1
|
Banerjee P, Ulker O, Ozkan I, Ulker OC. The investigation of the toxicity of organophosphorus flame retardants (OPFRs) by using in silico toxicity prediction platform ProTox- 3.0. Toxicol Mech Methods 2025; 35:32-42. [PMID: 39054571 DOI: 10.1080/15376516.2024.2382815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
From the past to the present, many chemicals have been used for the purpose of flame retardant. Due to PBDEs' (Polybrominated diphenyl ether) lipophilic and accumulative properties, some of them are banned from the market. As an alternative to these chemicals, OPFRs (organophosphorus flame retardants) have started to be used as flame retardants. In this article, acute toxicity profiles, mutagenicity, carcinogenicity, blood-brain barrier permeability, ecotoxicity and nutritional toxicity as also AHR, ER affinity and MMP, aromatase affinity, CYP2C9, CYP3A4 interaction of the of 16 different compounds of the OPFRs were investigated using a computational toxicology method; ProTox- 3.0. According to our results, eight compounds were found to be active in terms of carcinogenic effect, whereas two compounds were found to be active for mutagenicity. On the other hand, all compounds were found to be active in terms of blood-barrier permeability. Fourteen compounds and four compounds are found to have ecotoxic and nutritional toxic potency, respectively. Eight compounds were determined as active to AhR, and four chemicals were found to be active in Estrogen Receptor alpha. Eight chemicals were found to be active in terms of mitochondrial membrane potency. Lastly, three chemicals were found to be active in aromatase enzymes. In terms of CYP interaction potencies, eight compounds were found to be active in both CYP2C9 and CYP3A4. This research provided novel insights into the potential toxic effects of OPFRs. However, further studies are needed to evaluate their toxicity. Moreover, these findings lay the groundwork for in vitro and in vivo toxicity research.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Onur Ulker
- Faculty of Architecture and Design, Department of Interior Architecture, Eskişehir Technical University, Eskişehir, Turkiye
| | - Irem Ozkan
- Institute of Health Sciences, Department of Pharmaceutical Toxicology, Ankara University, Ankara, Turkiye
| | - Ozge Cemiloglu Ulker
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara University, Ankara, Turkiye
| |
Collapse
|
2
|
Lin C, Guo Z, Li H, Lai Z, Zhang J, Xie S, Tan Y, Jing C. Oxidative stress mediates the association of organophosphate flame retardants with metabolic obesity in U.S. adults: A combined epidemiologic and bioinformatic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125267. [PMID: 39510304 DOI: 10.1016/j.envpol.2024.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Obesity is a global public health issue, with limited epidemiologic studies on the relationship and mechanisms between organophosphate flame retardants (OPFRs) and metabolic obesity phenotypes (MOPs). We aimed to explore the link between OPFRs metabolite (m-OPFRs) and MOPs using a combined epidemiologic and bioinformatic approach. We used cross-sectional survey data from the U.S. National Health and Nutrition Examination Survey (2011-2018) to analyze the relationship between m-OPFRs and metabolic health obesity (MHO), as well as metabolic unhealthy obesity (MUO). The dataset encompasses eligible adults to assess the impact of individual, mixed, and mediated effects on the outcome variables through multivariate logistic regression, Bayesian kernel machine regression (BKMR), and mediation analysis. Multiple logistic regression models, stratified by tertiles of exposure showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) levels in the body significantly increased the risk of MHO, with OR and 95%CI of 1.454 (1.082, 1.953) for the second tertile (T2) and 1.598 (1.126, 2.268) for the third tertile (T3), compared to the first tertile (T1). Increased levels of BDCIPP in T3 (1.452(1.013, 2.081)) are associated with MUO, compared to T1. Mixed m-OPFRs and MHO risk in BMKR were positively correlated, with BDCIPP being the primary contributor. We found that the serum uric acid (SUA) and white blood cell count (WBC) indicators significantly mediated the association between BDCIPP and MHO (P < 0.05). Our study suggests that OPFRs, either individual or mixed, are associated with two distinct MOPs, with oxidative stress playing an important role. In addition, in silico analysis was used to screen for shared genes, and eight shared genes and eleven biological pathways identified during the screening process were used to construct the adverse outcome pathway, which suggests that exposure to OPFRs may activate the peroxisome proliferator-activated receptor (PPAR) pathway, thereby increasing the risk of obesity. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chuhang Lin
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Zhengtian Lai
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jing Zhang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shen Xie
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
3
|
Liu S, Dong Y, Chen Y, Yang Y, Ni H, Zou X. A green approach coupled with molecular dynamics simulations and toxicity assays to infer the mode of action for organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177147. [PMID: 39442719 DOI: 10.1016/j.scitotenv.2024.177147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Organophosphate esters (OPEs) have attracted extensive attention due to their toxic effects on human health and biological systems as plasticizers and flame retardants. This study focused on exploring a green approach to get toxicity mechanisms that used less solvents or organisms. The toxicity values of selected organophosphate esters including tri (2-chloroethyl) phosphate (TCEP), tri (1, 3-dichloro-2-propyl) phosphate (TDCP), tripropyl phosphate (TPrP), tri-n-butyl phosphate (TnBP), and tritolyl Phosphate (TCrP) to Photobacterium phosphoreum were determined. Their EC50 range was between 7.27 × 10-8-5.12 × 10-6 mol/L. Based on molecular dynamics simulation the data of binding affinity between OPEs and n-octanol / phospholipid bilayer were calculated respectively. Coupling with binding affinity energies and toxicity values, the mode of action (MOA) of OPEs including types of reactive or anesthetic mechanism could be fast deduced. The proposed hypothesis of n-octanol (C8H18O) as a virtual biofilm to replace phospholipid bilayer was verified. The alternative green approach could simplify toxicity assay and realize fast predicting MOA for different chemicals and model organisms.
Collapse
Affiliation(s)
- Sitong Liu
- College of Environment and Resource, Dalian Minzu University, Dalian 116600, PR China
| | - Yuying Dong
- College of Environment and Resource, Dalian Minzu University, Dalian 116600, PR China.
| | - Yuting Chen
- College of Environment and Resource, Dalian Minzu University, Dalian 116600, PR China
| | - Yongqiang Yang
- College of Environment and Resource, Dalian Minzu University, Dalian 116600, PR China
| | - Huanbo Ni
- College of Environment and Resource, Dalian Minzu University, Dalian 116600, PR China
| | - Xuejun Zou
- College of Environment and Resource, Dalian Minzu University, Dalian 116600, PR China
| |
Collapse
|
4
|
Yan Z, Feng C, Xu Y, Wang J, Huang N, Jin X, Wu F, Bai Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100401. [PMID: 38487363 PMCID: PMC10937237 DOI: 10.1016/j.ese.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L-1 in water, 0.013-493.36 ng per g dry weight (dw) in sediment, 0.026-41.92 ng per g wet weight (ww) in plankton, 0.13-2100.72 ng per g dw in benthic invertebrates, and 0.31-3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Xu Y, Yang L, Li J, Li N, Hu L, Zuo R, Jin S. Determination of the binding affinities of OPEs to integrin α vβ 3 and elucidation of the underlying mechanisms via a competitive binding assay, pharmacophore modeling, molecular docking and QSAR modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133650. [PMID: 38309170 DOI: 10.1016/j.jhazmat.2024.133650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Organophosphate esters (OPEs) can cause adverse biological effects through binding to integrin αvβ3. However, few studies have focused on the binding activity and mechanism of OPEs to integrin αvβ3. Herein, a comprehensive investigation of the mechanisms by which OPEs bind to integrin αvβ3 and determination of the binding affinity were conducted by in vitro and in silico approaches: competitive binding assay as well as pharmacophore, molecular docking and QSAR modeling. The results showed that all 18 OPEs exhibited binding activities to integrin αvβ3; moreover, hydrogen bonds were identified as crucial intermolecular interactions. In addition, essential factors, including the -P = O structure of OPEs, key amino acid residues and suitable cavity volume of integrin αvβ3, were identified to contribute to the formation of hydrogen bonds. Moreover, aryl-OPEs exhibited a lower binding activity with integrin αvβ3 than halogenated- and alkyl-OPEs. Ultimately, the QSAR model constructed in this study was effectively used to predict the binding affinity of OPEs to integrin αvβ3, and the results suggest that some OPEs might pose potential risks in aquatic environments. The results of this study comprehensively elucidated the binding mechanism of OPEs to integrin αvβ3, and supported the environmental risk management of these emerging pollutants.
Collapse
Affiliation(s)
- Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Litang Hu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaowei Jin
- Institution National Supercomputing Shenzhen Center, Shenzhen 518052, China
| |
Collapse
|
6
|
Ai S, Li J, Wang X, Zhao S, Ge G, Liu Z. Derivation of aquatic predicted no-effect concentration and ecological risk assessment for triphenyl phosphate and tris(1,3-dichloro-2-propyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169756. [PMID: 38171460 DOI: 10.1016/j.scitotenv.2023.169756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are common organophosphate esters (OPEs), which are used as additives in various industries. These compounds have been widely detected in aquatic environment, raising concerns about their adverse effects on aquatic organisms. In order to protect aquatic ecosystems, a total of 7 species were selected for acute and chronic toxicity tests in this study. The results indicated that TPhP and TDCIPP exhibited varying degrees of toxicity to aquatic organisms. The 96-h LC50 values ranged from 1.088 mg/L to 1.574 mg/L for TPhP and from 2.027 mg/L to 17.855 mg/L for TDCIPP. The 28-d LC10 values ranged from 0.023 mg/L to 0.177 mg/L for TPhP and from 0.300 mg/L to 1.102 mg/L for TDCIPP. The tested toxicity data, combined with collected toxicity data, were used to investigate the predicted no-effect concentration in water (PNECwater) of TPhP and TDCIPP by species sensitivity distribution (SSD) method. The results revealed PNECwater values of 6.35 and 38.0 μg/L for TPhP and TDCIPP, respectively. Furthermore, the predicted no-effect concentrations in sediment (PNECsed) were derived as 110 μg/kg dry weight (dw) for TPhP and 424 μg/kg dw for TDCIPP using the equilibrium partitioning (EqP) approach. Based on the toxicity data and PNECs, the ecological risk of these two chemicals in surface waters and sediments worldwide over the last decade were evaluated. The results indicated that TDCIPP posed negligible risk in aquatic ecosystems. However, TPhP showed potential risk in sediments, as indicated by the hazard quotients (HQs) exceeding 0.1. The results of joint probability curves (JPC) indicated that the probabilities of exceeding hazardous concentration for 1 % of species for TPhP in water and sediment were 0.33 % and 5.2 %, respectively. Overall, these findings highlight the need for continued monitoring and assessment of the presence and potential impacts of TPhP and TDCIPP in aquatic ecosystems.
Collapse
Affiliation(s)
- Shunhao Ai
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiqing Zhao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhengtao Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Wang C, Lei W, Jiang C, Du L, Huang X, Cui X, Gao D, Wang H. Exposure to tris (1,3-dichloro-2-propyl) phosphate affects the embryonic cardiac development of Oryzias melastigma. Heliyon 2024; 10:e25554. [PMID: 38327441 PMCID: PMC10847999 DOI: 10.1016/j.heliyon.2024.e25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is a growing concern and may be a potential risk to marine environmental health due to its widespread usage and distribution. However, the toxic effects of TDCPP on cardiac development in marine fish have not been reported. In this study, Oryzias melastigma embryos were exposed to TDCPP at doses of 0, 0.04, 0.4, 4 and 40 μg/L from early embryogenesis to 10 days postfertilization (dpf). Then, the heart rate and sinus venosus-bulbus arteriosus (SV-BA) distance of the exposed embryos were measured at 5, 6, 8 and 10 dpf. Furthermore, alterations in the mRNA levels of the genes encoding cyclooxygenase-2 (COX-2), bone morphogenetic protein 4 (BMP4), fibroblast growth factor 8 (FGF8), and GATA-binding protein 4 (GATA4) were evaluated at 5, 6, 8 and 10 dpf. We found that the heart rate significantly increased in all TDCPP exposure groups at 10 dpf. The SV-BA distance significantly decreased in all TDCPP exposure groups at all developmental stages (except for the 0.4 μg/L group at 5 dpf and the 4 μg/L group at 10 dpf). The mRNA expression of COX-2 was downregulated at 5 dpf, BMP4 was downregulated at 5 and 6 dpf, FGF8 was downregulated at 5, 6 and 8 dpf, GATA4 was downregulated at 8 dpf, and GATA4 was upregulated at 10 dpf. These results indicate that the changes in heart rate and SV-BA distance might be accompanied by disturbances in the four genes involved in cardiac development. Our findings will help to illustrate the possible cardiac toxic effects of marine fish exposed to TDCPP.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen, China
| | - Chengchen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Lichao Du
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xindi Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaoyu Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hua Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
8
|
Li J, Dai L, Feng Y, Cao Z, Ding Y, Xu H, Xu A, Du H. Multigenerational effects and mutagenicity of three flame retardants on germ cells in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115815. [PMID: 38091675 DOI: 10.1016/j.ecoenv.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.
Collapse
Affiliation(s)
- Jiali Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China
| | - Linglong Dai
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Yu Feng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Zhenxiao Cao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuting Ding
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| |
Collapse
|
9
|
Liu D, Feng C, Qiao Y, Wang J, Bai Y, Wu F. Predicting the acute toxicity of organophosphate esters (OPEs) to aquatic organisms by modelling the structure-toxicity relationships using partial least square regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166708. [PMID: 37660809 DOI: 10.1016/j.scitotenv.2023.166708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Organophosphate esters (OPEs) have been used worldwide as organophosphate flame retardants (OPFRs) since brominated flame retardants (BFRs) were banned. Due to the toxicity of these OPEs, environmental concerns and ecological risks arose. However, there are still large gaps in the understanding of their toxicity to organisms and the mechanisms of toxicity. After collecting the existing toxicity information and obtaining molecular descriptors of OPEs, a partial least square (PLS) regression model was used in this study to quantify the structure-toxicity relationships of OPEs. Based on the regression results, the acute toxicity of the remaining OPEs lacking acute toxicity data was predicted, and the risk level of total common OPEs was classified. The acute toxicity of 15 chemicals was collected, and >1660 molecular structure descriptors were obtained. The cross-validation results of the partial least square regression indicated that two principal components met the regression requirements with the selected features, and the regression equations of these chemicals were generated with selected molecular descriptors. The influence of physicochemical properties, such as hydrophobicity/molecular weight, in traditional perception of OPE toxicity was not that obvious, and acute toxicity was mainly influenced by the autocorrelation coefficients. However, the regression results indicated that the correlation between autocorrelation coefficients calculated based on different physicochemical properties and toxicity was different. According to the prediction result based on PLS regression, CDP may pose a high risk and halogenated alkyl-substituted OPEs such as TCEP may be less toxic. The results of the present study may help inform the environmental management and risk assessment of emerging chemicals such as OPEs.
Collapse
Affiliation(s)
- Daqing Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
10
|
Liu C, Geng Z, Xu J, Li Q, Zhang H, Pan J. Advancements, Challenges, and Future Directions in Aquatic Life Criteria Research in China. TOXICS 2023; 11:862. [PMID: 37888712 PMCID: PMC10667990 DOI: 10.3390/toxics11100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Aquatic life criteria (ALC) serve as the scientific foundation for establishing water quality standards, and in China, significant strides have been made in the development of freshwater ALC. This comprehensive review traces the evolution of China's WQC, focusing on the methodological advancements and challenges in priority pollutants selection, test organism screening, and standardized ecotoxicity testing protocols. It also provides a critical evaluation of quality assurance measures, data validation techniques, and minimum data requirements essential for ALC assessments. The paper highlights China's technical guidelines for deriving ALC, and reviews the published values for typical pollutants, assessing their impact on environmental quality standards. Emerging trends and future research avenues are discussed, including the incorporation of molecular toxicology data and the development of predictive models for pollutant toxicity. The review concludes by advocating for a tiered WQC system that accommodates China's diverse ecological regions, thereby offering a robust scientific basis for enhanced water quality management.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
| | - Zhaomei Geng
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Jiayin Xu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qingwei Li
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Heng Zhang
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinfen Pan
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266200, China
| |
Collapse
|
11
|
Yan Z, Feng C, Leung KMY, Luo Y, Wang J, Jin X, Wu F. Insights into the geographical distribution, bioaccumulation characteristics, and ecological risks of organophosphate esters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130517. [PMID: 36463749 DOI: 10.1016/j.jhazmat.2022.130517] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs), as flame retardants and plasticizers, have been numerously explored regarding the occurrence and ecotoxicology. Given their toxicity, persistency and bio-accumulative potential, however, they may pose negative effects on ecosystems, regarding which is a growing global concern. Accordingly, the present review systematically analyses the recent literature to (1) elucidate their worldwide distribution, bioaccumulation, and biomagnification potential, (2) determine their interim water quality criteria (i.e., effect thresholds), and (3) preliminarily assess the ecological risks for 32 OPEs in aquatic ecosystems. The results showed that the spatiotemporal distribution of OPEs was geographically specific and closely related to human activities (i.e., megacities), especially halogenated-OPEs. We also found that precipitation of airborne particulates could affect the concentrations of OPEs in soil, and there was a positive correlation between the bioaccumulation and hydrophobicity of OPEs. Tris(2-ethylhexyl) phosphate may exhibit high bioaccumulation in aquatic organisms. A substantial difference was found among interim water quality criteria for OPEs, partly attributable to the variation of their available toxicity data. Tris(phenyl) phosphate (TPHP) and tris(1,3-dichloroisopropyl) phosphate with the lowest predicted no-effect concentration showed the strongest toxicity of growth and reproduction. Through the application of the risk quotient and joint probability curve, TPHP and tris(chloroethyl) phosphate tended to pose moderate risks, which should receive more attention for risk management. Future research should focus on knowledge gaps in the mechanism of biomagnification, derivation of water quality criteria, and more precise assessment of ecological risks for OPEs.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jindong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Wang S, Qian J, Zhang B, Chen L, Wei S, Pan B. Unveiling the Occurrence and Potential Ecological Risks of Organophosphate Esters in Municipal Wastewater Treatment Plants across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1907-1918. [PMID: 36695577 DOI: 10.1021/acs.est.2c06077] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs) discharged from wastewater treatment plants (WWTPs) have attracted increasing concerns because of their potential risks to aquatic ecosystems. The identification of the structures of OPEs is a prerequisite for subsequent assessment of their environmental impacts, which could hardly be accomplished using traditional target analytical methods. In this study, we describe the use of suspect and nontarget screening techniques for identification of organophosphate triesters and diesters (tri-OPEs and di-OPEs) in the influent and effluent samples acquired from 25 municipal WWTPs across China. There are totally 33 different OPE molecules identified, 11 of which are detected in wastewater for the first time and 4 are new to the public. In all tested samples, di-OPEs account for a significant portion (53% on average) of the total OPEs (ng/L-μg/L). More importantly, most of the OPEs could not be eliminated after treatment in these WWTPs, while some of the di-OPEs even accumulate. The research priority of OPEs in the effluent based on ecological risk was also analyzed, and the results reflected a previously unrecognized exposure risk of emerging OPEs for aquatic living organisms. These findings present a holistic understanding of the environmental relevance of OPEs in WWTPs on a country scale, which will hopefully provide guidance for the upgrade of treatment protocols in WWTPs and even for the modification of governmental regulations in the future.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Wang S, Zheng N, Sun S, Ji Y, An Q, Li X, Li Z, Zhang W. Bioaccumulation of organophosphorus flame retardants in marine organisms in Liaodong Bay and their potential ecological risks based on species sensitivity distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120812. [PMID: 36473644 DOI: 10.1016/j.envpol.2022.120812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Although organophosphorus flame retardants (OPFRs) in aquatic environments have received increasing concern, little information is available on their bioaccumulation and trophic transfer in marine food webs. Consequently, the risks of OPFRs to marine ecosystems are unknown. In this study, seven OPFR compounds in marine biological samples collected from Liaodong Bay, Bohai Sea, were analyzed to evaluate their level and biological amplification effect in the marine food web. The total OPFRs of marine organisms in Liaodong Bay ranged from 2.60 to 776 ng/g ww, and lipids were critical factors affecting the concentration of OPFRs in marine species. Tris (2-ethylhexyl) phosphate (TEHP) and tris(1-chloro-2-propyl) phosphate (TCIPP) were the OPFRs most frequently detected in marine species. Still, tris(2-chloroethyl) phosphate (TCEP) was dominant in most marine species (16/24), and the content of chlorinated OPFRs was highest. At the same time, alkyl OPFRs and aryl OPFRs accounted for the same proportion. No correlation between OPFR concentration and the trophic level was observed in marine organisms from Liaodong Bay. It was shown in the results of the species sensitivity distribution that TCIPP in Chinese seawater does not pose a potential ecological risk to marine species. However, much work remains to be done on accumulating information and the ecological risks of OPFRs in different marine food webs.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Zimeng Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
14
|
Li B, Shi J, Zhang J, Tao H, Ge H, Zhang M, Xu Z, Xiao R. Occurrence and ecological risk assessment of 2,2',4,4'-tetrabromodiphenyl ether and decabromodiphenyl ether in surface waters across China. CHEMOSPHERE 2023; 312:137215. [PMID: 36375608 DOI: 10.1016/j.chemosphere.2022.137215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are efficient brominated flame retardants and are released into various environmental media via usage, recycling and disposal. This study investigated the concentrations and ecological risks of two typical PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209), in surface waters across China from 2011 to 2018. The results showed that the concentration of BDE-209 (8.25 ng L-1) was higher than that of BDE-47 (1.02 ng L-1), and the concentrations of BDE-47 and BDE-209 in the lakes (2.56 ng L-1 and 22.19 ng L-1, respectively) were higher than those in the rivers (0.58 ng L-1 and 7.05 ng L-1, respectively). In addition, the concentration of BDE-209 in the wet season (2.61 ng L-1) was lower than that in the dry season (10.83 ng L-1), whereas the concentration of BDE-47 in the wet season (0.24 ng L-1) was a little lower than that in the dry season (0.99 ng L-1). BDE-47 and BDE-209 concentrations showed a gradual decrease in surface waters across China during the eight-year period. Based on the species sensitivity distribution (SSD) models, the 5% hazardous concentration (HC5) and predicted no-effect concentration (PNEC) values were derived using the acute and chronic toxicity data of BDE-47 and BDE-209. Results showed that the PNEC values based on the acute and chronic toxicity data were 2.08 μg L-1 and 0.52 μg L-1 for BDE-47, respectively and 370 μg L-1 and 0.34 μg L-1 for BDE-209, respectively. The risk quotient (RQ) values of BDE-47 in surface waters across China were far smaller than 0.1 (low ecological risk). Similarly, the RQ values of BDE-209 were also smaller than 0.1, except for those at Baiyangdian Lake and Chaohu Lake, where the probability of 0.1 ≤ RQ < 1.0 (medium ecological risk) was approximately 10% based on 10,000 Monte Carlo simulations.
Collapse
Affiliation(s)
- Bin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mengtao Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
15
|
Feng Y, Cui X, Yin J, Shao B. Chlorinated organophosphorus flame retardants-induced mitochondrial abnormalities and the correlation with progesterone production in mLTC-1 cells. Food Chem Toxicol 2022; 169:113432. [PMID: 36115506 DOI: 10.1016/j.fct.2022.113432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/13/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Environmental monitoring data have indicated that three chlorinated organophosphorus flame retardants (Cl-OPFRs), including tris(2-chloroethyl)-phosphate (TCEP), tris(2-chloropropyl)-phosphate (TCPP), and tris(1,3-dichloro-2-propyl)-phosphate (TDCPP) are the predominant chemicals in various environmental matrices and exhibit reproductive endocrine disrupting activities. Currently, mitochondrial abnormality is a new paradigm for evaluating chemical-mediated cell dysfunction. However, a comprehensive correlation between these two aspects of Cl-OPFRs remains unclear. In this research, the effects of TCEP, TCPP, and TDCPP on progesterone production and mitochondrial impairment were investigated by using mouse Leydig tumor cells (mLTC-1). The half maximal inhibitory concentration (IC50) values at 48 h exposure indicated that the rank order of anti-androgenic activity was TDCPP > TCPP. Whereas, TCEP exhibited elevation of progesterone production. At concentrations close to IC50 of progesterone production by TCPP and TDCPP, the elevation of intracellular reactive oxygen species (ROS), depletion of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, and alteration of mitochondrial structures was observed. In addition, the expression of main genes related to progesterone synthesis was dramatically down-regulated by TCPP and TDCPP treatments. These results imply that the inhibition effect of TCPP and TDCPP on progesterone production might be related to mitochondrial damage and down-regulated steroidogenic genes.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Xia Cui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
16
|
Hong Y, Feng C, Jin X, Xie H, Liu N, Bai Y, Wu F, Raimondo S. A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity. ENVIRONMENT INTERNATIONAL 2022; 167:107367. [PMID: 35944286 PMCID: PMC10015408 DOI: 10.1016/j.envint.2022.107367] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 05/26/2023]
Abstract
Alkylphenols (APs) are ubiquitous and generally present in higher residue levels in the environment. The present work focuses on the development of a set of in silico models to predict the aquatic toxicity of APs with incomplete/unknown toxicity data in aquatic environments. To achieve this, a QSAR-ICE-SSD model was constructed for aquatic organisms by combining quantitative structure-activity relationship (QSAR), interspecies correlation estimation (ICE), and species sensitivity distribution (SSD) models in order to obtain the hazardous concentrations (HCs) of selected APs. The research indicated that the keywords "alkylphenol" and "nonylphenol" were most commonly studied. The selected ICE models were robust (R2: 0.70-0.99; p-value < 0.01). All models had a high reliability cross- validation success rates (>75%), and the HC5 predicted with the QSAR-ICE-SSD model was 2-fold than that derived with measured experimental data. The HC5 values demonstrated nearly linear decreasing trend from 2-MP to 4-HTP, while the decreasing trend from 4-HTP to 4-DP became shallower, indicates that the toxicity of APs to aquatic organisms increases with the addition of alkyl carbon chain lengths. The ecological risks assessment (ERA) of APs revealed that aquatic organisms were at risk from exposure to 4-NP at most river stations (the highest risk quotient (RQ) = 1.51), with the highest relative risk associated with 2.9% of 4-NP detected in 82.9% of the sampling sites. The targeted APs posed potential ecological risks in the Yongding and Beiyun River according to the mixture ERA. The potential application of QSAR-ICE-SSD models could satisfy the immediate needs for HC5 derivations without the need for additional in vivo testing.
Collapse
Affiliation(s)
- Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Sandy Raimondo
- United States Environmental Protection Agency, Gulf Ecosystem Measurement and Modeling Division, Gulf Breeze, Florida 32561, United States
| |
Collapse
|
17
|
Yang H, Pu Y, Liu C, Gao L, Duan X, Liu S, Chen D, Zhong L, Li Y. Environmentally relevant concentrations of tris (1,3-dichloro-2-propyl) phosphate induce growth inhibition and oxidative stress in silver carp (Hypophthalmichthys molitrix) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113798. [PMID: 35749998 DOI: 10.1016/j.ecoenv.2022.113798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), widely applied as flame retardant into a variety of products, can be physically leached out to the aquatic environment. Measurable values of TDCIPP have been found in the environment and within biota. Many toxicological assessments have shown that TDCIPP could cause developmental toxicity and oxidative stress in fish. In this study, we focused on the effects of TDCIPP on the growth and oxidative stress of an important commercial fish species in China, silver carp (Hypophthalmichthys molitrix). Fish larvae was exposed to environmentally relevant concentrations (0.05, 0.5, 5 and 50 μg/L) of TDCIPP for 7, 14 and 28 days. Simultaneously, the transcription levels of genes associated with the growth hormone/insulin-like growth factor (GH/IGF) axis and the antioxidative enzymes were examined. The body length and body mass of silver carp larvae decreased significantly only under exposure to 5 and 50 μg/L of TDCIPP at 14 days compared with the control group, while differences on those paraments were observed at 0.05, 0.5, 5 and 50 μg/L when larvae were exposed for 28 days. The observation evidenced the time- and dose- dependent growth inhibitions caused by TDCIPP on silver carp larvae. Exposure to TDCIPP also decreased the contents of GH and IGF1 in fish attended by significant down-regulation of gh and igf1. Moreover, TDCIPP up-regulated the expression of cat, sod1 and gstt followed by an increase of the activities of catalase (CAT) and superoxide dismutase (SOD) and the levels of malondialdehyde (MDA) and glutathione (GSH), but the activities of glutathione peroxidase (GPX) were decreased. These results suggested that growth inhibition and oxidative stress co-occurred in silver carp larvae after exposure to environmentally relevant concentrations of TDCIPP accompanied by the abnormal expression of genes which associated with the GH/IGF axis and antioxidative enzymes.
Collapse
Affiliation(s)
- Hao Yang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Yan Pu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Gao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Xinbin Duan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Shaoping Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Daqing Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Liqiao Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Shen M, Gong X, Huang S, Shen Y, Ye YX, Xu J, Ouyang G. Noncovalently Tagged Gas Phase Complex Ions for Screening Unknown Contaminant Metabolites in Plants. Anal Chem 2021; 93:14929-14933. [PMID: 34730331 DOI: 10.1021/acs.analchem.1c03145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Screening the metabolites of emerging organic contaminants (EOCs) from complicated biological matrices is an important but challenging task. Although stable isotope labeling (SIL) is frequently used to facilitate the identification of contaminant metabolites from redundant interfering components, the isotopically labeled reagents are expensive and difficult to synthesize, which greatly constrains the application of the SIL method. Herein, a new online noncovalent tagging method was developed for screening the metabolites of 1H-benzotriazol (BT) based on the characteristic structural moieties reserved in the metabolites. By selecting β-cyclodextrin (β-CD) as a macrocyclic tagging reagent, metabolites with the reserved moiety were expected to exhibit a characteristic shift of the mass-to-charge ratio (Δm/z = 1134.3698) after being noncovalently tagged by β-CD. Based on the characteristic mass shift, the suspected features were reduced by 1 order of magnitude, as numerous interfering species that could not be effectively tagged by β-CD were excluded. From these suspected features, two metabolites of BT that have not been reported before were successfully screened out. The significant characteristic mass shift caused by the noncovalent tagging method is easier to identify with more confidence than the previously reported SIL method. Besides, noncovalent tagging reagents can be much more accessible and less expensive than isotopically labeled reagents. Hence, this online noncovalent tagging method can be an intriguing alternative to the conventional SIL method.
Collapse
Affiliation(s)
- Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuyao Huang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.,College of Chemistry, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.,Guangdong Provincial Key Laboratory of Emergency Testing for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
19
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Yan Z, Feng C, Jin X, Liu D, Hong Y, Qiao Y, Bai Y, Moon HB, Qadeer A, Wu F. In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116586. [PMID: 33529897 DOI: 10.1016/j.envpol.2021.116586] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%-77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R2 = 0.995), where maximum velocity (Vmax) and Michaelis-Menten constant (Km) were 12,700 ± 2120 pmol min-1·mg-1 protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLint) of CDP was 12.3 μL min-1·mg-1 protein. Log Kow and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Abdul Qadeer
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
21
|
Yan Z, Jin X, Liu D, Hong Y, Liao W, Feng C, Bai Y. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. CHEMOSPHERE 2021; 266:128989. [PMID: 33228983 DOI: 10.1016/j.chemosphere.2020.128989] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Following the world-wide ban of brominated flame retardants (BFRs), organophosphate esters (OPEs), which could potentially affect human health and ecosystem safety, have been frequently detected in various environmental media. However, the knowledge regarding the underlying toxicity effects of OPEs remains limited. In order to address these issues, this study reviewed the related reports which have been published in recent years. This analysis process included 12 OPEs, 10 model organisms, and 15 cell lines, which were used to systematically examine the mechanisms of endocrine disruption, neurotoxicity, hepatotoxicity, and cardiotoxicity, as well as reproductive and developmental toxicity. Subsequently, an adverse outcome pathway (AOP) framework of the toxicological effects of OPEs was built. The results demonstrated that multiple different pathways may lead to a single same adverse outcome (AO), and there was a certain degree of correlation among the different AOs. It was found that among all the 12 OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) may potentially be the most toxic. In addition, rather than the parent chemicals, the metabolites of OPEs may also have different degrees of toxicity effects on aquatic organisms and humans. Overall, the results of the present study also suggested that an AOP framework should be built via fully utilizing the existing toxicity data of OPEs based on in vivo-in vitro-in silico to completely and deeply understand the toxic mechanisms of OPEs. This improved knowledge could then provide a theoretical basis for ecological risk assessments and water quality criteria research in the near future.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|