model-based approach, and a disease-centered approach. Advantages and disadvantages of each are discussed. https://doi.org/10.1289/EHP8525.
Collapse
Affiliation(s)
- Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, California, USA
| | - Thomas F. Webster
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, Nova Scotia, Canada
| | - William H. Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Glenn Rice
- Office of Research & Development, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health and Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, California, USA
| |
Collapse
|
23
|
Xie J, Lin L, Sánchez OF, Bryan C, Freeman JL, Yuan C. Pre-differentiation exposure to low-dose of atrazine results in persistent phenotypic changes in human neuronal cell lines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116379. [PMID: 33388679 DOI: 10.1016/j.envpol.2020.116379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Exposures to organic pesticides, particularly during a developmental window, have been associated with various neurodegenerative diseases later in life. Atrazine (ATZ), one of the most used pesticides in the U.S., is suspected to be associated with increased neurodegeneration later in life but few studies assessed the neurotoxicity of developmental ATZ exposure using human neuronal cells. Here, we exposed human SH-SY5Y cells to 0.3, 3, and 30 ppb of ATZ prior to differentiating them into dopaminergic-like neurons in ATZ-free medium to mimic developmental exposure. The differentiated neurons exhibit altered neurite outgrowth and SNCA pathology depending on the ATZ treatment doses. Epigenome changes, such as decreases in 5mC (for 0.3 ppb only), H3K9me3, and H3K27me3 were observed immediately after exposure. These alterations persist in a compensatory manner in differentiated neurons. Specifically, we observed significant reductions in 5mC and H3K9me3, as well as, an increase in H3K27me3 in ATZ-exposed cells after differentiation, suggesting substantial chromatin rearrangements after developmental ATZ exposure. Transcriptional changes of relevant epigenetic enzymes were also quantified but found to only partially explain the observed epigenome alteration. Our results thus collectively suggest that exposure to low-dose of ATZ prior to differentiation can result in long-lasting changes in epigenome and increase risks of SNCA-related Parkinson's Disease.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Chris Bryan
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Lin LF, Xie J, Sánchez OF, Bryan C, Freeman JL, Yuan C. Low dose lead exposure induces alterations on heterochromatin hallmarks persisting through SH-SY5Y cell differentiation. CHEMOSPHERE 2021; 264:128486. [PMID: 33032221 DOI: 10.1016/j.chemosphere.2020.128486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is a commonly found heavy metal due to its historical applications. Recent studies have associated early-life Pb exposure with the onset of various neurodegenerative disease. The molecular mechanisms of Pb conferring long-term neurotoxicity, however, is yet to be elucidated. In this study, we explored the persistency of alteration in epigenetic marks that arise from exposure to low dose of Pb using a combination of image-based and gene expression analysis. Using SH-SY5Y as a model cell line, we observed significant alterations in global 5-methycytosine (5 mC) and histone 3 lysine 27 tri-methylation (H3K27me3) and histone 3 lysine 9 tri-methylation (H3K9me3) levels in a dose-dependent manner immediately after Pb exposure. The changes are partially associated with alterations in epigenetic enzyme expression levels. Long term culturing (14 days) after cease of exposure revealed persistent changes in 5 mC, partial recovery in H3K9me3 and overcompensation in H3K27me3 levels. The observed alterations in H3K9me3 and H3K27me3 are reversed after neuronal differentiation, while reduction in 5 mC levels are amplified with significant changes in patterns as identified via texture clustering analysis. Moreover, correlation analysis demonstrates a strong positive correlation between trends of 5 mC alteration after differentiation and neuronal morphology. Collectively, our results suggest that exposure to low dose of Pb prior to differentiation can result in persistent epigenome alterations that can potentially be responsible for the observed phenotypic changes. Our work reveals that Pb induced changes in epigenetic repressive marks can persist through neuron differentiation, which provides a plausible mechanism underlying long-term neurotoxicity associated with developmental Pb-exposure.
Collapse
Affiliation(s)
- Li F Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Chris Bryan
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, McBirney M, Skinner MK. Epigenome-wide association study for atrazine induced transgenerational DNA methylation and histone retention sperm epigenetic biomarkers for disease. PLoS One 2020; 15:e0239380. [PMID: 33326428 PMCID: PMC7743986 DOI: 10.1371/journal.pone.0239380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atrazine is a common agricultural herbicide previously shown to promote epigenetic transgenerational inheritance of disease to subsequent generations. The current study was designed as an epigenome-wide association study (EWAS) to identify transgenerational sperm disease associated differential DNA methylation regions (DMRs) and differential histone retention regions (DHRs). Gestating female F0 generation rats were transiently exposed to atrazine during the period of embryonic gonadal sex determination, and then subsequent F1, F2, and F3 generations obtained in the absence of any continued exposure. The transgenerational F3 generation males were assessed for disease and sperm collected for epigenetic analysis. Pathology was observed in pubertal onset and for testis disease, prostate disease, kidney disease, lean pathology, and multiple disease. For these pathologies, sufficient numbers of individual males with only a single specific disease were identified. The sperm DNA and chromatin were isolated from adult one-year animals with the specific diseases and analyzed for DMRs with methylated DNA immunoprecipitation (MeDIP) sequencing and DHRs with histone chromatin immunoprecipitation (ChIP) sequencing. Transgenerational F3 generation males with or without disease were compared to identify the disease specific epimutation biomarkers. All pathologies were found to have disease specific DMRs and DHRs which were found to predominantly be distinct for each disease. No common DMRs or DHRs were found among all the pathologies. Epimutation gene associations were identified and found to correlate to previously known disease linked genes. This is one of the first observations of potential sperm disease biomarkers for histone retention sites. Although further studies with expanded animal numbers are required, the current study provides evidence the EWAS analysis is effective for the identification of potential pathology epimutation biomarkers for disease susceptibility.
Collapse
Affiliation(s)
- Jennifer L. M. Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|