1
|
Zhang J, Wang Z, Li X, Zhang Y, Yuan J, Wang Z, Xu F, Chen Y, Li C. Association between phthalates exposure and myocardial damage in the general population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 261:119632. [PMID: 39025350 DOI: 10.1016/j.envres.2024.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cardiovascular consequences of phthalates exposure have been given increasing attention, but the association of phthalates with subclinical cardiovascular disease (CVD) was unknown. Accordingly, this study aimed to investigate the association between phthalates exposure and high-sensitivity cardiac troponin I (hs-cTnI), a marker of myocardial injury, which was detectable in the subclinical stage of CVD. METHODS Participants aged 6 years or older with available urinary phthalates metabolites and serum hs-cTnI concentrations were included in the National Health and Nutrition Examination Survey 2003-2004 cycle. Multivariable linear regression and weighted quantiles sum (WQS) regression were used to assess the association of hs-cTnI with individual phthalates and their co-exposure. Di-2-ethylhexylphthalate (ΣDEHP), high-molecular-weight phthalate (ΣHMWP), and low-molecular-weight phthalate (ΣLMWP) were defined as the molecular sum of phthalates metabolites in urine. RESULTS 2241 participants were finally included. The percent change of serum hs-cTnI concentrations related to per 1-standard deviation increase of logarithmic urinary phthalates concentrations was 3.4% (0.1-6.7, P = 0.04) for ΣDEHP, 3.6% (0.3-6.9, P = 0.03) for ΣHMWP, and 3.5% (0.2-6.8, P = 0.04) for ΣLMWP. Co-exposure to phthalates metabolites expressed as the WQS index also demonstrated a positive association with hs-cTnI. A similar association pattern was found in the population with no prior CVD. CONCLUSIONS This study indicated the potential of phthalates to myocardial injury which may occur even before clinically apparent CVD was identified, emphasizing the significance of reducing phthalates in the prevention of CVD.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yiwen Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaquan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zerui Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Mérida DM, Acosta-Reyes J, Bayán-Bravo A, Moreno-Franco B, Laclaustra M, Guallar-Castillón P. Phthalate exposure and subclinical carotid atherosclerosis: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124044. [PMID: 38677462 DOI: 10.1016/j.envpol.2024.124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Phthalates may be associated with an increased risk of cardiometabolic diseases by interfering with glucose and lipid metabolism and by promoting adipogenesis. This study aimed to perform a systematic review and meta-analysis of the association between phthalate exposure and subclinical carotid atherosclerosis, using surrogate markers such as carotid intima-media thickness (IMT) and carotid plaques. The literature search was performed using four databases (Web of Science, Medline, PubMed, and Scopus), and this systematic review includes all available observational studies until July 6th, 2023. The Joanna Briggs Institute critical appraisal tool was used to assess the risk of bias. Meta-analyses were performed, and random effects models were used. Six high-quality cross-sectional studies and 2570 participants aged 12 to 70 were included. Six phthalate metabolites showed significant associations with subclinical carotid atherosclerosis. Exposure to MBzP, ΣDEHP, and MnBP was associated with increased carotid IMT. Exposure to MEP was associated with a higher prevalence of carotid plaques, and MiBP was associated with a lower prevalence. Mixed results were observed for MMP in older adults. The meta-analyses showed a high degree of heterogeneity, and the results are based on single studies. This study accurately describes the evidence of this association to date, suggesting that phthalates are associated with increased carotid IMT and a higher prevalence of carotid plaques. Further research is needed to elucidate this association, as phthalates are still used in the manufacture of everyday products, humans continue to be exposed to them, and atherosclerosis is a public health concern.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Jorge Acosta-Reyes
- Department of Public Health, Division of Health Sciences, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla, Colombia.
| | - Ana Bayán-Bravo
- Clinical Nutrition and Dietetics Unit, Department of Endocrinology and Nutrition, 12 de Octubre Hospital, 28041 Madrid, Spain.
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain.
| | - Martín Laclaustra
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain; Department of Medicine, Psychiatry and Dermatology, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain; IMDEA-Food Institute. CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Lin CY, Wang CK, Sung FC, Su TC. The Association among Urinary Lead and Cadmium, Serum Adiponectin, and Serum Apoptotic Microparticles in a Young Taiwanese Population. Nutrients 2023; 15:4528. [PMID: 37960181 PMCID: PMC10647776 DOI: 10.3390/nu15214528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Previous studies reported that lead (Pb) and cadmium (Cd) exposure are linked to changes in serum adiponectin; an adipokine that promotes glycolysis and inhibits gluconeogenesis to regulate glucose metabolism. However, no study has ever explored the relationship between exposure to these two heavy metals and adiponectin in adolescents and young adults. Additionally, the role of adiponectin in the relationship between Pb and Cd exposure and vascular endothelial cell apoptosis has never been investigated. In this study, 724 Taiwanese participants, aged 12 to 30 years, were enrolled to investigate the association among urinary lead and cadmium, serum adiponectin, and apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+, and CD14). The results of the current study revealed a statistically significant inverse association between urine Pb and Cd levels and adiponectin levels, as well as a positive association with apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+, and CD14). Adiponectin was also inversely correlated with CD31+/CD42a- and CD31+/CD42a+. Moreover, when subjects with both Pb and Cd levels above the 50th percentile were compared to those below it, the former group exhibited the lowest average adiponectin value. Additionally, a more pronounced positive association between heavy metals and apoptotic microparticles (CD31+/CD42a- and CD31+/CD42a+) was observed when adiponectin levels were lower. Furthermore, an interaction between adiponectin and heavy metals was identified in the relationship between these metals and CD31+/CD42a-. In conclusion, these findings suggest that Pb and Cd exposure may have an adverse effect on adiponectin, and it may play a role in the link between heavy metal exposure and the dysfunction of vascular endothelial cells. Future studies are needed to establish whether a causal relationship exists.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Chi-Kang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou 558, Taiwan
| |
Collapse
|
4
|
Zhu X, Cheang I, Chen Z, Shi M, Zhu Q, Yue X, Tang Y, Pang H, Liao S, Zhou Y, Li X. Associations of urinary di(2-ethylhexyl) phthalate metabolites with lipid profiles among US general adult population. Heliyon 2023; 9:e20343. [PMID: 37800061 PMCID: PMC10550567 DOI: 10.1016/j.heliyon.2023.e20343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Background Di(2-ethylhexyl) phthalate (DEHP) a parent compound that is metabolized into 4 phthalate metabolites, which correlate to adverse cardio-metabolic risk factors. This study aimed to explore the links between urinary DEHP metabolites and serum lipids in the U.S. general adult population. Methods In this cross-sectional study, data on 11 urinary phthalate metabolites from the 2005-2018 National Health and Nutrition Examination Surveys (NHANES) were analyzed. Multivariate linear regression and restricted cubic spline (RCS) were used to examine the relationship between phthalate metabolites [specific DEHPs: mono-(2-ethyl-5-carboxy-pentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP)] and serum lipids (triglycerides [TG], total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], and high-density lipoprotein cholesterol [HDL-C]). To identify mixed exposure effects of phthalate metabolites, quantile g-computation (QG-C) and weighted quantile sum (WQS) regression were employed for the lipid profiles. Results A total of 9141 adults were included in the analysis. MECPP, MEHHP, MEHP, and MEOHP in the highest quartile had a negative relationship with HDL-C compared to the lowest quartile (All P for trend <0.05). TG showed a significant positive relation with MECPP, MEHHP, and MEOHP (All P for trend <0.05), but there was no notable association with MEHP. RCS demonstrated a linear relationship of DEHP metabolites with HDL-C, TC, TG, and LDL-C (all P for nonlinearity >0.05). The WQS index of DEHP metabolites showed independent correlations with HDL-C [β = -0.26, 95%CI (-0.43, -0.09), P = 0.002], TC [β = 0.55, 95%CI (0.13, 0.98), P = 0.011], and TG [β = 2.40, 95%CI (0.85, 3.96), P = 0.003]. Conclusion Our study suggests that environmental DEHP exposure may affect serum HDL-C and TG levels in the general adult population. Further research is warranted to confirm these findings and illuminate the underlying mechanisms of DEHP exposure on lipids.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ziqi Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xin Yue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuan Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Hui Pang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| |
Collapse
|
5
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
6
|
Lin CY, Lee HL, Chen CW, Wang C, Sung FC, Su TC. The role of angiotensin I-converting enzyme gene polymorphism and global DNA methylation in the negative associations between urine di-(2-ethylhexyl) phthalate metabolites and serum adiponectin in a young Taiwanese population. Clin Epigenetics 2023; 15:87. [PMID: 37198693 DOI: 10.1186/s13148-023-01502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Adiponectin is a key protein produced in adipose tissue, with crucial involvement in multiple metabolic processes. Di-(2-ethylhexyl) phthalate (DEHP), one of the phthalate compounds used as a plasticizer, has been shown to decrease adiponectin levels in vitro and in vivo studies. However, the role of angiotensin I-converting enzyme (ACE) gene polymorphism and epigenetic changes in the relationship between DEHP exposure and adiponectin levels is not well understood. METHODS This study examined the correlation between urine levels of DEHP metabolite, epigenetic marker 5mdC/dG, ACE gene phenotypes, and adiponectin levels in a sample of 699 individuals aged 12-30 from Taiwan. RESULTS Results showed a positive relationship between mono-2-ethylhexyl phthalate (MEHP) and 5mdC/dG, and a negative association between both MEHP and 5mdC/dG with adiponectin. The study found that the inverse relationship between MEHP and adiponectin was stronger when levels of 5mdC/dG were above the median. This was supported by differential unstandardized regression coefficients (- 0.095 vs. - 0.049, P value for interaction = 0.038)). Subgroup analysis also showed a negative correlation between MEHP and adiponectin in individuals with the I/I ACE genotype, but not in those with other genotypes, although the P value for interaction was borderline significant (0.06). The structural equation model analysis indicated that MEHP has a direct inverse effect on adiponectin and an indirect effect via 5mdC/dG. CONCLUSIONS In this young Taiwanese population, our findings suggest that urine MEHP levels are negatively correlated with serum adiponectin levels, and epigenetic modifications may play a role in this association. Further study is needed to validate these results and determine causality.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Yunlin, 640, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan.
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
- The Experimental Forest, National Taiwan University, Nantou, 558, Taiwan.
| |
Collapse
|
7
|
Yang AM, Lai TS, Lin YL, Wang C, Lin CY. Urinary di-(2-ethylhexyl) phthalate metabolites are independently related to serum neurofilament light chain, a biomarker of neurological diseases, in adults: results from NHANES 2013-2014. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66417-66425. [PMID: 37097562 DOI: 10.1007/s11356-023-26943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a chemical commonly used in the manufacturing of plastics and can pose human health risks, including endocrine disruption, reproductive toxicity, and potential carcinogenic effects. Children may be particularly vulnerable to the harmful effects of DEHP. Early exposure to DEHP has been linked to potential behavioral and learning problems. However, there are no reports to date on whether DEHP exposure in adulthood has neurotoxic effects. Serum neurofilament light chain (NfL), a protein released into the blood after neuroaxonal damage, has been shown to be a reliable biomarker for many neurological diseases. To date, no study has examined the relationship between DEHP exposure and NfL. For the present study, we selected 619 adults (aged ≥ 20 years) from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to examine the association between urinary DEHP metabolites and serum NfL. We reported higher urinary levels of ln-mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), ln-mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and ln-mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and ln-ΣDEHP levels were associated with higher serum levels of ln-NfL (ΣDEHP: β-coefficient = 0. 075; S.E. = 0.026; P = 0.011). When we divided ΣDEHP into quartiles, mean NfL concentrations increased with quartiles of MEHHP (P for trend = 0.023). The association was more pronounced in males, non-Hispanic white race, higher income, and BMI < 25. In conclusion, higher DEHP exposure was positively associated with higher serum NfL in adults from NHANES 2013-2014. If this finding is causal, it is possible that DEHP exposure in adulthood may also induce neurological damage. Although the causality of this observation and the clinical significance are uncertain, our findings suggest that additional research is needed on DEHP exposure, serum NfL, and neurological disease in adults.
Collapse
Affiliation(s)
- An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City, 237, Taiwan
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Tai-Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yu-Ling Lin
- Department of Healthcare Management, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
- Department of Nephrology, Hsinchu Cathay General Hospital, Hsinchu, 300, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City, 237, Taiwan.
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
8
|
Jiang X, Zhang H, Wang X, Zhang X, Ding K. Comprehensive Analysis of the Association between Human Diseases and Water Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416475. [PMID: 36554354 PMCID: PMC9779172 DOI: 10.3390/ijerph192416475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 05/31/2023]
Abstract
Drinking water is an important natural resource. For many people worldwide, especially in developing countries, access to safe drinking water is still a dream. An increasing number of human activities and industrialization have caused various physical, chemical, and biological pollutants to enter water bodies, affecting human health. Water pollutants contain a vast number of additives, such as perfluorinated chemicals, polybrominated diphenyl ethers, phthalate, nanomaterials, insecticides, microcystins, heavy metals, and pharmacologies. In this work, we aim to explore the potential relationship between water pollutants and human diseases. Here, we explored an integrative approach to identify genes, biological processes, molecular functions, and diseases linked to exposure to these water pollutants. These processes and functions affected by water pollutants are related to many diseases, including colonic neoplasms, breast neoplasms, hepatitis B, bladder cancer, and human cytomegalovirus infection. In addition, further analysis revealed the genes that play a key role in the human diseases induced by water pollutants. Therefore, conducting an integrative toxicogenomic analysis of water pollutants is more appropriate for evaluating the potential effects of water pollutants on human health.
Collapse
Affiliation(s)
- Xinlu Jiang
- Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230032, China
| | - Huanhuan Zhang
- Department of Respiratory, Wannan Medical College, Wuhu 241002, China
| | - Xiaoyan Wang
- Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230032, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kaiyang Ding
- Department of Hematology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Liu C, Qin Q, Xu J, Li X, Cong H. Phthalate promotes atherosclerosis through interacting with long-non coding RNA and induces macrophage foam cell formation and vascular smooth muscle damage. CHEMOSPHERE 2022; 308:136383. [PMID: 36088979 DOI: 10.1016/j.chemosphere.2022.136383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are commonly used in variety of plastic products. Previously it has been revealed that di (2-ethylhexyl) phthalate (DEHP), as the most common member of the class of phthalates, may disturb cholesterol homeostasis and deregulate the inflammatory response, and leading to accelerate the atherosclerosis process. In this regard, the aim of the current study is to explore the underlying mechanism of DEHP-induced atherosclerosis through the increasing of foam cell formation and Vascular Smooth Muscle Cells (VSMCs) damage via the interaction of long-non coding RNA (GAS5) and miR-145-5p. METHODS ApoE-/- mice were used to evaluate the in vivo study. RAW264.7 and VSMCs were used to evaluate the effect of DEHP on formation of foam cell, cell proliferation, and cell damage in vitro. Animals were treated with DEHP (5% w/w of food) orally and cells were treated with medium containing of 100 μM DEHP; qRT-PCR, Western blotting, flowcytometry, IHC, oil red O, BODIPY, and autophagic vacuoles assay were used to evaluate the effect of DEHP on formation of atherosclerosis. RESULTS DEHP significantly accelerated the formation of atherosclerosis in mice and alter the lipid profile in mice. In addition, after treating VSMCs with DEHP, GAS5 was significantly up-regulated and miR-145-5p was down-regulated. In VSMCs treated with DEHP, we observed that GAS5 could be used as the competing endogenous RNA (ceRNA) of miR-145-5p to regulate the proliferation and apoptosis of VSMCs; and the expression of GAS5 was correlated with the expression of miR-145-5p. DEHP increased the ox-LDL uptake by macrophage and increasing the formation of foam cells. Besides, GAS5 knocking down reversed the effect of DEHP on foam cell formation and ox-LDL uptake. CONCLUSION DEHP could accelerate the atherosclerosis process through increasing VSMCs damage and formation of macrophage foam cell by increasing lipid uptake though down regulating lncRNA GAS5 and altering in regulation of miR-145-5p.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Cardiovascular Diseases, Chest Hospital, Tianjin University, Tianjin, 300222, China.
| | - Qin Qin
- Institute of Cardiovascular Diseases, Chest Hospital, Tianjin University, Tianjin, 300222, China.
| | - Jinghan Xu
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, 300222, China.
| | - Ximing Li
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin, 300222, China.
| | - Hongliang Cong
- Institute of Cardiovascular Diseases, Chest Hospital, Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
10
|
Wen ZJ, Wang ZY, Zhang YF. Adverse cardiovascular effects and potential molecular mechanisms of DEHP and its metabolites-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157443. [PMID: 35868369 DOI: 10.1016/j.scitotenv.2022.157443] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Currently, cardiovascular disease (CVD) is a health hazard that is associated with progressive deterioration upon exposure to environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP) has been one of the focuses of emerging concern due to its ubiquitous nature and its toxicity to the cardiovascular (CV) system. DEHP has been noted as a causative risk factor or a risk indicator for the initiation and augment of CVDs. DEHP represents a precursor that contributes to the pathogenesis of CVDs through its active metabolites, which mainly include mono (2-ethylhexyl) phthalate (MEHP). Herein, we systematically presented the association between DEHP and its metabolites and adverse CV outcomes and discussed the corresponding effects, underlying mechanisms and possibly interventions. Epidemiological and experimental evidence has suggested that DEHP and its metabolites have significant impacts on processes and factors involved in CVD, such as cardiac developmental toxicity, cardiac injury and apoptosis, cardiac arrhythmogenesis, cardiac metabolic disorders, vascular structural damage, atherogenesis, coronary heart disease and hypertension. DNA methylation, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbance may pinpoint the relevant mechanisms. The preventive and therapeutic measures are potentially related with P-glycoprotein, heat-shock proteins, some antioxidants, curcumin, apigenin, β-thujaplicin, glucagon-like peptide-1 receptor agonists and Ang-converting enzyme inhibitors and so on. Promisingly, future investigations should aid in thoroughly assessing the causal relationship and molecular interactions between CVD and DEHP and its metabolites and explore feasible prevention and treatment measures accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
11
|
Bai C, Yang H, Zhao L, Liu L, Guo W, Yu J, Li M, Liu M, Lai X, Zhang X, Zhu R, Yang L. The mediating role of plasma microRNAs in the association of phthalates exposure with arterial stiffness: A panel study. ENVIRONMENTAL RESEARCH 2022; 212:113469. [PMID: 35588772 DOI: 10.1016/j.envres.2022.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates exposure has been reported to be linked with arterial stiffness. However, the biological mechanisms underlying this association remain unclear. We conducted a panel study using 338 paired urine-blood samples by repeated measurements of 123 adults across 3 seasons to assess the potential mediating role of plasma microRNAs (miRNAs) in the association of phthalates exposure with arterial stiffness. We measured 10 urinary phthalate metabolites by gas chromatography-tandem mass spectrometry (GC-MS/MS) and 5 candidate arterial stiffness-related miRNAs (miR-146a, miR-222, miR-125b, miR-126, and miR-21) in plasma by real-time PCR. Arterial stiffness parameters including brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were determined in health examinations during each visit. Linear mixed-effect (LME) models revealed that mono-methyl phthalate (MMP), mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MBP), mono-n-octyl phthalate (MOP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) were significantly associated with one or more of the 5 plasma miRNAs (all PFDR < 0.05). Based on weighted quantile sum (WQS) regression, we found positive associations of phthalate metabolites mixture with miR-146a, miR-125b, and miR-222, and individual MMP and MBP were the major contributors. Additionally, miR-146a was inversely related to ABI. Mediation analysis further indicated that miR-146a mediated 31.6% and 21.3% of the relationships of MMP and MiBP with ABI, respectively. Our findings suggested that certain phthalates exposure was related to plasma miRNAs alterations in a dose-response manner and miR-146a might partly mediate phthalate-associated ABI reduction.
Collapse
Affiliation(s)
- Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Zeng G, Zhang Q, Wang X, Wu KH. Low-level plasticizer exposure and all-cause and cardiovascular disease mortality in the general population. Environ Health 2022; 21:32. [PMID: 35264146 PMCID: PMC8905760 DOI: 10.1186/s12940-022-00841-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plasticizers, also called phthalates, are a group of chemicals widely used in daily life. A previous report showed no significant association between phthalate metabolite concentrations and mortality. We investigated the association of urinary phthalate levels and individual phthalate metabolite levels with all-cause and cardiovascular disease (CVD) mortality after standardizing the phthalate concentration. METHODS A total of 6,625 participants were recruited from a nationally representative sample of adults aged 40 years or older who were enrolled in the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2014 and were followed up through December 31, 2015. Data were analyzed from January 2021 to June 2021. NHANES-linked updated National Death Index public access files were used to acquire information on mortality status and cause of death. The present study conducted extended follow-up of an earlier analysis. Cox proportional hazard models were performed to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of covariate-adjusted creatinine standardization urinary phthalate concentrations with all-cause and CVD mortality after adjusting for demographics, lifestyle factors and comorbidity variables. RESULTS The mean ± standard deviation age of all participants in the final study was 59.9±12.6 years old, and 49.6% of the participants were male. The median follow-up time was 73 months (range 1-157 months). At the censoring date of December 31, 2015, 3,023 participants were identified as deceased (13.4%). A fully adjusted Cox model showed that a urinary di(2-ethylhexyl) phthalate (DEHP) concentration >= 83.4 ng/mL was associated with a slight increase in all-cause mortality (HR 1.27, 95% CI 1.03, 1.57, P for trend= 0.014) and CVD mortality (HR 2.19, 95% CI 1.35, 3.54, P for trend= 0.002). Similarly, urinary mono-2-ethyl-5-carboxypentyl phthalate (MECPP) levels >= 39.2 ng/mL were associated with increased CVD mortality (HR 2.33, 95% CI 1.45, 3.73, P for trend < 0.001). Restricted cubic spline analyses suggested linear associations of DEHP and MECPP levels with all-cause and CVD mortality. CONCLUSION In this large nationally representative sample of American adults, high urinary DEHP and MECPP were significantly associated with all-cause and CVD mortality after adjusting for demographics, lifestyle factors and comorbidity variables.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
13
|
Lin CY, Chen CW, Lee HL, Wu C, Wang C, Sung FC, Su TC. Global DNA methylation mediates the association between urine mono-2-ethylhexyl phthalate and serum apoptotic microparticles in a young Taiwanese population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152054. [PMID: 34863772 DOI: 10.1016/j.scitotenv.2021.152054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) has been used as a plasticizer for decades. Recent research evidence has revealed that environmental factors can alter vascular endothelial cell function through DNA methylation. However, no previous in vitro/vivo study has explored the role of DNA methylation in DEHP exposure and vascular endothelial cell function. In the present study, we enrolled 793 subjects aged 12 to 30 years from a young Taiwanese cohort to investigate the association between mono-2-ethylhexyl phthalate (MEHP) (urine DEHP metabolite), 5mdC/dG (global DNA methylation marker), CD31+/CD42a-, CD31+/CD42a+, and CD14 (apoptotic microparticles of vascular cells). In multiple regression analyses, the levels of mono-2-ethylhexyl phthalate (MEHP) were positively associated with 5mdC/dG and all three apoptotic microparticles. In addition, the regression coefficients between MEHP and the three types of apoptotic microparticles were higher when the 5mdC/dG levels were higher than the 50th percentile. In the structural equation model (SEM), we found that MEHP had a direct correlation with CD31+/CD42a- and an indirect association with CD31+/CD42a- through the effect of 5mdC/dG. Moreover, MEHP only had a direct association with CD31+/CD42a+ and an indirect association with CD14. In conclusion, the results show that global DNA methylation mediates the relationship between MEHP and apoptotic microparticles. These findings indicate that DNA methylation may play a role in the pathogenesis of DEHP-induced endothelial cell apoptosis in humans. Further studies are needed to clarify the causal inference.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Charlene Wu
- Global Health, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 404, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 10002, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10002, Taiwan; The Experimental Forest, National Taiwan University, Nantou 558, Taiwan.
| |
Collapse
|
14
|
Gao D, Zou Z, Li Y, Chen M, Ma Y, Chen L, Wang X, Yang Z, Dong Y, Ma J. Association between urinary phthalate metabolites and dyslipidemia in children: Results from a Chinese cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118632. [PMID: 34906593 DOI: 10.1016/j.envpol.2021.118632] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Rising evidence of both experimental and epidemiological studies suggests that phthalate exposure may contribute to increased risks of metabolic disorders. But there is limited research on the childhood dyslipidemia. Our cohort study was conducted in Xiamen city, Fujian Province, China. A total of 829 children (mean age 8.5 years) were included with collection of urine, blood samples and demographic data in May 2018 and followed up once a year from 2018 to 2020. We performed adjusted log-binomial regressions to examine associations between sex-specific tertiles of seven phthalate metabolites and dyslipidemia in visit 1, as well as persistent dyslipidemia and occasional dyslipidemia. We also used generalized estimating equation models (GEE) to explore the relationships between log-transformed phthalate metabolites and lipid profiles. In adjusted models, the prevalence and RRs of dyslipidemia increased with tertile group of mono-n-butyl phthalate (MnBP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), and summed di-(2-ethylhexyl) phthalate (∑DEHP) metabolites with a dose-response relationship in visit 1, as well as persistent dyslipidemia. Higher MnBP, ∑LMWP, MEHHP, MEOHP, and ∑DEHP concentrations were also associated with higher levels of log-transformed triglycerides (TG). Boys were more vulnerable to phthalates exposure than girls. In conclusion, children in China were widely exposed to phthalates, and phthalates exposure during childhood might significantly increase the risk of dyslipidemia and a higher level of lipid profiles, particularly in boys.
Collapse
Affiliation(s)
- Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Xijie Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Zhaogeng Yang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
15
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Association between Levels of Urine Di-(2-ethylhexyl)phthalate Metabolites and Heart Rate Variability in Young Adults. TOXICS 2021; 9:toxics9120351. [PMID: 34941785 PMCID: PMC8709404 DOI: 10.3390/toxics9120351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
Phthalate exposure is associated with cardiovascular risk. Among the various phthalates, di-(2-ethylhexyl) phthalate (DEHP) is a deleterious plasticizer in our daily lives. This study investigated the association between DEHP exposure and the alteration of heart rate variability (HRV). During 2017–2019, we recruited 974 young adults to investigate the effects of living environments and dietary habits on cardiometabolic disorders in Taiwan. We quantitatively analyzed urinary metabolites of DHEP. A continuous electrocardiogram was recorded to obtain a 5-min ECG. Time-domain and frequency-domain HRV analyses were performed. Multiple linear regression showed that urinary oxidized DEHP metabolites MEHHP and MEOHP were associated with decreased HRV after controlling for associated cardiovascular risk factors. A higher MEHHP level was associated with a lower triangular interpolation of NN interval histogram (TINN), very low frequency (VLF), and low frequency/high frequency (LF/HF) ratio. A higher MEOHP level was associated with a decreased LF/HF ratio. In addition, trend analysis showed that higher MEHHP and MEOHP quantiles were significantly associated with a decreased LF/HF ratio. DEHP is a potentially harmful and invisible chemical. The urinary DEHP metabolites MEHHP and MEOHP are associated with decreased HRV, indicating an adverse effect on autonomic balance in young adults in Taiwan.
Collapse
|
17
|
Jones AC, Irvin MR, Claas SA, Arnett DK. Lipid Phenotypes and DNA Methylation: a Review of the Literature. Curr Atheroscler Rep 2021; 23:71. [PMID: 34468868 DOI: 10.1007/s11883-021-00965-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Epigenetic modifications via DNA methylation have previously been linked to blood lipid levels, dyslipidemias, and atherosclerosis. The purpose of this review is to discuss current literature on the role of DNA methylation on lipid traits and their associated pathologies. RECENT FINDINGS Candidate gene and epigenome-wide approaches have identified differential methylation of genes associated with lipid traits (particularly CPT1A, ABCG1, SREBF1), and novel approaches are being implemented to further characterize these relationships. Moreover, studies on environmental factors have shown that methylation variations at lipid-related genes are associated with diet and pollution exposure. Further investigation is needed to elucidate the directionality of the associations between the environment, lipid traits, and epigenome. Future studies should also seek to increase the diversity of cohorts, as European and Asian ancestry populations are the predominant study populations in the current literature.
Collapse
Affiliation(s)
- Alana C Jones
- Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA.,Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Steven A Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Ave, Lexington, KY, 40508, USA
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Ave, Lexington, KY, 40508, USA.
| |
Collapse
|
18
|
Cai S, Fan J, Ye J, Rao X, Li Y. Phthalates exposure is associated with non-alcoholic fatty liver disease among US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112665. [PMID: 34438269 DOI: 10.1016/j.ecoenv.2021.112665] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in the western countries. We aimed to ascertain the relationship of urinary phthalates concentrations with presence of NAFLD among US adults. METHODS A cross-sectional analysis of data from National Health and Nutrition Examination Survey (NHANES) during 2003-2016 was performed. NAFLD was predicted by Hepatic Steatosis Index (HSI) and US Fatty Liver Index (US FLI), respectively. The logistic regression models were conducted to evaluate associations of urinary phthalates with NAFLD by adjustment for other covariates. RESULTS Of the 4206 participants (mean age 47.99 years old; 50.06% men), risk of suspected NAFLD was increased in those with higher concentrations of urinary phthalates. The results of multivariate models suggested that urinary phthalate metabolites MEOHP (odds ratio [OR] = 1.56, 95% confidence interval [CI] = 1.08-2.24), MEHHP (OR = 1.55, 95% CI = 1.09-2.21), MECPP (OR = 1.44, 95% CI = 1.06-1.95) and the mixtures of nine phthalates (OR = 1.58, 95%CI = 1.18-2.11) were positively related to NAFLD defined by HSI; the similar significant associations were observed for MEHHP (OR = 1.98, 95% CI = 1.32-2.97) when NAFLD was determined based upon US FLI ≥30. In subgroup analyses, the positive associations of urinary phthalates concentrations with NAFLD risk remained robust both in males and females, whereas only in individuals aged <60 years. CONCLUSIONS Phthalates exposure was independently associated with NAFLD both in males and females, regardless of being defined using HSI or US FLI.
Collapse
Affiliation(s)
- Shaofang Cai
- Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Jiayao Fan
- School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jianhong Ye
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Xianming Rao
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|