1
|
Cheng L, Peng L, Xu L, Yu X, Zhu Y, Wei X. Metabolic function and quality contribution of tea-derived microbes, and their safety risk in dark tea manufacture. Food Chem 2025; 464:141818. [PMID: 39486219 DOI: 10.1016/j.foodchem.2024.141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Microbial fermentation, especially the microbes involved, plays a crucial role in the quality formation of dark tea. Over the last decade, numerous microbes have been isolated from dark tea and in turn, applied to dark tea manufacture through pure-strain, mixed-strain, and enhanced fermentation. This article systematically summarizes the specific metabolic function and quality contribution of tea-derived microbes, with special attention paid to their safety risk. Aspergillus niger converts catechins via hydrolysis, addition, oxidative polymerization, and B-ring fission, contributing greatly to the reddish-brown color and mellow taste of dark tea. Aspergillus sydowii and Penicillium simplicissimum are caffeine-degrading microbes, degrading caffeine mainly into theophylline. However, under adverse conditions, Aspergillus, Penicillium, and Fusarium species potentially produce aflatoxins, ochratoxin A, and citrinin, the mycotoxins occurring in dark tea. The in-depth knowledge of tea-derived microbes is important for improving the quality and safety of dark tea, providing a theoretical basis for its industrial modernization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaoping Yu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Zhang Y, Chen T, Wang Z, Liang W, Wang X, Zhang X, Lu X, Liu X, Zhao C, Xu G. High-resolution mass spectrometry-based suspect and nontarget screening of natural toxins in foodstuffs and risk assessment of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125338. [PMID: 39577611 DOI: 10.1016/j.envpol.2024.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
3
|
Zhao W, Ma X, Yan H, Zhang L, Shi W, Zhou Y. Aspergillus flavus and aflatoxins control in long-term storage of food ingredients of Puerh tea, peanut and polished rice. Food Chem 2024; 461:140805. [PMID: 39181056 DOI: 10.1016/j.foodchem.2024.140805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Aflatoxins are a group of high toxic mycotoxins in food chain. Recent studies showed that aflatoxins might contaminate post-fermented tea, but the result remains controversial. Here, Aspgergillus flavus growth and aflatoxin production were characterized in Puerh tea, peanut and polished rice at different initial water activity (aw) values for long-term storage. As a result, food initial aw value was the critical factor for A. flavus growth and aflatoxin production, and A. flavus almost not grew on foods at aw value lower than 0.8. A. flavus grew best in peanut, followed by rice, but growth on Puerh tea was limited. A. flavus growth was inhibited significantly by adding tea to Potato Dextrose Agar (PDA). Accordingly, aflatoxins produced dramatically in peanut, followed by rice at the first 90 days storage. However, aflatoxin neither produced in Puerh tea nor on tea modified PDA, indicating tea components inhibited A. flavus growth and aflatoxins synthesis.
Collapse
Affiliation(s)
- Weifan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Xue Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Wei Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China.
| |
Collapse
|
4
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
5
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
6
|
Yan H, Zhao W, Parveen A, Ye Z, Fei Q, Wang X, Zhou Y. Comprehensive and cumulative risk evaluation of dietary exposure to aflatoxins and ochratoxin A on fermented teas worldwide by a new assessment model. Food Chem Toxicol 2024; 184:114321. [PMID: 38072213 DOI: 10.1016/j.fct.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
Recently, mycotoxin risks in fermented tea have received high attention, but mycotoxin transfer rates from tealeaf to infusion during brewing were rarely considered. In addition, the assessment data (i.e., mycotoxin occurrences and tea consumption) in previous assessments were usually limited. Here, a comprehensive and cumulative risk assessment of aflatoxins and ochratoxin A was performed using a tea assessment model, by which mycotoxin transfer rates were included and the assessment data were collected worldwide. By 10 times of brewing, the aflatoxin transfer rate was only 2.94% and OTA was 63.65%. Besides the extreme case, hazard quotients (HQs) from all consumers were lower than the threshold of 1.0, indicating no noncarcinogenic risk; the P95 cumulative margin of exposure (1/MoET) values were 2.52E-04 (30-39 years of age) and 2.42E-04 (≥50 years of age) for two high exposure groups under the upper bound scenario, which a little higher than the carcinogenic risk threshold of 1.00E-04. Notably, the P95 cumulative 1/MoET values (3.24E-03 -7.95E-03) by food assessment model were ten times higher than those of by tea assessment model. The comparative results showed that mycotoxin dietary risks on tea consumption by food assessment model were much overestimated. The result of this study indicated that the contaminants transfer rates should be considered for risk assessment on tea consumption in future work.
Collapse
Affiliation(s)
- Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China; Lu'an Institute of Supervision and Inspection on Product Quality, Anhui, Lu'an, 237000, China
| | - Weifan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China
| | - Asma Parveen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China
| | - Ziling Ye
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China
| | - Qingru Fei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China
| | - Xu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei, 230036, China.
| |
Collapse
|
7
|
Qiu T, Zhang H, Lei H, Zhang L, Zhang Y, Shen X, Xu B, Zhu J, Xiao W, Zheng J, Chen J. Preparation of Anti-Zearalenone IgY and Development of an Indirect Competitive ELISA Method for the Measurement of Zearalenone in Post-Fermented Tea. Foods 2023; 12:4478. [PMID: 38137282 PMCID: PMC10742412 DOI: 10.3390/foods12244478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Post-fermented tea (PFT) is one of the most commonly consumed beverages worldwide. Rapid microbial growth and significant changes in the microbial composition of PFT during processing and storage pose a potential risk of contamination with mycotoxins such as zearalenone (ZEN). Screening for ZEN contamination in a simple, rapid, and inexpensive manner is required to ensure that PFT is safe for consumption. To monitor ZEN in PFT, ZEN was conjugated with bovine serum albumin to prepare egg yolk immunoglobulins (IgY). A specific indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on IgY was developed and validated. ZEN was extracted with acetonitrile and water (50:50, v/v) containing 5% acetic acid and purified using a mixture of primary and secondary amines and graphitized carbon black to remove matrix interference from the PFT samples. Under optimal conditions, the linear range of this assay was 13.8-508.9 ng mL-1, the limit of detection was 9.3 ng mL-1, and the half-maximal inhibitory concentration was 83.8 ng mL-1. Cross-reactivity was negligible, and the assay was specific for ZEN-related molecules. The recovery rate of ZEN in the control blanks of PFT samples spiked with a defined concentration of ZEN of 89.5% to 98.0%. The recovery and accuracy of the method were qualified for PFT matrices. No significant differences were evident between the results of the actual PFT samples analyzed by high-performance liquid chromatography and ic-ELISA. The collective data indicate that the developed ic-ELISA can be used for the rapid and simple detection of ZEN in PFT products.
Collapse
Affiliation(s)
- Taotao Qiu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Huayi Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| | - Lin Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Yaqiong Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| | - Biyun Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Jialin Zhu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Wentao Xiao
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Jixu Zheng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| |
Collapse
|
8
|
Feng X, Chen M, Song H, Ma S, Ou C, Li Z, Hu H, Yang Y, Zhou S, Pan Y, Fan F, Gong S, Chen P, Chu Q. A systemic review on Liubao tea: A time-honored dark tea with distinctive raw materials, process techniques, chemical profiles, and biological activities. Compr Rev Food Sci Food Saf 2023; 22:5063-5085. [PMID: 37850384 DOI: 10.1111/1541-4337.13254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Ming Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Zeqing Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Yunyun Yang
- College of standardization, China Jiliang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
9
|
Sun Y, Yuan X, Luo Z, Cao Y, Liu S, Liu Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res Int 2023; 172:113115. [PMID: 37689883 DOI: 10.1016/j.foodres.2023.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Liquid-state fermentation (LSF) of tea leaves is a promising way to obtain tea-based nutraceutical products rich in various bioactive compounds. In the study, the changes of bioactive compounds, tea pigments and complex metabolites from LSF of primary dark tea, green tea and white tea infusions with Aspergillus cristatus were determined. Chemical analyses revealed that soluble sugars, monosaccharide composition, total polyphenols, total flavonoids, free amino acids, soluble proteins and tea pigments were changed in different ways. An untargeted metabolomic analysis and ribonucleic acid sequencing (RNA-seq) based transcriptomic analysis were performed to investigate the metabolic differentiation and clarify the key differentially expressed genes (DEGs, fold change >2 and p < 0.05), showing that amino acid metabolism, carbohydrate metabolism and lipid metabolism were the most enriched pathways during A. cristatus fermentation of primary dark tea, green tea and white tea infusions. In addition, glycerophospholipid metabolism, linoleic acid metabolism and phenylalanine metabolism were greatly accumulated in the fermentation of primary dark tea and white tea infusions; Pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and valine and leucine, isoleucine degradation were greatly accumulated in the fermentation of primary dark tea and green tea infusions; Starch and sucrose metabolism was greatly accumulated in the fermentation of green tea and white tea infusions; Galactose metabolism was significantly enhanced in the fermentation of primary dark tea infusion; Amino sugar and nucleotide sugar metabolism, sphingolipid metabolism and alanine, aspartate and glutamate metabolism were significantly enhanced in the fermentation of green tea infusion. Besides, some other pathways involving aminobenzoate degradation, biosynthesis of cofactors, pyrimidine metabolism, benzoxazinoid biosynthesis and phenazine biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis and flavone and flavonol biosynthesis also differed from each other. These findings support that A. cristatus plays a vital role in the biochemical and genetic regulation of metabolite profile, and could be considered a potential prospect for better use of A. cristatus on different kinds of tea materials.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Xushuang Yuan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhaojun Luo
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China.
| |
Collapse
|
10
|
Chau SL, Zhao A, Jia W, Wang L. Simultaneous Determination of Pesticide Residues and Mycotoxins in Storage Pu-erh Tea Using Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2023; 28:6883. [PMID: 37836726 PMCID: PMC10574668 DOI: 10.3390/molecules28196883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Mycotoxins and pesticides are the most concerning chemical contaminants that can affect the quality of Pu-erh tea during its production and storage. This study presents a method that can simultaneously determine 31 pesticide residues and six mycotoxins in Pu-erh tea within 11 min using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) after QuEChERS extraction. The lower limit of quantification (LOQ) for all analytes ranged between 0.06 and 50 ppb. Recoveries for each pesticide and mycotoxin ranged between 62.0 and 130.3%, with intra- and inter-day precisions lower than 15%. Good linear relationships were obtained, with correlation coefficients of r2 > 0.991 for all analytes. The established method was applied to 31 Pu-erh tea samples, including raw and ripened Pu-erh tea with different storage times. As a result, pesticide residues were not detected in any of the collected samples, and the mycotoxins detected in the samples were well below the official maximum residue limits (MRLs). Notably, the levels of aflatoxin B1 (AFB1), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) were lower than 1 ppb in the samples stored for more than 30 years.
Collapse
Affiliation(s)
- Siu Leung Chau
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| | - Aihua Zhao
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China;
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; (S.L.C.); (W.J.)
| |
Collapse
|
11
|
Qiu T, Zhu J, Zhang H, Xu B, Guo Y, Li J, Xu X, Peng F, Liu W, Zhao S, Yin Z, Mao S. B-Type Fumonisins in Post-Fermented Tea: Occurrence and Consumer Dietary Exposure in Guangxi, China. Toxins (Basel) 2023; 15:534. [PMID: 37755960 PMCID: PMC10536045 DOI: 10.3390/toxins15090534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Post-fermented tea (PFT), a commonly consumed beverage worldwide, is characterized by the rapid growth of its microbial groups and the substantial changes they undergo. Consequently, PFT may contain mycotoxins such as B-type fumonisins (FBs). This study aimed to assess the intake of FBs through the consumption of PFT among consumers in Guangxi, China. A novel quantitative method using high-performance liquid chromatography-mass spectrometry was used to determine the FB concentration in PFT products. Additionally, a PFT consumption survey was conducted using a face-to-face questionnaire, recording their body weight and PFT consumption patterns based on a three-day dietary recall method. Finally, hazard index was calculated to estimate the health risk of FBs from the consumption of PFT products in Guangxi. The results revealed that the occurrence of FBs in PFT was 20% (24/120), with a concentration ranging from 2.14 to 18.28 μg/kg. The results of the survey showed that the average daily consumption of PFT by consumers was 9.19 ± 11.14 g. The deterministic risk assessment revealed that only 0.026% of the provisional maximum tolerable daily intake of FBs was consumed through PFT, indicating that FB contamination in PFT is not a public health risk.
Collapse
Affiliation(s)
- Taotao Qiu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Jialin Zhu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Huayi Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Biyun Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Jingrong Li
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Xin Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Weiguo Liu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Shengmei Zhao
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Zuocheng Yin
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Shihong Mao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
12
|
Xu A, Zhou H, Yu S, Li Y, Wang L, Wu A, Liang J, Peng S, Liu N. Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment. Foods 2023; 12:3071. [PMID: 37628069 PMCID: PMC10452965 DOI: 10.3390/foods12163071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Beer is susceptible to mycotoxin contamination originating from infected grains. It could be that mycotoxins are not completely removed during the brewing process and remain in the final product. Nevertheless, there have been no surveys of exposure to mycotoxin for Chinese inhabitants through beer consumption. This study aimed to investigate the presence of eight mycotoxins in 158 beer samples purchased in Shanghai, the largest megacity in China. The multiple mycotoxins determination was carried out using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Our findings revealed that 48.1% (76/158) of the beer samples were contaminated with Fusarium toxins. Deoxynivalenol-3-glucoside (D3G) and zearalenone (ZEN) were detected in 34.81% and 16.46% of the total samples, respectively. The significant differences between D3G/ZEN contamination and various beer types were performed. Furthermore, this study performed a health risk assessment for Shanghai residents based on data for Fusarium toxins and ochratoxin A (OTA) present in beer for the first time. The results revealed that the 95th percentile dietary exposures of Shanghai residents did not pose any chronic or acute health risks, either individually or in combination. Dietary exposures to Fusarium toxins revealed different risk levels among residents. The cumulative health risk for women is higher than that for men at the same beer consumption. In addition, the acute risk of DONs exposure for adults deserves concern. The insights obtained from this study may be of assistance for beer manufacturers and governmental regulators to further develop beer monitoring and guarantee public health.
Collapse
Affiliation(s)
- Anqi Xu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (A.X.); (H.Z.); (L.W.); (A.W.)
| | - Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (A.X.); (H.Z.); (L.W.); (A.W.)
| | - Shenghao Yu
- Information Application Research Center of Shanghai Municipal Administration for Market Regulation, Shanghai 200030, China; (S.Y.); (Y.L.); (S.P.)
| | - Yiqi Li
- Information Application Research Center of Shanghai Municipal Administration for Market Regulation, Shanghai 200030, China; (S.Y.); (Y.L.); (S.P.)
| | - Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (A.X.); (H.Z.); (L.W.); (A.W.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (A.X.); (H.Z.); (L.W.); (A.W.)
| | - Jiang Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), Department of Risk Assessment, China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, China
| | - Shaojie Peng
- Information Application Research Center of Shanghai Municipal Administration for Market Regulation, Shanghai 200030, China; (S.Y.); (Y.L.); (S.P.)
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (A.X.); (H.Z.); (L.W.); (A.W.)
| |
Collapse
|
13
|
Hassan HF, Tashani H, Ballouk F, Daou R, El Khoury A, Abiad MG, AlKhatib A, Hassan M, El Khatib S, Dimassi H. Aflatoxins and Ochratoxin A in Tea Sold in Lebanon: Effects of Type, Packaging, and Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6556. [PMID: 37623142 PMCID: PMC10454378 DOI: 10.3390/ijerph20166556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023]
Abstract
Tea is among the oldest and most-known beverages around the world, and it has many flavors and types. Tea can be easily contaminated in any of its production steps, especially with mycotoxins that are produced particularly in humid and warm environments. This study aims to examine the level of ochratoxin A (OTA) and total aflatoxin (AF) contamination in black and green tea sold in Lebanon, evaluate its safety compared to international standards, and assess the effect of different variables on the levels of OTA and AFs. For this, the Lebanese market was screened and all tea brands (n = 37; 24 black and 13 green) were collected twice. The Enzyme-Linked Immunoassay (ELISA) method was used to determine OTA and AFs in the samples. AFs and OTA were detected in 28 (75.7%) and 31 (88.6%) samples, respectively. The average of AFs in the positive (above detection limit: 1.75 μg/kg) samples was 2.66 ± 0.15 μg/kg, while the average of OTA in the positive (above detection limit: 1.6 μg/kg) samples was 3.74 ± 0.72 μg/kg. The mean AFs in black and green tea were 2.65 ± 0.55 and 2.54 ± 0.40 μg/kg, respectively, while for OTA, the mean levels were 3.67 ± 0.96 and 3.46 ± 1.09 μg/kg in black and green tea samples, respectively. Four brands (10.8%) contained total aflatoxin levels above the EU limit (4 μg/kg). As for OTA, all samples had OTA levels below the Chinese limit (5 μg/kg). No significant association (p > 0.05) was found between OTA and tea type, level of packaging, country of origin, country of packing, and country of distribution. However, AF contamination was significantly (p < 0.05) higher in unpacked tea, and in brands where the country of origin, packing, and distributor was in Asia. The results showed that the tea brands in Lebanon are relatively safe in terms of AFs and OTA.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Hadeel Tashani
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Farah Ballouk
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Rouaa Daou
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - Mohamad G. Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Laboratories for the Environment, Agriculture, and Food (LEAF), Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Mahdi Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Sami El Khatib
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Bekaa P.O. Box 146404, Lebanon;
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Hani Dimassi
- School of Pharmacy, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
14
|
Lee SY, Cho S, Woo SY, Hwang M, Chun HS. Risk Assessment Considering the Bioavailability of 3-β-d-Glucosides of Deoxynivalenol and Nivalenol through Food Intake in Korea. Toxins (Basel) 2023; 15:460. [PMID: 37505729 PMCID: PMC10467052 DOI: 10.3390/toxins15070460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Deoxynivalenol and nivalenol are major type B trichothecenes and the most frequently occurring mycotoxins worldwide. Their 3-β-d-glucoside forms have recently become a safety management issue. These glucoside conjugates are converted back to the parent toxins during human digestion, but studies to confirm their bioavailability are lacking. In this study, a risk assessment was performed considering the bioavailability of glucoside conjugates. A literature review was conducted to compile the existing bioavailability studies of glucoside conjugates, and three exposure scenarios considering bioavailability were established. As a result of a risk assessment using deterministic and probabilistic methods, both the deoxynivalenol and nivalenol groups had safe levels of tolerable daily intake percentage (TDI%), not exceeding 100%. The TDI% for the nivalenol group was approximately 2-3 times higher than that for the deoxynivalenol group. Notably, infants showed higher TDI% than adults for both toxin groups. By food processing type, the overall TDI% was highest for raw material, followed by simple-processed and then fermented-processed. Since glucoside conjugates can be converted into parent toxins during the digestion process, a risk assessment considering bioavailability allows the more accurate evaluation of the risk level of glucoside conjugates and can direct their safety management in the future.
Collapse
Affiliation(s)
- Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - Solyi Cho
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - Myungsil Hwang
- Department of Food & Nutrition, Gachon University, Incheon 21936, Republic of Korea;
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| |
Collapse
|
15
|
Wang K, Jiao B, Gao H, Pan X, Wu X, Xu J, Dong F, Zheng Y. Residue and dietary risk assessment of glyphosate, glufosinate-ammonium, and their metabolites in maize and soybean. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Li X, Wang J, Zhang F, Yu M, Zuo N, Li L, Tan J, Shen W. Cyanidin-3-O-Glucoside Rescues Zearalenone-Induced Apoptosis via the ITGA7-PI3K-AKT Signaling Pathway in Porcine Ovarian Granulosa Cells. Int J Mol Sci 2023; 24:ijms24054441. [PMID: 36901882 PMCID: PMC10002597 DOI: 10.3390/ijms24054441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingya Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fali Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Wei Shen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: ; Tel.: +86-0532-58957316
| |
Collapse
|
17
|
Prakasham K, Gurrani S, Shiea JT, Wu MT, Wu CF, Ku YJ, Tsai TY, Hua HT, Lin YJ, Huang PC, Andaluri G, Ponnusamy VK. Rapid Identification and Analysis of Ochratoxin-A in Food and Agricultural Soil Samples Using a Novel Semi-Automated In-Syringe Based Fast Mycotoxin Extraction (FaMEx) Technique Coupled with UHPLC-MS/MS. Molecules 2023; 28:molecules28031442. [PMID: 36771116 PMCID: PMC9921652 DOI: 10.3390/molecules28031442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, a fast mycotoxin extraction (FaMEx) technique was developed for the rapid identification and quantification of carcinogenic ochratoxin-A (OTA) in food (coffee and tea) and agricultural soil samples using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection. The FaMEx technique advancement is based on two plastic syringes integrated setup for rapid extraction and its subsequent controlled clean-up process. In the extraction process, a 0.25-g sample and extraction solvent were added to the first syringe barrel for the vortex-based extraction. Then, the extraction syringe was connected to a clean-up syringe (pre-packed with C18, activated carbon, and MgSO4) with a syringe filter. Afterward, the whole set-up was placed in an automated programmable mechanical set-up for controlled elution. To enhance FaMEx technology performance, the various influencing sample pretreatment parameters were optimized. Furthermore, the developed FaMEx method indicated excellent linearity (0.9998 and 0.9996 for coffee/tea and soil) with highly sensitive detection (0.30 and 0.29 ng/mL for coffee/tea and soil) and quantification limits (1.0 and 0.96 for coffee/tea and soil), which is lower than the toxicity limit compliant with the European Union regulation for OTA (5 ng/g). The method showed acceptable relative recovery (84.48 to 100.59%) with <7.34% of relative standard deviation for evaluated real samples, and the matrix effects were calculated as <-13.77% for coffee/tea and -9.7 for soil samples. The obtained results revealed that the developed semi-automated FaMEx/UHPLC-MS/MS technique is easy, fast, low-cost, sensitive, and precise for mycotoxin detection in food and environmental samples.
Collapse
Affiliation(s)
- Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Jen-Taie Shiea
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ming-Tsang Wu
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Chia-Fang Wu
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- International Master Program of Translational Medicine, National United University, Miaoli 36063, Taiwan
| | - Yi-Jia Ku
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Tseng-Yu Tsai
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Hung-Ta Hua
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Yu-Jia Lin
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Po-Chin Huang
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli 35053, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Wang G, Li E, Gallo A, Perrone G, Varga E, Ma J, Yang B, Tai B, Xing F. Impact of environmental factors on ochratoxin A: From natural occurrence to control strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120767. [PMID: 36455768 DOI: 10.1016/j.envpol.2022.120767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ochratoxin A (OTA) contamination and the associated issues of food security, food safety and economic loss are widespread throughout the world. The occurrence of OTA depends on ochratoxigenic fungi, foodstuffs and their environment. In this review, natural occurrence and control strategy of OTA, with a focus on the impact of environmental factors, are summarized. First, this manuscript introduces potentially contaminated foodstuffs, including the emerging ones which are not regulated in international legislation. Secondly, it gives an update of native producers based on foodstuffs and OTA biosynthesis. Thirdly, complicated environmental regulation is disassembled into individual factors in order to clarify their regulatory effect and mechanism. Finally, to emphasize control OTA at all stages of foodstuffs from farm to table, strategies used at crop planting, harvest, storage and processing stages are discussed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, 300392, China
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, 73100, Italy
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, 70126, Italy
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, 1090, Austria
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Xu W, Zhao YQ, Jia WB, Liao SY, Bouphun T, Zou Y. Reviews of fungi and mycotoxins in Chinese dark tea. Front Microbiol 2023; 14:1120659. [PMID: 36910180 PMCID: PMC9992979 DOI: 10.3389/fmicb.2023.1120659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The fermentation is the main process to form the unique flavor and health benefits of dark tea. Numerous studies have indicated that the microorganisms play a significant part in the fermentation process of dark tea. Dark tea has the quality of "The unique flavor grows over time," but unscientific storage of dark tea might cause infestation of harmful microorganisms, thereby resulting in the remaining of fungi toxins. Mycotoxins are regarded as the main contributor to the quality of dark tea, and its potential mycotoxin risk has attracted people's attention. This study reviews common and potential mycotoxins in dark tea and discusses the possible types of masked mycotoxins in dark tea. A summary of the potential risks of mycotoxins and masked mycotoxins in dark tea is presented, intending to provide a reference for the prevention and risk assessment of harmful fungi in dark tea.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-Qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-Bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Si-Yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Zhao YQ, Jia WB, Liao SY, Xiang L, Chen W, Zou Y, Zhu MZ, Xu W. Dietary assessment of ochratoxin A in Chinese dark tea and inhibitory effects of tea polyphenols on ochratoxigenic Aspergillus niger. Front Microbiol 2022; 13:1073950. [PMID: 36560937 PMCID: PMC9763595 DOI: 10.3389/fmicb.2022.1073950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasingly heated debate on whether Chinese dark tea is contaminated with mycotoxins and whether it poses health risks to consumers. In this study, a rapid method based on high-performance liquid chromatography was used to detect ochratoxin A (OTA) in Chinese dark tea samples from different regions of China and different years. Of the 228 Chinese dark tea samples tested, 21 were detected for OTA contamination, with a concentration ranging from 2.51 ± 0.16 to 12.62 ± 0.72 μg/kg. Subsequently, a dark tea drinking risk assessment was conducted, and the hazard quotient for each group was far below the acceptable level of 1.0. Of the 12 Aspergillus spp. strains isolated, one strain of Aspergillus niger had the ability to produce OTA. We also found that tea polyphenols and epigallocatechin gallate inhibited the growth of ochratoxin-producing Aspergillus niger and the expression of non-ribosomal peptide synthetase (NRPS), a key gene for ochratoxin synthesis. Thus, OTA contamination of dark tea is at an acceptable risk level, and the inhibition of ochratoxigenic Aspergillus niger by polyphenols provides new insights into the safety of dark tea consumption.
Collapse
Affiliation(s)
- Yi-qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Si-yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lin Xiang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Yao Zou,
| | - Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients From Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China,Ming-Zhi Zhu,
| | - Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Wei Xu,
| |
Collapse
|
21
|
Determination of four aflatoxins on dark tea infusions and aflatoxin transfers evaluation during tea brewing. Food Chem 2022; 405:134969. [DOI: 10.1016/j.foodchem.2022.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
22
|
Zhu C, Yang Z, He L, Lu X, Tang J, Laghi L. The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods 2022; 11:foods11192986. [PMID: 36230062 PMCID: PMC9563412 DOI: 10.3390/foods11192986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
As an essential beverage beneficial for Tibetan people, Ya’an Tibetan tea has received scarce attention, particularly from the point of view of the characterization of its metabolome. The aim of the study is to systematically characterize the metabolome of Tibetan tea by means of untargeted 1H-NMR. Moreover, the variations of its metabolome along ageing time are evaluated by taking advantage of univariate and multivariate analyses. A total of 45 molecules are unambiguously identified and quantified, comprising amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and catechins. The concentrations of amino acids, organic acids, carbohydrates and catechins are mainly determined by ageing time. The present study would serve as a reference guide for further work on the Ya’an Tibetan tea metabolome, therefore contributing to the related industries.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
23
|
Esmi F, Khoshnamvand Z, Nazari F, Tajkey J, Khosrokhavar R, Mohseni M, Mehrasbi MR, Taran J, Hosseini MJ. Ochratoxin A in chamomile, black and green tea and human health risk assessment in Iranian population. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
24
|
Karsauliya K, Yahavi C, Pandey A, Bhateria M, Sonker AK, Pandey H, Sharma M, Singh SP. Co-occurrence of mycotoxins: A review on bioanalytical methods for simultaneous analysis in human biological samples, mixture toxicity and risk assessment strategies. Toxicon 2022; 218:25-39. [PMID: 36049662 DOI: 10.1016/j.toxicon.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Mycotoxins are the toxic chemical substances that are produced by various fungal species and some of these are harmful to humans. Mycotoxins are ubiquitous in nature and humans could be exposed to multiple mycotoxins simultaneously. Unfortunately, exposure to mixed mycotoxins is not very well studied. Various studies have demonstrated the capacity of mycotoxins to show synergistic effect in the presence of other mycotoxins, thus, increasing the risk of toxicity. Hence, it is important to monitor mixed mycotoxins in human biological samples which would serve as a crucial information for risk assessment. Through this review paper, we aim to summarize the mixture toxicity of mycotoxins and the various bio-analytical techniques that are being used for the simultaneous analysis of mixed mycotoxins in human biological samples. Different sample preparation and clean-up techniques employed till date for eliminating the interferences from human biological samples without affecting the analyses of the mycotoxins are also discussed. Further, a brief introduction of risk assessment strategies that have been or could be adopted for multiple mycotoxin risk assessments is also mentioned. To the best of our knowledge, this is the first review that focuses solely on the occurrence of multiple mycotoxins in human biological samples as well as their risk assessment strategies.
Collapse
Affiliation(s)
- Kajal Karsauliya
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - C Yahavi
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anushka Pandey
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manisha Bhateria
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ashish Kumar Sonker
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harshita Pandey
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sheelendra Pratap Singh
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
25
|
Determination of Mycotoxins and Veterinary Medicines in Duck Flesh and Viscera and Assessment of Their Exposure. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2734839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycotoxins can accumulate in various feeds and thus may get in duck meat, which may have severe food safety and public health implications. This study examined mycotoxins and veterinary medications in duck meat marketed in eight marketplaces around China. For the determination of mycotoxins, including the mycotoxins aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin M1 (AFM1), T-2 toxin, zearalenone (ZEN), and ochratoxin A (OTA), a liquid-chromatography tandem mass spectrometry (LC-MS/MS) method was validated. Overall, 13 out of 48 samples (27%) presented AFB1, and AFB2 was present in 14 out of 48 samples with positive levels ranging from 0.5 μg/kg (gizzard) to 4.1 μg/kg (lung). Eleven samples were contaminated with AFM1. T-2 was also found in three parts of duck samples (duck gizzard, neck, and lung), and the 5th and 48th samples were contaminated with T-2. ZEN was found in 5 of 48 analyzed samples (10%), and OTA was present in 21 out of 48 samples. The maximum kinds of mycotoxins found simultaneously in duck samples were six in duck lungs. High co-occurrence of mycotoxins was verified in several samples. The detection rate of various veterinary drugs was 0–12.5% in duck meat samples, and the over standard rate was 2.1%. Co-occurrence of veterinary drugs was verified in several samples.
Collapse
|
26
|
Multiplex PCR Identification of Aspergillus cristatus and Aspergillus chevalieri in Liupao Tea Based on Orphan Genes. Foods 2022; 11:foods11152217. [PMID: 35892804 PMCID: PMC9332452 DOI: 10.3390/foods11152217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
“Golden flower” fungi in dark tea are beneficial to human health. The rapid identification method of “golden flower” fungi can verify the quality of dark tea products and ensure food safety. In this study, 6 strains were isolated from Liupao tea. They were respectively identified as A. cristatus, A. chevalieri, and A. pseudoglaucus. A. pseudoglaucus was reported as Liupao tea “golden flower” fungus for the first time. It was found that the ITS and BenA sequences of A. cristatus and A. chevalieri were highly conserved. It is difficult to clearly distinguish these closely related species by ITS sequencing. To rapidly identify species, multiplex PCR species-specific primers were designed based on orphan genes screened by comparative genomics analysis. Multiplex PCR results showed that orphan genes were specific and effective for the identification of A. cristatus and A. chevalieri isolated from Liupao tea and Fu brick tea. We confirmed that orphan genes can be used for identification of closely related Aspergillus species. Validation showed that the method is convenient, rapid, robust, sequencing-free, and economical. This promising method will be greatly beneficial to the dark tea processing industry and consumers.
Collapse
|
27
|
Zhou H, Yan Z, Wu A, Liu N. Mycotoxins in Tea (( Camellia sinensis (L.) Kuntze)): Contamination and Dietary Exposure Profiling in the Chinese Population. Toxins (Basel) 2022; 14:452. [PMID: 35878190 PMCID: PMC9318285 DOI: 10.3390/toxins14070452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Tea is popular worldwide with multiple health benefits. It may be contaminated by the accidental introduction of toxigenic fungi during production and storage. The present study focuses on potential mycotoxin contamination in tea and the probable dietary exposure assessments associated with consumption. The contamination levels for 16 mycotoxins in 352 Chinese tea samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Average concentrations of almost all mycotoxins in tea samples were below the established regulations, except for ochratoxin A in the dark tea samples. A risk assessment was performed for the worst-case scenarios by point evaluation and Monte Carlo assessment model using the obtained mycotoxin levels and the available green, oolong, black, and dark tea consumption data from cities in China. Additionally, we discuss dietary risk through tea consumption as beverages and dietary supplements. In conclusion, there is no dietary risk of exposure to mycotoxins through tea consumption in the Chinese population.
Collapse
Affiliation(s)
| | | | | | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| |
Collapse
|
28
|
Fungal flora and mycotoxin contamination in tea: Current status, detection methods and dietary risk assessment - A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Hassan HF, Koaik L, Khoury AE, Atoui A, El Obeid T, Karam L. Dietary Exposure and Risk Assessment of Mycotoxins in Thyme and Thyme-Based Products Marketed in Lebanon. Toxins (Basel) 2022; 14:331. [PMID: 35622578 PMCID: PMC9146503 DOI: 10.3390/toxins14050331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed at evaluating the incidence of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in thyme and thyme-based products, related dietary exposure, and cancer risk for regular and high consumption. A total of 160 samples were collected, and 32 composite samples were analyzed. AFB1 and OTA were respectively found in 84% (27/32) and 38% (12/32) of the samples. AFB1 exceeded the limits in 41% (13/32) and 25% (8/32) of the samples according to the Lebanese and European standards, respectively. OTA was unacceptable in only 6% (2/32) and 3% (1/32) of the samples according to the Lebanese and European standards, respectively. AFB1 and OTA daily exposure was shown to be 4.270 and 1.345 ng/kg bw/day, respectively. AFB1 was shown to be associated with 0.41 and 0.35 additional cancer cases per 100,000 persons per year for regular consumption, respectively; while for high consumption, an increase of 0.911 and 0.639 cancer cases per 100,000 person per year was noted, respectively. The margin of exposure (MOE) for OTA was >10,000 for the non-neoplastic effect and >200 for the neoplastic effect, representing no toxicological concerns for consumers.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon;
| | - Lara Koaik
- Department of Nursing & Health Sciences, Faculty of Nursing & Health Sciences, Notre Dame University-Louaize, Zouk Mikael P.O. Box 72, Lebanon;
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Beirut P.O. Box 17-5208, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut P.O. Box 5, Lebanon;
| | - Tahra El Obeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
30
|
Pallarés N, Tolosa J, Ferrer E, Berrada H. Mycotoxins in raw materials, beverages and supplements of botanicals: A review of occurrence, risk assessment and analytical methodologies. Food Chem Toxicol 2022; 165:113013. [PMID: 35523385 DOI: 10.1016/j.fct.2022.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
Abstract
Over recent years, consumer interest in natural products, such as botanicals has increased considerably. One of the factors affecting their quality is the presence of mycotoxins. This review focuses on exploring the mycotoxin occurrence in botanicals (raw material and ready-to-eat forms such as infusions or tablets) and the risk assessment due to their ingestion. Aflatoxins, Ochratoxin A, and Fumonisins are the most commonly studied mycotoxins and data in the literature report levels ranging from traces to 1000 μg/kg in raw materials. In general, the highest contents observed in raw materials decreased to unconcerning levels after the preparation of the infusions, reaching values that generally do not exceed 100 μg/L. Regarding botanical dietary supplements, the levels observed were lower than those reported for other matrices, although higher levels (of up to 1000 μg/kg) have been reported in some cases. Risk assessment studies in botanicals revealed a higher risk when they are consumed as tablets compared to infusions. Analytical methodologies implied in mycotoxin determination have also been contemplated. In this sense, liquid chromatography coupled to fluorescence detection has been the most frequently employed analytical technique, although in recent years tandem mass spectrometry has been widely used.
Collapse
Affiliation(s)
- N Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - J Tolosa
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - E Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain.
| | - H Berrada
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| |
Collapse
|
31
|
Liao Z, Cao D, Gao Z. Monitoring and risk assessment of perchlorate in tea samples produced in China. Food Res Int 2022; 157:111435. [DOI: 10.1016/j.foodres.2022.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
32
|
Pandey AK, Samota MK, Sanches Silva A. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit Rev Food Sci Nutr 2022; 63:8672-8697. [PMID: 35452322 DOI: 10.1080/10408398.2022.2061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post Harvest Engineering & Technology, Ludhiana, Punjab, India
| | - Ana Sanches Silva
- Food Science, National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| |
Collapse
|
33
|
Wang S, Qiu Y, Gan RY, Zhu F. Chemical constituents and biological properties of Pu-erh tea. Food Res Int 2022; 154:110899. [DOI: 10.1016/j.foodres.2021.110899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
34
|
Zhou H, Yan Z, Yu S, Wu A, Liu N. Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories. Toxins (Basel) 2022; 14:toxins14030169. [PMID: 35324666 PMCID: PMC8951691 DOI: 10.3390/toxins14030169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
The contamination of potential mycotoxins in tea production and consumption has always been a concern. However, the risk monitoring on multiple mycotoxins remains a challenge by existing methods due to the high cost and complex operation in tea matrices. This research has developed a simple ultra-performance liquid chromatography-tandem mass spectrometry strategy based on our homemade purification column, which can be applied in the detections of mycotoxins in complex tea matrices with high-effectively purifying and removing pigment capacity for 16 mycotoxins. The limits of detection and the limits of quantification were in the ranges of 0.015~15.00 and 0.03~30.00 µg·kg−1 for 16 mycotoxins, respectively. Recoveries from mycotoxin-fortified tea samples (0.13~1200 µg·kg−1) in different tea matrices ranged from 61.27 to 118.46%, with their relative standard deviations below 20%. Moreover, this method has been successfully applied to the analysis and investigation of the levels of 16 mycotoxins in major categories of tea and the monitoring of multiple mycotoxins in processed samples of ripened Pu-erh. In conclusion, the proposed strategy is simple, effective, time-saving, and low-cost for the determination of a large number of tea samples.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
- Correspondence: ; Tel.: +86-21-54-920-716
| |
Collapse
|
35
|
Chen G, Peng Y, Xie M, Xu W, Chen C, Zeng X, Liu Z. A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk. Crit Rev Food Sci Nutr 2021; 63:5447-5464. [PMID: 34964426 DOI: 10.1080/10408398.2021.2020718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
36
|
He M, Lyu X. Application of BRAFO-tiered approach for health benefit-risk assessment of dark tea consumption in China. Food Chem Toxicol 2021; 158:112615. [PMID: 34656696 DOI: 10.1016/j.fct.2021.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Dark tea, a unique tea fermented primarily in China, has numerous potential beneficial effects. However, harmful substances present in dark tea have provoked significant concern. To conduct a quantitative benefit-risk assessment of dark tea for Chinese residents and provide guidance on rational consumption, a framework of Benefit-Risk Analysis for Foods (BRAFO) and meta-analysis was applied to construct a disability-adjusted life year (DALY). Based on the BRAFO-tiered approach, a reference scenario (no intake) and an alternative scenario (intake of 3 cups/day) were determined. The overall health impacts of dark tea were simulated by comparing the risks of fluoride and AF with benefits of reduced-risk to coronary heart disease (CHD) and diabetes in different scenarios. Three cups of fermented tea consumed per day decreased risks of CHD and diabetes by 8.16% and 12.77% respectively. After quantitative integration of information, the ultimate net health effect was found to be -1958.827 illustrating that the benefits of drinking three cups of dark tea per day outweigh the risks. However, considering the uncertainties in the process, decision-makers should proceed with caution, consulting additional well-conducted studies and further managing harmful substances in dark tea.
Collapse
Affiliation(s)
- Mengru He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohua Lyu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Yan H, Zhang L, Ye Z, Wu A, Yu D, Wu Y, Zhou Y. Determination and Comprehensive Risk Assessment of Dietary Exposure to Ochratoxin A on Fermented Teas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12021-12029. [PMID: 34606275 DOI: 10.1021/acs.jafc.1c04824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A specialized method for ochratoxin A (OTA) determination on fermented teas was developed and validated using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Methodology results showed that recovery, relative standard deviation, accuracy, and precision were qualified. The limits of detection and quantification were 0.32 and 0.96 μg/kg, respectively. Two of 158 collected samples were screened for OTA contamination. Comprehensive risk assessment based on OTA contaminations of this study and other peer-reviewed publications was performed. The highest hazard quotient (HQ) value (8.86 × 10-2) and the highest 1/MoE value (8.61 × 10-5) in probabilistic assessment were equally below the recommended non-neoplastic and neoplastic thresholds, indicating no health risks. However, the HQ and 1/MoE values of the 95th percentiles in 20-39 and ≥50 years of age were close to thresholds of 1.0 and 1.0 × 10-4, respectively. Under the extreme case, there were only a few scenarios (e.g., 40-49 years of age) of HQ values below the non-neoplastic threshold, but the 1/MoE value of each group exceeded the neoplastic threshold. This is the first extensive risk assessment on OTA from fermented teas worldwide, but the sample size is still limited, and a large number of samples is encouraged in a future study for a more accurate assessment.
Collapse
Affiliation(s)
- Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Ziling Ye
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - You Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| |
Collapse
|
38
|
Zhao Y, Zeng R, Wang Q, Chen P, Liu X, Wang X. Aflatoxin B 1 and sterigmatocystin: method development and occurrence in tea. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 15:31-37. [PMID: 34596493 DOI: 10.1080/19393210.2021.1984316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tea is one of the most popular beverage in the world and may be contaminated by fungi and mycotoxins during processing. To analyse aflatoxin B1 (AFB1) and sterigmatocystin (STC) in three types of tea, a simple, fast, sensitive and reliable method of these two myxotoxins was developed. Recoveries obtained ranged from 95.9% to 118.0% and the RSDs were between 0.3% and 11.2%. The range of LODs was 0.2-0.45 µg/kg for AFB1 and 0.04-0.12 µg/kg for STC. The range of LOQs was 0.67-1.73 µg/kg for AFB1 and 0.13-0.40 µg/kg for STC. The optimised procedure was applied to analyse 126 tea samples randomly collected from different markets in China. AFB1 was not detected, but STC was determined in 17 samples with concentrations ranging from 0.13 to 4.48 µg/kg. The detection rate of STC was 5%, 8.9% and 33.3% in black tea, green tea and Oolong tea, respectively.
Collapse
Affiliation(s)
- Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Rui Zeng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Qiongshan Wang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Peirong Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Xiangxiang Liu
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou), Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
39
|
A sensitive chemiluminescence immunoassay based on immunomagnetic beads for quantitative detection of zearalenone. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Wang Y, Gao W, Li Y, Xiao Y, Song W, Yao T, Cheng M, Wang W, Hou R. Establishment of a HPLC-MS/MS Detection Method for Glyphosate, Glufosinate-Ammonium, and Aminomethyl Phosphoric Acid in Tea and Its Use for Risk Exposure Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7969-7978. [PMID: 34232658 DOI: 10.1021/acs.jafc.1c01757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The tea shrub is grown in long-standing orchards, an environment that is suitable for persistent weed growth, which is increasingly controlled by herbicides. Therefore, there is increasing concern that tea consumers may be exposed to herbicide residues. In this study, the levels of glufosinate-ammonium (GLU), glyphosate [N-(phosphonomethyl) glycine; PMG], and its metabolite aminomethyl phosphoric acid (AMPA) were determined in tea samples by HPLC-MS/MS using several current purification methods and a new method that we developed herein. The matrix effect of our proposed method was between -27.3 and 27.7%, which was lower than that in other methods, indicating that this method effectively reduced the interference of tea matrix in the mass spectrometry process. This method was used to determine the levels of PMG, GLU, and AMPA in 780 samples, including six traditional Chinese teas (green tea, black tea, oolong tea, dark tea, white tea, and yellow tea) and a floral tea, from 14 provinces of China. Probability estimates showed that the 95th percentile risk entropy values of the three pesticide residues were far below the acceptable risk level. The risk assessment results showed that exposure to PMG, GLU, and AMPA caused by drinking tea beverages poses no significant risk to human health.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Wanjun Gao
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Xiao
- Hefei Customs District Technical Center, Anhui Key Lab of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Wei Song
- Hefei Customs District Technical Center, Anhui Key Lab of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Ting Yao
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Manhuan Cheng
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Wenjuan Wang
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
41
|
Kiseleva M, Chalyy Z, Sedova I. Tea: Transfer of Mycotoxins from the Spiked Matrix into an Infusion. Toxins (Basel) 2021; 13:toxins13060404. [PMID: 34200490 PMCID: PMC8228356 DOI: 10.3390/toxins13060404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Recent surveys report the occurrence of Aspergillus and Penicillium metabolites (aflatoxins (AFLs), ochratoxin A (OTA), cyclopiazonic and mycophenolic acids (MPA), sterigmatocystin (STC), citrinin), Fusarium (trichothecenes, zearalenone (ZEA), fumonisins (FBs), enniatins (ENNs)) and Alternaria (alternariol (AOH), its methyl ether (AME), tentoxin (TE), and tenuazonic acid (TNZ)) toxins in dry Camellia sinensis and herbal tea samples. Since tea is consumed in the form of infusion, correct risk assessment needs evaluation of mycotoxins’ transfer rates. We have studied the transfer of AFLs, OTA, STC, deoxynivalenol (DON), ZEA, FBs, T-2, and HT-2 toxins, AOH, AME, TE, ENN A and B, beauvericin (BEA), and MPA from the spiked green tea matrix into an infusion under variation of preparation time and water characteristics (total dissolved solids (TDS) and pH). Analytes were detected by HPLC-MS/MS. The main factors affecting transfer rate proved to be mycotoxins’ polarity, pH of the resulting infusion (for OTA, FB2, and MPA) and matrix-infusion contact period. The concentration of mycotoxins increased by 20–50% within the first ten minutes of infusing, after that kinetic curve changed slowly. The concentration of DON and FB2 increased by about 10%, for ZEA, MPA, and STC it stayed constant, while for T-2, TE, AOH, and AFLs G1 and G2 it went down. Maximum transfer correlated well with analytes polarity. Maximum transfer of ENNs, BEA, STC, ZEA, and AOH into infusion was below 25%; AFLs—25–45%; DON, TE, and T-2 toxins 60–90%, FB1—80–100%. The concentration of OTA, MPA, and FB2 in the infusion depended on its pH. At pH about four, 20%, 40%, and 60% of these toxins transferred into an infusion, at pH about seven, their concentrations doubled. Water TDS did not affect transfer significantly.
Collapse
|
42
|
Cina M, Ponce MDV, Martinez LD, Cerutti S. Development of a novel UHPLC-MS/MS method for the determination of ochratoxin A in tea. Heliyon 2021; 7:e06663. [PMID: 33869867 PMCID: PMC8045007 DOI: 10.1016/j.heliyon.2021.e06663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
The mycotoxin Ochratoxin A (OTA) is responsible for producing many effects on human and animal health. In this work, the evaluation of the presence of OTA in tea beverage samples consisted of extraction and preconcentration through the solidification of a floating organic drop (DLLME-SFO) combined with an additional octadecyl silane clean-up step. The obtained extract was analyzed by UHPLC-MS/MS. Interferences from the matrix were effectively reduced and, consequently, recovery increased from 43.18% ± 4.1%-96.02% ± 2.54%. The validation assays were carried out by external calibration and spiked samples, with satisfactory recoveries. An adequate dynamic calibration range was obtained over a concentration interval between 0.5 and 70 μg mL-1 OTA. Capabilities of detection and quantification were 0.5 and 1.4 μg mL-1. The obtained Green Certificate was compared with other techniques to establish the greenness profile of the procedure. Quantification of ochratoxin A levels in tea samples was performed.
Collapse
Affiliation(s)
- Mariel Cina
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - María del Valle Ponce
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Luis Dante Martinez
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|
43
|
Zhou H, Liu N, Yan Z, Yu D, Wang L, Wang K, Wei X, Wu A. Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chem 2021; 354:129497. [PMID: 33752112 DOI: 10.1016/j.foodchem.2021.129497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
Aflatoxin B1 is the potential chemical contaminant of most concern during the production and storage of fermented tea. In this work, a simple, fast, sensitive, accurate, and inexpensive method has been developed and validated for the simultaneous detection of four aflatoxins in fermented tea based on a modified sample pretreatment method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Aflatoxins were extracted using acetonitrile and purified using mixed fillers (carboxyl multiwalled carbon nanotubes, hydrophilic-lipophilic balance, silica gel). Under optimum LC-MS conditions, the limits of quantification (LOQs) were 0.02-0.5 µg·kg-1. Recoveries from aflatoxins-fortified tea samples (1-12 µg·kg-1) were in the range of 78.94-105.23% with relative standard deviations (RSDs) less than 18.20%. The proposed method was applied successfully to determine aflatoxin levels in fermented tea samples.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, PR China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
44
|
Li X, Ma W, Ma Z, Zhang Q, Li H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit Rev Food Sci Nutr 2021; 62:5444-5461. [PMID: 33583259 DOI: 10.1080/10408398.2021.1885340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ochratoxin A is a highly toxic mycotoxin and has posed great threat to human health. Due to its serious toxicity and wide contamination, great efforts have been made to develop reliable determination methods. In this review, analytical methods are comprehensively summarized in terms of sample preparation strategy and instrumental analysis. Detailed method is described according to the food commodities in the order of cereal, wine, coffee, beer, cocoa, dried fruit and spice. This review mainly focuses on the recent advances, especially reported in the last decade. At last, challenges and perspectives are also discussed to achieve better advancement and promote practical application in this field.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| |
Collapse
|
45
|
Multi-mycotoxin contamination of green tea infusion and dietary exposure assessment in Moroccan population. Food Res Int 2020; 140:109958. [PMID: 33648210 DOI: 10.1016/j.foodres.2020.109958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022]
Abstract
Green tea infusion is one of the most widely drunk beverages worldwide due to its health benefits associated with microelements, essential oils, and polyphenols, etc. Several studies have reported that green tea is subjected to contamination by various toxigenic fungi. Thus, this work aims to investigate the co-occurrence of 15 mycotoxins [four aflatoxins (AFB1, AFB2, AFG1, AFG2), ochratoxin A (OTA), beauvericin (BEA), four enniatins (ENA, ENA1, ENB, ENB1), zearalenone (ZEN), alternariol (AOH), tentoxin (TENT), T-2 and HT-2 toxins] in green tea samples available in Morocco by liquid chromatography tandem mass spectrometry method. Analytical and consumption data were then used to assess the dietary exposure for the population. Out of 111 total green tea samples, 62 (56%) were contaminated by at least one mycotoxin. The most found mycotoxins in samples were AOH (40%), ZEN (35%), AFG1 (2%), AFB2 (2%), ENB (2%) and TENT (1%). The highest level was found for ZEN with 45.8 ng/g. There is no sample that exceeded the recommended levels set by European Pharmacopoeia for certain mycotoxins in plant material. Although multi-mycotoxin co-occurred in samples (33%), the probable estimated daily intake values show that the intake of mycotoxins through the consumption of green tea does not represent a risk for the population.
Collapse
|
46
|
Quantitative analysis and dietary risk assessment of aflatoxins in Chinese post-fermented dark tea. Food Chem Toxicol 2020; 146:111830. [DOI: 10.1016/j.fct.2020.111830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022]
|
47
|
Tian Y, Yu D, Liu N, Tang Y, Yan Z, Wu A. Confrontation assays and mycotoxin treatment reveal antagonistic activities of Trichoderma and the fate of Fusarium mycotoxins in microbial interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115559. [PMID: 33254604 DOI: 10.1016/j.envpol.2020.115559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Mycotoxins are toxic fungal metabolites, contaminating cereal grains in field or during processing and storage periods. These environmental contaminants pose great threats to humans and animals' health due to their toxic effects. Type A trichothecenes, fumonisins and fusaric acid (FA) are commonly detected mycotoxins produced by various Fusarium species. Trichoderma spp. are promising antagonists in agriculture for their activities against plant pathogens, and also regarded as potential candidates for bioremediation of environmental contaminants. Managing toxigenic fungi by antagonistic Trichoderma is regarded as a sustainable and eco-friendly strategy for mycotoxin control. However, the metabolic activities of Trichoderma on natural occurring mycotoxins were less investigated. Our current work comprehensively explored the activities of Trichoderma against type A trichothecenes, fumonisins and FA producing Fusarium species via co-culture competition and indirect volatile assays. Furthermore, we investigated metabolism of type A trichothecenes and FA in Trichoderma isolates. Results indicated that Trichoderma were capable of bio-transforming T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol into their glycosylated forms and one Trichoderma strain could bio transform FA into low toxic fusarinol. These findings proved that Trichoderma isolates could manage toxigenic Fusarium via direct competition and volatile-mediated indirect inhibition. In addition, these antagonists possess defensive systems against mycotoxins for self-protection, which enriches our understanding on the interaction mechanism of Trichoderma spp. on toxigenic fungus.
Collapse
Affiliation(s)
- Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Tang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
48
|
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int J Mol Sci 2020; 21:E8187. [PMID: 33142955 PMCID: PMC7662353 DOI: 10.3390/ijms21218187] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolities formed by a variety of fungi (moulds) species. Hundreds of potentially toxic mycotoxins have been already identified and are considered a serious problem in agriculture, animal husbandry, and public health. A large number of food-related products and beverages are yearly contaminated by mycotoxins, resulting in economic welfare losses. Mycotoxin indoor environment contamination is a global problem especially in less technologically developed countries. There is an ongoing effort in prevention of mould growth in the field and decontamination of contaminated food and feed in order to protect human and animal health. It should be emphasized that the mycotoxins production by fungi (moulds) species is unavoidable and that they are more toxic than pesticides. Human and animals are exposed to mycotoxin via food, inhalation, or contact which can result in many building-related illnesses including kidney and neurological diseases and cancer. In this review, we described in detail the molecular aspects of main representatives of mycotoxins, which are serious problems for global health, such as aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, patulin, and zearalenone.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Adrian Siadkowski
- Department of Security and Crisis Menagement, Faculty of Applied Sciences, University of Dabrowa Gornicza, Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|