1
|
Liu X, Zhang GH, Zhang G, Yang H, Ling X, Xi J, Wu W, Liu W, Zhou Z, Ren J, Cao J. Trajectory model to analyze the effect of multi-metal exposures on sperm parameters and sex hormones of the MARHCS cohort in China. ENVIRONMENTAL RESEARCH 2024; 262:119789. [PMID: 39153564 DOI: 10.1016/j.envres.2024.119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND At present, several cross-sectional studies have found that exposure to metal/metalloid elements is closely associated with male reproduction. However, the long-term effects of metal exposure on male reproduction have not been explored. METHODS In 2013, 796 volunteers were recruited, followed by first and second follow-ups in 2014 and 2015. Urine, semen, and blood samples were collected at each stage to examine urinary metal/metalloid levels, sperm parameters, and sex hormones. Initially, the latent class trajectory model (LCTM) was utilized to analyze the trajectories of urinary metals. Subsequently, the effects of urinary metal trajectories on semen parameters and sex hormones were examined using the linear mixed model. Finally, the impact of urinary metal trajectories on the classification of semen quality (normal or abnormal) was evaluated using the generalized linear mixed model. RESULTS Among the 18 metals/metalloids studied, trajectories were formed by 6 of them (Li, Al, Fe, Zn, As, Rb). Further analysis using the linear mixed model and the generalized linear mixed model revealed that Li was negatively correlated with semen volume, and sperm motility (P < 0.05). The maximum-decreasing trajectory group had a detrimental effect on semen quality (OR = 1.75, 95%CI: 1.22, 2.53) compared to the minimum-stable trajectory group. Al showed negative associations with sperm concentration, total sperm count, and normal morphology (P < 0.05). Rb was positively associated with progressive motility (P < 0.05). The high-stable trajectory group exhibited a protective effect on semen quality (OR = 0.66, 95%CI: 0.49, 0.90) compared to the low-stable trajectory group. Additionally, Fe was observed to have a negative relationship with follicle-stimulating hormone (FSH) (P < 0.05), and Rb exhibited a negative correlation with progesterone (P) (P < 0.05). CONCLUSION Our three-year cohort study provides new evidence that Li and Al have a negative impact on semen quality, whereas Rb is associated with beneficial effects. Additionally, Rb and Fe are endocrine disruptors of sex hormones.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Labor Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Guang-Hui Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyan Xi
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jingchao Ren
- School of Public Health, Chongqing Medical University, Chongqing, 400038, China.
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
3
|
Rodrigues PDA, Ferrari RG, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Toxic metal and metalloid contamination in seafood from an eutrophic Brazilian estuary and associated public health risks. MARINE POLLUTION BULLETIN 2022; 185:114367. [PMID: 36435023 DOI: 10.1016/j.marpolbul.2022.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Guanabara Bay (GB) is a highly contaminated estuarine system and an important fishing area in Southeastern Brazil. In this regard, knowledge concerning the association of certain contaminants in seafood to abiotic factors and human health risk assessments is still understudied. Therefore, this study aimed to quantify nine toxic elements in highly consumed crabs, shrimp, and squid, and associate the results with abiotic factors. A human health risk assessment was also performed. Our findings indicate that crabs are the main bioaccumulators. Transparency and depth were noteworthy for all three taxonomic groups. In general, contaminant concentrations were below the limits established by different international agencies, except for As, which was higher than the Brazilian limit (1 mg kg-1). However, the Hazard Index identified risks to consumer health for the ingestion of seafood. This study emphasizes the importance of jointly evaluating different toxic elements, for a more accurate health risk assessment.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraíba, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), 21040-360 Rio de Janeiro, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
4
|
Yasui GS, Ferreira do Nascimento N, Pereira-Santos M, dos Santos Silva AP, Coelho GCZ, Visintin JA, Porto-Foresti F, Okada Nakaghi LS, Vianna NC, Carvalho GB, Monzani PS, López LS, Senhorini JA. Establishing a model fish for the Neotropical region: The case of the yellowtail tetra Astyanax altiparanae in advanced biotechnology. Front Genet 2022; 13:903990. [PMID: 36531235 PMCID: PMC9749136 DOI: 10.3389/fgene.2022.903990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2023] Open
Abstract
The use of model organisms is important for basic and applied sciences. Several laboratory species of fishes are used to develop advanced technologies, such as the zebrafish (Danio rerio), the medaka (Oryzias latipes), and loach species (Misgurnus spp.). However, the application of these exotic species in the Neotropical region is limited due to differences in environmental conditions and phylogenetic distances. This situation emphasizes the establishment of a model organism specifically for the Neotropical region with the development of techniques that may be applicable to other Neotropical fish species. In this work, the previous research efforts are described in order to establish the yellowtail tetra Astyanax altiparanae as a model laboratory species for both laboratory and aquaculture purposes. Over the last decade, starting with artificial fertilization, the yellowtail tetra has become a laboratory organism for advanced biotechnology, such as germ cell transplantation, chromosome set manipulation, and other technologies, with applications in aquaculture and conservation of genetic resources. Nowadays, the yellowtail tetra is considered the most advanced fish with respect to fish biotechnology within the Neotropical region. The techniques developed for this species are being used in other related species, especially within the characins class.
Collapse
Affiliation(s)
- George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Peixetec Biotecnologia Em Organismos Aquáticos LTDA, São Paulo, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | | | - Matheus Pereira-Santos
- Federal Rural University of Rio de Janeiro, Animal Science Graduate Program, Seropédica, Brazil
| | - Amanda Pereira dos Santos Silva
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - José Antônio Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Fábio Porto-Foresti
- Department of Biological Sciences, São Paulo State University, São Paulo, Brazil
| | | | | | - Gabriela Braga Carvalho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Peixetec Biotecnologia Em Organismos Aquáticos LTDA, São Paulo, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| |
Collapse
|
5
|
de Almeida Rodrigues P, Ferrari RG, da Anunciação de Pinho JV, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Baseline titanium levels of three highly consumed invertebrates from an eutrophic estuary in southeastern Brazil. MARINE POLLUTION BULLETIN 2022; 183:114038. [PMID: 36029587 DOI: 10.1016/j.marpolbul.2022.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Titanium (Ti) is considered a contaminant of emerging interest, as it displays toxic potential and has been increasingly employed in everyday products, pharmaceuticals, and food additives, mainly in nanoparticle form. However, several knowledge gaps are still noted, especially concerning its dynamics in the water. In this context, this study aimed to quantify total Ti concentrations in highly consumed swimming crabs, squid, and shrimp from an important estuary located in southeastern Brazil. Ti concentrations were higher than those reported in most studies carried out worldwide. Animal length and weight, as well as, depth, transparency, dissolved oxygen, and salinity, significantly influence Ti concentrations in the animals. Human health risks were also noted after calculating a simulated exposure to titanium dioxide, especially considering the uncertainties regarding the effects of this element and the absence of regulatory limits.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Areia, PB 58051-900, Brazil
| | - Júlia Vianna da Anunciação de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-360, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
6
|
de Almeida Rodrigues P, Ferrari RG, Kato LS, Hauser-Davis RA, Conte-Junior CA. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol Trace Elem Res 2022; 200:881-903. [PMID: 33788164 DOI: 10.1007/s12011-021-02685-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraiba, Brazil.
| | - Lilian Seiko Kato
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
7
|
Wang H, Huang W, Zhang Y, Wang C, Jiang H. Unique metalloid uptake on microplastics: The interaction between boron and microplastics in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149668. [PMID: 34426325 DOI: 10.1016/j.scitotenv.2021.149668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Boron pollution in the aquatic environment has a hazardous effect on human health and the ecosystem as a metalloid pollutant, and few researchers have focused on the potential interaction between boron and microplastics. We investigated the adsorption of boron on four types of microplastics (polyvinyl chloride (PVC), aged PVC, polystyrene (PS), and aged PS). The adsorption behavior was explored by kinetics, isotherm models, and several aqueous factors, including pH, humic acid, ionic strength (Na+), metal ion types (Mg2+, Ca2+, Cu2+, and Al3+), and the seawater environment. The adsorption capacities on microplastics were followed: aged PVC (0.91 mg/g) > aged PS (0.197 mg/g) > virgin PVC (0.1 mg/g) > virgin PS (0.005 mg/g). The adsorption kinetics and isotherm models suggested monolayer adsorption and chemisorption. Humic acid and high pH significantly inhibited the adsorption due to the complexation and hydrolysis of boric acid (B(OH)3), respectively. The presence of metal ions may enhance or hinder adsorption, depending on the boron species, ion concentration, ion type, and microplastics categories. The unique interaction mainly depended on surface complexations of B(OH)3 with oxygen-containing groups on microplastics surface. Because aged microplastics have more oxygen-containing groups, they can combine more B(OH)3, and PVC can adsorb more boron due to the CCl bond and surface diffusion. In the aquatic environment, however, metal ions may occupy these binding sites, and the electrostatic force between borate ([B(OH)4]-) and microplastics will take precedence. In the simulated intestines of warm-blooded animals, we achieved the greatest boron desorption ratio on microplastics. This work explored the adsorption characteristics of boron by microplastics and revealed potential environmental risks of metalloid enrichment.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yingshuang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongru Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Butzge AJ, Yoshinaga TT, Acosta ODM, Fernandino JI, Sanches EA, Tabata YA, de Oliveira C, Takahashi NS, Hattori RS. Early warming stress on rainbow trout juveniles impairs male reproduction but contrastingly elicits intergenerational thermotolerance. Sci Rep 2021; 11:17053. [PMID: 34426625 PMCID: PMC8382822 DOI: 10.1038/s41598-021-96514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
The exposure of adult fish to warm or high temperatures is known to impair reproduction, yet the long-term reproductive impacts for treatments at early life are not well clarified. This study aimed to evaluate the effects of warm temperature (WT) during juvenile stage on gonad maturation, gamete quality, and offspring thermotolerance in rainbow trout. While the comparison of basic reproductive parameters in WT females did not reveal any kind of impairment, many WT males showed an atrophied, undeveloped gonad, or a smaller testis with lower milt volume; sperm quality parameters in WT males and deformity rates in the respective progeny were also highly affected. However, despite of such negative effects, many of the remaining progeny presented better rates of survival and growth when exposed to the same conditions as those of parental fish (WT), suggesting that thermal stress in parr stage males elicited intergenerational thermotolerance after a single generation. The present results support that prolonged warming stress during early life stages can adversely affect key reproductive aspects, but contrastingly increase offspring performance at upper thermal ranges. These findings have implications on the capacity of fish to adapt and to cope with global warming.
Collapse
Affiliation(s)
- Arno Juliano Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Omar David Moreno Acosta
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Eduardo Antônio Sanches
- Fishery Engineering Course and Aquaculture Centre (CAUNESP), São Paulo State University, Registro, 11900-000, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil
| | - Claudio de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Neuza Sumico Takahashi
- Centro de Pesquisa de Aquicultura, Sao Paulo Fisheries Institute (APTA/SAA), São Paulo, 05001-900, Brazil
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil.
| |
Collapse
|
9
|
Mohamad S, Liew HJ, Zainuddin RA, Rahmah S, Waiho K, Ghaffar MA, Nhan HT, Loh JY, Lim LS, Chang Y, Liang L, De Boeck G. High environmental temperature and low pH stress alter the gill phenotypic plasticity of Hoven's carp Leptobarbus hoevenii. JOURNAL OF FISH BIOLOGY 2021; 99:206-218. [PMID: 33629400 DOI: 10.1111/jfb.14712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.
Collapse
Affiliation(s)
- Suhaini Mohamad
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Hon Jung Liew
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Rabiatul Adawiyyah Zainuddin
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sharifah Rahmah
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Khor Waiho
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Mazlan Abd Ghaffar
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Faculty of Science and Marine Environments, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Hua Thai Nhan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yumei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Liqun Liang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Gudrun De Boeck
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Pinheiro JPS, Lima J, Assis CBD, Branco GS, Gomes AD, Moreira RG. Paternal exposure to aluminum, acidity, and temperature affect fatty acid seminal profile, embryonic and larval development of Astyanax altiparanae. CHEMOSPHERE 2021; 266:128935. [PMID: 33220983 DOI: 10.1016/j.chemosphere.2020.128935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
We investigated the effects of water acidity, temperature, and aluminum (Al) on the fatty acid (FA) seminal profile, reproductive parameters (fertilization and hatching) and embryonic development of Astyanax altiparanae. We treated males with different experimental treatments, corresponding to the combination of water temperature (20 °C; 25 °C), pH (neutral - 7.0; acidic - 5.5), and the absence or presence of Al (0.5 mg L-1). After 96 h, we analyzed the FA profile of semen and performed artificial fertilization in activating medium with neutral pH or activating medium in the same experimental conditions of the males (neutral pH, acidic pH, and Al) to evaluate fertilization and hatching rates and to monitor embryonic development. Polyunsaturated FA percentage decreased in semen of fish from the neutral group, while monounsaturated FA increased in all groups maintained at 20 °C compared to 25 °C. Aluminum exposure decreased the percentage of C20:4n6 and increased the percentage of C22:5n3 at 20 °C. Males exposed to acidic pH and Al showed lower fertilization and hatching rates, as well as increased mortality of embryos and larvae. Moreover, Al favoured a higher percentage of abnormal larvae. Fertilization in Al activating medium harmed the embryos and larvae since fertilization and hatching rates decreased. Finally, temperature influenced fertilization time, hatching rate, and the morphology of embryos and larvae. Males exposed to Al had lower fertilizing capacity, which negatively affected the embryonic development of the species. Furthermore, Al activating medium reduced the number of fertilized oocytes, hatched embryos, and normal larvae. All events were temperature dependent.
Collapse
Affiliation(s)
- João Paulo Silva Pinheiro
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Jennifer Lima
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Cecília Bertacini de Assis
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Giovana Souza Branco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Aline Dal'Olio Gomes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Muñoz-Peñuela M, Lo Nostro FL, Dal'Olio Gomes A, Tolussi CE, Branco GS, Pinheiro JPS, Godoi FGAD, Moreira RG. Diclofenac and caffeine inhibit hepatic antioxidant enzymes in the freshwater fish Astyanax altiparanae (Teleostei: Characiformes). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108910. [PMID: 33045363 DOI: 10.1016/j.cbpc.2020.108910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
Although concentrations of pharmaceutical compounds in aquatic ecosystems are low, they can cause toxic effects on organisms. The aim of this study was to evaluate the effects of diclofenac (DCF), a non-steroidal anti-inflammatory drug, and caffeine (CAF), a central nervous system stimulant, both alone or combined, in Astyanax altiparanae males under acute exposure (96 h), measuring neurotoxicity biomarkers, antioxidant response and damage at biochemical and cellular levels. DCF concentration in water, separated and combined, was 3.08 mg L-1 and that of CAF was 9.59 mg L-1. To assess neurotoxicity, brain and muscle acetylcholinesterase (AChE) activities were measured. To evaluate oxidative stress, the enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST), as well as lipoperoxidation (LPO), were analyzed in liver and gills. Activity of hepatic cyclooxygenase (COX) was also evaluated. Genotoxicity was assessed in blood using comet assay and micronucleus test, as well as nuclear abnormalities. DCF and CAF, alone or combined, had neither effect on AChE activity, nor in the activity of SOD, CAT, GPx and GST in gills. In liver, DCF inhibited SOD and GPx activity, CAF inhibited CAT activity, the mixture inhibited SOD and GST activity; although only fish exposed to CAF showed increased hepatic LPO. Under these experimental conditions, no effect on COX activity was observed, nor cytotoxic and genotoxic damage. The most pronounced effects were caused by the drugs separately, since both compounds altered the enzymes, but only CAF triggered LPO, showing more harmful effects.
Collapse
Affiliation(s)
- Marcela Muñoz-Peñuela
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil.
| | - Fabiana Laura Lo Nostro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática y IBBEA, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Aline Dal'Olio Gomes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | | | - Giovana Souza Branco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - João Paulo Silva Pinheiro
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - Filipe Guilherme Andrade de Godoi
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|