1
|
Yuan S, Huang J, Wu T, Duan X, Zhao X, Ren X, Zhou T. New Ti/CNT/CNT-Ce-PbO 2 anode synergy peroxymonosulfate activation for efficiently electrocatalytic degradation of p-aminobenzoic acid. ENVIRONMENTAL RESEARCH 2025; 264:120383. [PMID: 39551372 DOI: 10.1016/j.envres.2024.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Increased levels of p-aminobenzoic acid in aquatic environments, primarily utilized as UV filter in sunscreens, poses a serious threat to human and ecosystem health, while there is a dearth of exhaustive researches pertaining to the efficient and cost-effective elimination of p-aminobenzoic acid. Herein, a Ti/SnO2-Sb/CNT-α-PbO2/CNT-Ce-β-PbO2, referred to Ti/CNT/CNT-Ce-PbO2 electrode was constructed by incorporating CNTs into the middle layer of PbO2 electrode, and simultaneously doping CNTs and Ce in the active layer. A series of tests signify that the target electrode is successfully fabricated, which exhibits higher particle density and smaller particle size, as well as exceptional degradation performance for p-aminobenzoic acid with a degradation rate of 99.7% within 30 min coupling with peroxymonosulfate activation. The optimal degradation performance was observed at a PMS dosage of 0.07 g, Na2SO4 concentration of 0.05 mol L-1, current density of 120 mA cm-2, and initial pH value of 6.94. Capture experiments, electron spin resonance test, liquid chromatography-mass spectrometry analysis, toxicity assessment and theoretical calculation were performed to clarify the main activate radicals, degradation pathways and intermediate toxicity. This study provides a new anode material, and conducted the first exploration of electrocatalysis integrating peroxymonosulfate activation for degradation p-aminobenzoic acid.
Collapse
Affiliation(s)
- Siyi Yuan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Jiacheng Huang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Tao Wu
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Tianyu Zhou
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| |
Collapse
|
2
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
3
|
Wang D, Gu Y, Cheng L, Sun S, Yang W, He S, Jiang S, Dai H, Wu Q, Xiao H, Han J. High-mass loaded redox-active lignin functionalized carbonized wood collector to construct sustainable and high-performance supercapacitors. Int J Biol Macromol 2024; 281:136242. [PMID: 39389492 DOI: 10.1016/j.ijbiomac.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Traditional electrode materials for supercapacitors often face issues like high toxicity, cost, and non-renewability. To address these drawbacks, biomass-based alternatives are being explored, aligning with green development trends. Herein, carbonized wood (CW) with rich pore structure and redox-active lignin are combined to fabricate an all-wood-based sustainable supercapacitor electrode material. Due to its inherent porous structure, CW provides a larger surface area for accommodating active materials ion, enabling the electrode to achieve a higher lignin loading capacity of 2.82-11.68 mg/cm2. Furthermore, the utilization of lignin as a substitute for conventional transition metal-based pseudocapacitor material functionalized CW endows the electrode with exemplary electrochemical performance while guaranteeing the comprehensive sustainability of the electrode. This synergy confers the electrode with exceptional electrical performance, yielding an areal capacitance of 960.7 mF/cm2 at a current density of 1 mA/cm2. The symmetric supercapacitors (SSC) manufactured by this composite electrode can achieve a notable areal energy density of 0.14 mWh/cm2 and a power density of 15.98 mW/cm2, while maintaining an outstanding capacitance retention rate of 81 % after 50,000 cycles at 20 mA/cm2. The manufacture of CW-lignin electrode underscores the potential of utilizing renewable biomass resources as alternatives for developing high-performance energy storage applications, thereby reducing negative environmental impacts.
Collapse
Affiliation(s)
- Danning Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuanjie Gu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Long Cheng
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shijing Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weisheng Yang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuijian He
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shaohua Jiang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hongqi Dai
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Huining Xiao
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingquan Han
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
4
|
G B, Palanisamy S, T S, A K, Rajakarthihan S, Banat F. Advancing nanoarchitectures of 2D WO 3/MXene photoanode for enhanced photoelectrocatalytic oxidation of phenol and arsenic in synthetic wastewater. ENVIRONMENTAL RESEARCH 2024; 260:119676. [PMID: 39053761 DOI: 10.1016/j.envres.2024.119676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
The photoelectrocatalytic advanced oxidation process (PEAOP) necessitates high-performing and stable photoanodes for the effective oxidation of complex pollutants in industrial wastewater. This study presents the construction of 2D WO3/MXene heteronanostructures for the development of efficient and stable photoanode. The WO3/MXene heterostructure features well-ordered WO3 photoactive sites anchored on micron-sized MXene sheets, providing an increased visible light active catalytic surface area and enhanced electrocatalytic activities for pollutant oxidation. Phenol, a highly toxic compound, was completely oxidized at an applied potential of 0.8 V vs. RHE under visible light irradiation. Systematic optimization of operational conditions for the photoelectrocatalytic oxidation of phenol was conducted. The phenol oxidation mechanism was elucidated via high-performance liquid chromatography (HPLC) analysis and the identification of intermediate compounds. Additionally, a mixed model of phenol and arsenic (III) in polluted water demonstrated the capability of WO3/MXene photoanode for the simultaneous oxidation of both organic and inorganic pollutants, achieving complete conversion of phenol and As(III) to non-toxic As(V). The WO3/MXene photoanode facilitated water oxidation, generating a substantial amount of O2•- and •OH oxidative species, which are crucial for the concurrent oxidation of phenol and arsenic. Recyclability tests demonstrated a 99% retention of performance, confirming the WO3/MXene photoanode's suitability for long-term operation in PEAOPs. The findings suggest that integrating WO3/MXene photoanodes into water purification systems can enhance economic feasibility, reduce energy consumption, and improve efficiency. This PEAOP offers a viable solution to the critical issue of heavy metal and organic chemical pollution in various water bodies, given its scalability and ability to preserve ecosystems while conserving clean water resources.
Collapse
Affiliation(s)
- Bharath G
- Department of Physics & Nanotechnology, SRM University of Science and Technology, Tankular, Chennai, 603203, Tamilnadu, India.
| | - Selvakumar Palanisamy
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sivaranjani T
- Department of Physics, Thiagarajar College, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, 625009, India
| | - Karthigeyan A
- Department of Physics & Nanotechnology, SRM University of Science and Technology, Tankular, Chennai, 603203, Tamilnadu, India
| | - S Rajakarthihan
- Department of Physics, Thiagarajar College, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, 625009, India
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Wang Z, Zhang L, Su R, Yang L, Xiao F, Chen L, He P, Yang D, Zeng Y, Zhou Y, Wan Y, Tang B. PANI/GO and Sm co-modified Ti/PbO 2 dimensionally stable anode for highly efficient amoxicillin degradation: Performance assessment, impact parameters and degradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121435. [PMID: 38889646 DOI: 10.1016/j.jenvman.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Yali Zeng
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China
| | - Yun Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
6
|
Huang J, Wang W, Wu T, Ren X, Zhao X. Photo-electrochemical activation of persulfate for the simultaneous degradation of microplastics and personal care products. RSC Adv 2024; 14:16150-16169. [PMID: 38769957 PMCID: PMC11103671 DOI: 10.1039/d4ra01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
The recent widespread use of microplastics (MPs), especially in pharmaceuticals and personal care products (PPCPs), has caused significant water pollution. This study presents a UV/electrically co-facilitated activated persulfate (PS) system to co-degrade a typical microplastic polyvinyl chloride (PVC) and an organic sunscreen p-aminobenzoic acid (PABA). We investigated the effect of various reaction conditions on the degradation. PVC and PABA degradation was 37% and 99.22%, respectively. Furthermore, we observed alterations in the surface topography and chemical characteristics of PVC throughout degradation. The possible degradation pathways of PVC and PABA were proposed by analyzing the intermediate products and the free radicals generated. This study reveals the co-promoting effect of multiple mechanisms in the activation by ultraviolet light and electricity.
Collapse
Affiliation(s)
- Jiacheng Huang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province Siping 136000 China
| | - Wanyue Wang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province Siping 136000 China
| | - Tao Wu
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province Siping 136000 China
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province Siping 136000 China
- College of Engineering, Jilin Normal University Haifeng Street, Tiexi Dist Siping 136000 China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province Siping 136000 China
- College of Engineering, Jilin Normal University Haifeng Street, Tiexi Dist Siping 136000 China
| |
Collapse
|
7
|
Wang J, Duan X, Ren Y. Efficient electrochemical degradation of ceftazidime by Ti 3+ self-doping TiO 2 nanotube-based Sb-SnO 2 nanoflowers as an intermediate layer on a modified PbO 2 electrode. CHEMOSPHERE 2024; 356:141853. [PMID: 38582161 DOI: 10.1016/j.chemosphere.2024.141853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Ceftazidime (CAZ) is an emerging organic pollutant with a long-lasting presence in the environment. Although some PbO2 materials exhibit degradation capabilities, inefficient electron transport in the substrate layer and the problem of electrode stability still limit their use. Here, an interfacial design in which TiO2 nanotube arrays generate Ti3+ self-doping oxide substrate layers and highly active 3D Sb-SnO2 nanoflowers-like interlayers was used to prepare PbO2 anodes for efficient degradation of CAZ. Interestingly, after implementing Ti3+ self-doping in the PbO2 anode base layer and introducing 3D nanoflowers-like structures, the capacity for •OH generation increased significantly. The modified electrode exhibited 5-fold greater •OH generation capacity compared to the unmodified electrode, and a 2.7-fold longer accelerated electrode lifetime. The results indicate that interfacial engineering of the base and intermediate layers of the electrodes can improve the electron transfer efficiency, promote the formation of •OH, and extend the anode lifetime of the activated CAZ system.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China
| | - Xiaoxiao Duan
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China.
| | - Yongsheng Ren
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|
8
|
Zhu Y, Wen K, Li B, Hao Y, Zhou J. Electrocatalytic Degradation of Phenolic Wastewater Using a Zero-Gap Flow-Through Reactor Coupled with a 3D Ti/RuO 2-TiO 2@Pt Electrode. Molecules 2024; 29:1182. [PMID: 38474694 DOI: 10.3390/molecules29051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, the performance of a zero-gap flow-through reactor with three-dimensional (3D) porous Ti/RuO2-TiO2@Pt anodes was systematically investigated for the electrocatalytic oxidation of phenolic wastewater, considering phenol and 4-nitrophenol (4-NP) as the target pollutants. The optimum parameters for the electrochemical oxidation of phenol and 4-NP were examined. For phenol degradation, at an initial concentration of 50 mg/L, initial pH of 7, NaCl concentration of 10.0 g/L, current density of 10 mA/cm2, and retention time of 30 min, the degradation efficiency achieved was 95.05%, with an energy consumption of 15.39 kWh/kg; meanwhile, for 4-NP, the degradation efficiency was 98.42% and energy consumption was 19.21 kWh/kg (at an initial concentration of 40 mg/L, initial pH of 3, NaCl concentration of 10.0 g/L, current density of 10 mA/cm2, and retention time of 30 min). The electrocatalytic oxidation of phenol and 4-NP conformed to the pseudo-first-order kinetics model, and the k values were 0.2562 min-1 and 0.1736 min-1, respectively, which are 1.7 and 3.6-times higher than those of a conventional electrolyzer. Liquid chromatography-mass spectrometry (LC-MS) was used to verify the intermediates formed during the degradation of phenol or 4-NP and a possible degradation pathway was provided. The extremely narrow electrode distance and the flow-through configuration of the zero-gap flow-through reactor were thought to be essential for its lower energy consumption and higher mass transfer efficiency. The zero-gap flow-through reactor with a novel 3D porous Ti/RuO2-TiO2@Pt electrode is a superior alternative for the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kaiyue Wen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingqing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yirong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
9
|
Wang Z, Su R, Zhao M, Zhang L, Yang L, Xiao F, Tang W, Chen L, He P, Yang D. B 4C/Ce co-modified Ti/PbO 2 dimensionally stable anode: Facile one-step electrodeposition preparation and highly efficient electrocatalytic degradation of tetracycline. CHEMOSPHERE 2023; 343:140142. [PMID: 37716565 DOI: 10.1016/j.chemosphere.2023.140142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The application of PbO2 for electrochemical oxidation technology is limited by its low electrocatalytic activity and short service life. Herein, based on the facile one-step electrodeposition, we prepared a boron carbide (B4C) and cerium (Ce) co-modified Ti/PbO2 (Ti/PbO2-B4C-Ce) electrode to overcome these shortcomings. Compared with Ti/PbO2 electrode, the denser surface is displayed by Ti/PbO2-B4C-Ce electrode. Meanwhile, electrochemical characterization indicates that the introduction of B4C and Ce significantly enhance the electrochemical performance of PbO2 electrode. In degradation experiments, under optimized conditions (current density 20 mA cm-2, pH 9, 0.15 M Na2SO4 and 30 °C), the fully degradation of tetracycline (TC) can be completed within 30 min. Furthermore, the trapping experiment demonstrates that ∙OH and SO4·- radicals have a synergistic effect in the degradation process of TC. Based on results of liquid chromatography-mass spectrometer, the generated ·OH preferentially attacks amides, phenols and conjugated double bond groups in TC. Importantly, Ti/PbO2-B4C-Ce electrode maintains a constant degradation efficiency even after 10 recycling tests, and its service life is 2.4 times of traditional Ti/PbO2 electrode. Hence, Ti/PbO2-B4C-Ce electrode is a promising electrode for degradation of organic wastewater containing amides, phenols, and conjugated double bond groups.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Maojie Zhao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Weishan Tang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| |
Collapse
|
10
|
Zhang C, Gao C, Yang S, He X, Chen Y, Qin X, Tang Y. Electrochemical oxidation of chloramphenicol by modified Sm-PEG-PbO 2 anodes: Performance and mechanism. CHEMOSPHERE 2023; 327:138518. [PMID: 37001761 DOI: 10.1016/j.chemosphere.2023.138518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Chloramphenicol (CAP) is used extensively in industry and daily life, but its abuse has seriously affected the environment and public health. In this paper, a new composite PbO2 electrode was obtained through the modification Sm and polyethylene glycol (PEG), and an electrocatalytic oxidation technology of CAP degradation was investigated. The results showed that the catalytic degradation ability and industrial service life of the PEG-Sm-PbO2 composite electrode were significantly enhanced. Co-doping inhibited the growth of grains, resulting in the formation of refined pyramidal grains on the surface of the electrode, which increased the number of active spots. The industrial service life of the modified electrode was improved by 87.0%. In addition, the degradation effect under different conditions and mechanism of CAP were also explored. The optimal conditions for CAP degradation were explored, at which time the CAP degradation rate reached 99.1%. The degradation process was in accordance with the primary reaction kinetics, and the apparent rate constant of CAP at the PEG-Sm-PbO2 electrode was raised by 57.1% in comparison with the unmodified electrode, indicating that the modification facilitated the degradation of CAP in the electrode. Finally, two possible CAP degradation pathways were deduced. The results will provide technical support and a theoretical basis for the degradation of persistent organic pollutants.
Collapse
Affiliation(s)
- Chaoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China
| | - Conghao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Shumin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China
| | - Xin He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China
| | - Yue Chen
- Hebei Haikuo Environmental Protection Technology Co., LTD, Baoding, 071000, China
| | - Xiao Qin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Water Supply, Water Saving and Water Environment Treatment for Towns in the Yangtze River Delta, Ministry of Water Resources, Shanghai, 200092, China.
| |
Collapse
|
11
|
Ni Y, Yue W, Liu F, Bi W, Sun Z, Wu Y. Efficient electrochemical oxidation of cephalosporin antibiotics by a highly active cerium doped PbO2 anode: Parameters optimization, kinetics and degradation pathways. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
13
|
Sun Z, Ni Y, Wu Y, Yue W, Zhang G, Bai J. Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO 2-NTA/La-PbO 2 electrode: electrode characterization and operating parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6262-6274. [PMID: 35994150 DOI: 10.1007/s11356-022-22610-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The anode material plays a crucial role in the process of electrochemical oxidation. Herein, a TiO2 nanotube arrays (TiO2-NTA) intermediate layer and La-PbO2 catalytic layer were synthesized on a Ti surface by the electrochemical anodic oxidation and electrochemical deposition technology, respectively. The prepared Ti/TiO2-NTA/La-PbO2 electrode was used as an electrocatalytic oxidation anode for pollutant degradation. Scanning electron microscopy (SEM) analysis showed that the TiO2-NTA layer possessed a highly ordered and well-aligned nanotube array morphology, and the La-PbO2 layer with angular cone cluster was uniform and tightly bonded. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the intermediate layer primarily consisted of the anatase crystal structure of TiO2 and the catalyst layer was made of La-PbO2. Electrochemical analysis revealed that Ti/TiO2-NTA/La-PbO2 electrode exhibited higher oxidation peak current, electrochemical active surface area, and oxygen evolution potential (OEP, 1.64 V). Using methyl orange and 4-nitrophenol as model pollutants, electrocatalytic properties of the prepared Ti/TiO2-NTA/La-PbO2 electrode were systematically investigated under different conditions, and the electrochemical degradation fitted well with the pseudo-first-order kinetics model. Efficient anodic oxidation of model pollutants was mainly attributed to the indirect oxidation mediated by hydroxyl radicals (•OH). The total organic carbon (TOC) removal efficiency of methyl orange and 4-nitrophenol was 70.2 and 72.8%, and low energy consumption (2.50 and 1.89 kWh g-1) was achieved after 240 min of electrolysis under the conditions of initial concentration of model pollutant, electrode spacing, and electrolyte concentration were 50 mg L-1, 2 cm, and 0.1 mol L-1, respectively. This work provided a new strategy to develop the high-efficiency electrode for refractory pollutants degradation.
Collapse
Affiliation(s)
- Zepeng Sun
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Ni
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yuandong Wu
- Shenzhen Institute, Peking University, Shenzhen, 518057, China
| | - Wenqing Yue
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ge Zhang
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianmei Bai
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
14
|
Xia Y, Dai J, Yan Y, Ma X, Feng H, Ding Y. Energy-efficient electrochemical treatment of paracetamol using a PbO 2 anode based on pulse electrodeposition strategy: Kinetics, energy consumption and mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114673. [PMID: 36332673 DOI: 10.1016/j.envres.2022.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this research is to study the pulse electrochemical oxidation of paracetamol (PCT) using a novel PbO2 anode based on pulse electrodeposition strategy (PbO2-PE). The pulse electrodeposition strategy used to prepare a PbO2 anode resulted in rougher surface, higher directional specificity of β(101) and more redox couples of Pb4+/Pb2+. Additionally, the oxygen evolution potential (OEP) and charge transfer resistance were also improved. When compared to direct current electrochemical oxidation process, pulse electrolysis in had a slightly higher PCT removal efficiency and active species (·OH and active chlorine) production, while 72.04% of energy consumption was saved. The effects of operating parameters on PCT degradation efficiency and specific energy consumption were studied. The findings suggested that the pulse electrochemical oxidation of PCT followed a pseudo-first-order kinetic model, with PCT removal reaching 98.63% after 60 min of electrolysis under optimal conditions. Possible mechanisms describing reaction pathways for PCT were also proposed. Finally, combinating with the economic feasibility and safety evaluation, we could conclude that pulse electrolysis with a PbO2-PE electrode was a promising option for improving the practicability of electrochemical treatment for refractory organic wastewater.
Collapse
Affiliation(s)
- Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jingsong Dai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Duan P, Qian C, Wang X, Jia X, Jiao L, Chen Y. Fabrication and characterization of Ti/polyaniline-Co/PbO 2-Co for efficient electrochemical degradation of cephalexin in secondary effluents. ENVIRONMENTAL RESEARCH 2022; 214:113842. [PMID: 35843278 DOI: 10.1016/j.envres.2022.113842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/06/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The traditional interlayer of PbO2 electrode possessed many problems, such as short service lifetime and limited specific surface area. Herein, a novel and efficient Ti/polyaniline-Co/PbO2-Co electrode was conctructed employing cyclic voltammetry to introduce a Co-doped polyaniline interlayer and anodic electrodeposition to synthetize a β-PbO2-Co active layer. Compared with pristine PbO2 electrode, Ti/polyaniline-Co/PbO2-Co exhibited more compact crystalline shape and higher active sites amounts. Pratically, the electrochemical degradation of 5 mg L-1 cephalexin in real secondary effluents was effectively achieved by the novel anode with 87.42% cephalexin removal and 71.8% COD mineralization after 120 min of 15 mA cm-2 electrolysis. The hydroxyl radical production and electrochemical stability were increased by 3.16 and 3.27 times respectively. The cephalexin degradation pathway was investigated by combining a density functional theory-based theoretical approach and LC-QTrap-MS/MS. The most likely cleavage point of the β-lactam ring was the O=C-N bond, whose attack would produce small molecular compounds containing the thiazole and 4, 6-thiazine rings. Further oxidation produced inorganic ions; quantitative investigations indicated the amino groups to undergo decomposition to form aqueous NH4+, which was further oxidized to NO3-. The accumulation of NO3- and SO42-, combined with a decrease in toxicity toward Escherichia coli, demonstrated the efficient mineralization of cephalexin on the Ti/polyaniline-Co/PbO2-Co electrode.
Collapse
Affiliation(s)
- Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chang Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaobo Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yu Chen
- Baoding Institute of Environmental Science, Baoding, 071000, China
| |
Collapse
|
16
|
Electrochemical oxidation of lamivudine using graphene oxide and Yb co-modified PbO2 electrodes: characterization, influencing factors and degradation mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Balu S, Chuaicham C, Balakumar V, Rajendran S, Sasaki K, Sekar K, Maruthapillai A. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. CHEMOSPHERE 2022; 298:134311. [PMID: 35307392 DOI: 10.1016/j.chemosphere.2022.134311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical organics are a vital milestone in contemporary human research since they treat various diseases and improve the quality of human life. However, these organic compounds are considered one of the major environmental hazards after the conception, along with the massive rise in antimicrobial resistance (AMR) in an ecosystem. There are various biological and catalytic technologies existed to eliminate these organics in aqueous system with their limitation. Advanced Oxidation processes (AOPs) are used to decompose these pharmaceutical organic compounds in the wastewater by generating reactive species with high oxidation potential. This review focused various photocatalysts, and photocatalytic oxidation processes, especially core-shell materials for photo (electro)catalytic application in pharmaceutical wastewater decomposition. Moreover, we discussed in details about the design and recent developments of core shell catalysts and comparison for photocatalytic, electrocatalytic and photo electrocatalytic applications in pharmaceutical wastewater treatment. In addition, the mixture of inorganic and organic core-shell materials, and metal-organic framework-based core-shell catalysts discussed in detail for antibiotic degradation.
Collapse
Affiliation(s)
- Surendar Balu
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vellaichamy Balakumar
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Arthanareeswari Maruthapillai
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
18
|
Xiao Z, Cui T, Wang Z, Dang Y, Zheng M, Lin Y, Song Z, Wang Y, Liu C, Xu B, Ikhlaq A, Kumirska J, Siedlecka EM, Qi F. Energy-efficient removal of carbamazepine in solution by electrocoagulation-electrofenton using a novel P-rGO cathode. J Environ Sci (China) 2022; 115:88-102. [PMID: 34969480 DOI: 10.1016/j.jes.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, carbamazepine (CBZ) decay in solution has been studied by coupling electrocoagulation with electro-Fenton (EC-EF) with a novel P-rGO/carbon felt (CF) cathode, aiming to accelerate the in-situ generation of •OH, instead of adding Fe2+ and H2O2. Firstly, the fabricated P-rGO and its derived cathode were characterized by XRD, SEM, AFM, XPS and electrochemical test (EIS, CV and LSV). Secondly, it was confirmed that the performance in removal efficiency and electric energy consumption (EEC) by EC-EF (kobs=0.124 min-1, EEC=43.98 kWh/kg CBZ) was better than EF (kobs=0.069 min-1, EEC=61.04 kWh/kg CBZ). Then, P-rGO/CF (kobs=0.248 min-1, EEC=29.47 kWh/kg CBZ, CE=61.04%) showed the best performance in EC-EF, among all studied heteroatom-doped graphene/CF. This superior performance may be associated with its largest layer spacing and richest C=C, which can promote the electron transfer rate and conductivity of the cathode. Thus, more H2O2 and •OH could be produced to degrade CBZ, and almost 100% CBZ was removed with kobs being 0.337 min-1 and the EEC was only 24.18 kWh/kg CBZ, under the optimal conditions (P-rGO loading was 6.0 mg/cm2, the current density was 10.0 mA/cm2, the gap between electrode was 2.0 cm). Additionally, no matter the influent is acidic, neutral or alkaline, no additional pH adjustment is required for the effluent of EC-EF. At last, an inconsecutive empirical kinetic model was firstly established to predict the effect of operating parameters on CBZ removal.
Collapse
Affiliation(s)
- Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meijie Zheng
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yixinfei Lin
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Maria Siedlecka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Wang X, Wang J, Yu B, Jiang W, Wei J, Chen B, Xu R, Yang L. Facile synthesis MnCo 2O 4.5@C nanospheres modifying PbO 2 energy-saving electrode for zinc electrowinning. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128212. [PMID: 35030491 DOI: 10.1016/j.jhazmat.2021.128212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The oxygen evolution reaction kinetics in industrial zinc electrowinning is sluggish, resulting in low electrocatalytic activity and substantial energy expenditure (about one-third of energy was wasted due to the strong polarization effect). Herein, the paper described a core-shell structured MnCo2O4.5@C modified PbO2 electrode through the pyrolysis and co-electrodeposition as a promising candidate for zinc electrowinning. As a result, the obtained Pb-0.2%Ag/α-PbO2/β-PbO2-MnCo2O4.5@C composite electrode showed a sandwich-like structure, where Pb-0.2%Ag as a core, α-PbO2 as a mid-layer, and β-PbO2-MnCo2O4.5@C served as an electrocatalytic layer. It also possessed improved OER catalytic activity, only required 680 mV to achieve a current density of 50 mA cm-2 and a Tafel slope of 216.04 mV dec-1 in an acidic solution containing 50 g L-1 Zn2+ and 150 g L-1 H2SO4. The current efficiency increased by 0.7% and the cell voltage reduced by 360 mV as compared to a conventional Pb-0.76%Ag alloy electrode, leading to a remarkable energy-consumption reduction of 283.5 kW h for producing per ton metallic zinc. Furthermore, Pb-0.2%Ag/α-PbO2/β-PbO2-MnCo2O4.5@C exhibited a prolonged service life, which worked about 44 h under an ultra-high current density of 2 A cm-2. Hence, this paper provides the strategy to design and construct non-precious, high-performance catalyst for electrolysis and other applications.
Collapse
Affiliation(s)
- Xuanbing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junli Wang
- Researcher Centers for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Bohao Yu
- School of Mathematics, Yunnan Normal University, Kunming 650500, China
| | - Wenhao Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinlong Wei
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Buming Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; Kunming Hendera Science and Technology Co., Ltd., Kunming 650106, China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| |
Collapse
|
20
|
Man S, Zeng X, Yin Z, Yang H, Bao H, Xu K, Wang L, Ge X, Mo Z, Yang W, Li X. Preparation of a novel Ce and Sb co-doped SnO2 nanoflowers electrode by a two-step (hydrothermal and thermal decomposition) method for organic pollutants electrochemical degradation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
22
|
He L, Wang C, Chen X, Jiang L, Ji Y, Li H, Liu Y, Wang J. Preparation of Tin-Antimony anode modified with carbon nanotubes for electrochemical treatment of coking wastewater. CHEMOSPHERE 2022; 288:132362. [PMID: 34592208 DOI: 10.1016/j.chemosphere.2021.132362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
To improve the electrocatalytic activity, carbon nanotubes (CNTs) were used to modify a titanium-supported tin-antimony anode (Ti/SnO2-Sb). Compared to a Ti/SnO2-Sb anode, the Ti/SnO2-Sb-CNTs anode exhibited a higher oxygen evolution potential (1.62 V), smaller crystalline volume (71.23 Å3), larger active surface area (0.371 mC cm-2), lower charge transfer resistance (8.24 Ω), and longer service life (291 h). The CNTs provided the Ti/SnO2-Sb anode with effective electrocatalytic activity, conductivity and stability. To evaluate its performance, the Ti/SnO2-Sb-CNTs anode was utilized for the treatment of coking wastewater. The chemical oxygen demand (COD) and total organic carbon (TOC) removal yields of the coking wastewater reached 83.05% and 74.56% under the optimal current density of 25 mA m-2, Na2SO4 concentration of 35 mM, and plate spacing of 10 mm. UV254, ultraviolet-visible absorption spectroscopy, excitation-emission matrix spectra spectroscopy, and Fourier-transform infrared spectroscopy analyses showed that the aromatic and nitrogenous compounds in the coking wastewater were degraded. Furthermore, the electrochemical treatment could effectively reduce the toxicity of the coking wastewater. The energy consumption of the coking wastewater treatment was reduced to 396.56 kWh (kg COD)-1. This study provides a basis engineering application of the electrochemical oxidation of coking wastewater.
Collapse
Affiliation(s)
- Lei He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Xiaoya Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Longxin Jiang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yuxian Ji
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Haiyan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yingsong Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
23
|
Fu X, Han Y, Xu H, Su Z, Liu L. Electrochemical study of a novel high-efficiency PbO 2 anode based on a cerium-graphene oxide co-doping strategy: Electrodeposition mechanism, parameter optimization, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126890. [PMID: 34418839 DOI: 10.1016/j.jhazmat.2021.126890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A novel and efficient Ti/SnO2-Sb/PbO2-GO-Ce electrode was successfully fabricated based on the co-deposition of Ce ions and graphene oxide (GO) into β-PbO2 crystals and used as an anode for electrocatalytic oxidation of phenol. The electrodeposition mechanism, parameter optimization, mechanism analysis, and potential degradation pathways were discussed in depth. The co-doping of GO and Ce resulted in the high directional specificity of β(301), orderly and dense grain arrangement of PbO2 crystals. At the same time, the oxygen evolution potential, •OH generation capacity and lifetime were also improved. The effects of experimental parameters on phenol removal efficiency were evaluated, including the applied current density, electrode gap, supporting electrolyte, initial NaCl concentration, initial pH, and initial phenol concentration. Under the optimal conditions, the removal efficiency of phenol can reach 375.6 g m-2 h-1 for 20 min electrolysis, which is about 1.2 times that of the pure PbO2 electrode. The active oxygen species (•OH, ClO- and HClO) were important attributes to the degradation of phenol. Additionally, a potential degradation pathway for phenol was proposed. After 10 successive recycles, there was no significant difference of the electro-generated •OH, cell voltage and phenol removal rate, which confirms the stability and admirable reusability of Ti/SnO2-Sb/PbO2-GO-Ce electrode.
Collapse
Affiliation(s)
- Xiaolu Fu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Han Xu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhimin Su
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lina Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
24
|
Wang X, Wang J, Jiang W, Chen C, Yu B, Xu R. Facile synthesis MnCo2O4 modifying PbO2 composite electrode with enhanced OER electrocatalytic activity for zinc electrowinning. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Rahmani A, Seid-Mohammadi A, Leili M, Shabanloo A, Ansari A, Alizadeh S, Nematollahi D. Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO 2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. CHEMOSPHERE 2021; 276:130141. [PMID: 33714150 DOI: 10.1016/j.chemosphere.2021.130141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Traditional planar PbO2 anodes have been used extensively for the electrocatalytic degradation process. However, by using porous PbO2 anodes that have a three-dimensional architecture, the efficiency of the process can be significantly upgraded. In the current study, carbon felt (CF) with a highly porous structure and a conventional planar graphite sheet (G) were used as electrode substrate for PbO2 anodes. Both CF/β-PbO2 and G/β-PbO2 anodes were prepared by the anodic deposition method. The main properties of the electrodes were characterized by XRD, EDX-mapping, FESEM, and BET-BJH techniques. The electrocatalytic degradation of diuron using three-dimensional porous CF/β-PbO2 anode was modeled and optimized by a rotatable central composite design. After optimizing the process, the ability of porous CF/β-PbO2 and planar G/β-PbO2 anodes to degrade and mineralize diuron was compared. The electrocatalytic degradation of the diuron was well described by a quadratic model (R2 > 0.99). Under optimal conditions, the kinetics of diuron removal using CF/β-PbO2 anode was 3 times faster than the G/β-PbO2 anode. The energy consumed for the complete mineralization of diuron using CF/β-PbO2 anode was 2077 kWh kg-1 TOC. However, the G/β-PbO2 anode removed only 65% of the TOC by consuming 54% more energy. The CF/β-PbO2 had more stability (115 vs. 91 h), larger surface area (1.6287 vs. 0.8565 m2 g-1), and higher oxygen evolution potential (1.89 vs. 1.84 V) compared to the G/β-PbO2. In the proposed pathways for diuron degradation, the aromatic ring and groups of carbonyl, dimethyl urea, and amide were the main targets for HO• radical attacks.
Collapse
Affiliation(s)
- Alireza Rahmani
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolmotaleb Seid-Mohammadi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mostafa Leili
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Shabanloo
- Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Ansari
- Faculty of Chemistry, Bu-Ali-Sina University, Hamadan, Iran
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University, Hamadan, Iran
| | | |
Collapse
|
26
|
Liu Y, Pang D, Wang L, Song H, Liu R, Hu S, Shen Y, Li A, Zhang S. Electrochemically reduced phytic acid-doped TiO 2 nanotubes for the efficient electrochemical degradation of toxic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125600. [PMID: 34030425 DOI: 10.1016/j.jhazmat.2021.125600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Element-doped TiO2 nanotube arrays (TNAs) with optimized active sites provide an effective approach for significantly improving electrocatalytic performance. The challenges in such construction mainly include selection of green dopant and control of active sites. Herein, we present phytic acid as a phosphorus source for P-doped TNAs. An oxygen vacancy (Ov) and P co-doped TNAs (P-TiO2-y) was prepared as an electrochemical oxidation anode. P-TiO2-y exhibits excellent degradation activity due to the formation of Ti-O-P bonds and generation of Ov. P-doping was beneficial in improving the oxygen evolution potential of the electrode, which would be benefit for electrocatalytic degradation of pollutants. Using the P-TiO2-y anode with a current density of 10 mA/cm2 for tetracycline degradation, after a 3 h treatment, the removal rate, chemical oxygen demand and total organic carbon removal rates were 100%, 90.32% and 76.60%, respectively. The P-TiO2-y also has excellent degradation performance for phenol, hydroquinone, p-nitrophenol and metronidazole.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Di Pang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Luyao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing 210097, PR China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 210009, PR China
| | - Rumeng Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shen Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuliang Shen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 210009, PR China
| | - Shupeng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 210009, PR China.
| |
Collapse
|
27
|
Fan Y, Liu Y, Hu X, Sun Z. Preparation of metal organic framework derived materials CoFe 2O 4@NC and its application for degradation of norfloxacin from aqueous solutions by activated peroxymonosulfate. CHEMOSPHERE 2021; 275:130059. [PMID: 33984914 DOI: 10.1016/j.chemosphere.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
The metal organic framework derived materials (CoFe2O4@NC) activated peroxymonosulfate (PMS) to degrade Norfloxacin (NOR) owing to the characteristics of high surface area (109.658 m2 g-1) and abundant mesoporous structure. The characterization results demonstrated that the optimal ratio of bimetal and of bimetallic to organic ligands (M/O) had good crystal structure and stability (Fe/Co = 3:1, M/O = 2:1). Moreover, NOR (10 mg L-1) removal of 98.78% was achievable in 60 min with an optimum concentration of PMS (0.32 mM) and dosage of CoFe2O4@NC (0.1 g L-1). The radical quenching results suggested that SO4·-, ·OH and 1O2 functioned in the presence of the system certificated by XPS spectra. The presence of Cl- and CO32-/HCO3- promoted the catalyst reaction. The recoverability revealed high removal efficiency of NOR of 93.55% could still be maintained. Furthermore, four pathways of NOR degradation were proposed, including dehydroxylation, defluorination, quinolone group conversion and piperazine ring transformation, which were attributed to the synergy of reactive oxygen species. The above results highlight that the method is of great significance to the practical application of heterogeneous catalysts in aqueous solutions.
Collapse
Affiliation(s)
- Yan Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yanru Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Zhirong Sun
- College of Environmental & Energy Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
28
|
Chen S, He P, Zhou P, Wang X, Xiao F, He Q, Li J, Jia L, Zhang H, Jia B, Tang B. Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO 2 anode for electrocatalytic degradation of acetaminophen. CHEMOSPHERE 2021; 271:129830. [PMID: 33556630 DOI: 10.1016/j.chemosphere.2021.129830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
29
|
Lu J, Ayele BA, Liu X, Chen Q. Electrochemical removal of RRX-3B in residual dyeing liquid with typical engineered carbonaceous cathodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111669. [PMID: 33234317 DOI: 10.1016/j.jenvman.2020.111669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Electro-catalytic activities of carbonaceous cathodes including graphite plate, graphite felt, carbon felt, activated carbon felt (ACF) and carbon fiber felt (CFF) for degradation of Reactive Red X-3B (RRX-3B) in residual dyeing liquid were compared. The best electrochemical performance was obtained using dimensional stable anode (DSA) and CFF cathode due to the higher capacity for electro-generation of H2O2 by selective two-electron oxygen reduction. The CFF/DSA electrolysis system realized 78.2% COD removal and complete decolorization over a wide pH range. The efficacy of RRX-3B degradation was found to be dependent on the nature of carbonaceous materials. Electrochemical measurements showed that CFF possessed higher electrochemical surface area and hydrogen evolution reaction over-potential. Furthermore, the intrinsic graphitic N in CFF was proved to be catalytic active site by DFT calculations. Reactive Red X-3B degradation intermediates with benzene structures and carboxylic acids via hydroxylation in RRX-3B oxidation were identified by GC-MS. It was found that S/Cl/N-containing groups in RRX-3B molecule were mineralized to SO42-, NO3- and Cl- ions in the electrolysis.
Collapse
Affiliation(s)
- Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Befkadu A Ayele
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
30
|
Duan X, Sui X, Wang Q, Wang W, Li N, Chang L. Electrocatalytic oxidation of PCP-Na by a novel nano-PbO 2 anode: degradation mechanism and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43656-43669. [PMID: 32737782 DOI: 10.1007/s11356-020-10289-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
This study aims at investigating the electrocatalytic oxidation of sodium pentachlorophenate (PCP-Na) using a novel nano-PbO2 powder anode. The nano-PbO2 powder (marked as HL-PbO2) was prepared by a simple hydrolysis process, and hydrothermal treatment was followed to improve the activity of HL-PbO2. The HL-PbO2 treated for 24 h by hydrothermal process (HL/HT-PbO2-24) was confirmed to possess higher crystallinity, higher oxygen evolution potential, and more active sites, resulting in stronger OH radical generation capacity and higher electrochemical activity. Compared with conventional electrodeposited PbO2 (ED-PbO2) anode, the HL/HT-PbO2-24 anode showed higher PCP-Na degradation rate. Under the same operating conditions, the mineralization current efficiency at HL/HT-PbO2-24 was 2.7 times than that at ED-PbO2. Five intermediates were detected in PCP-Na degradation solution and possible degradation mechanism of PCP-Na was discussed. In addition, the acute toxicity of PCP-Na degradation solution to zebrafish embryos and the oxidative stress induced in zebrafish embryos/larvae were studied to evaluate the ecological security of electrocatalytic oxidation of PCP-Na.
Collapse
Affiliation(s)
- Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Xinyu Sui
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Qian Wang
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Weiyi Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Na Li
- Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|