1
|
Nan Y, Feng C, Zhuo Y, Hu P. Co-adsorption enhancement of formaldehyde/carbon dioxide over modified hexagonal boron nitride for whole-surface capture purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120586. [PMID: 38513581 DOI: 10.1016/j.jenvman.2024.120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Simultaneous capture of formaldehyde (HCHO) and carbon dioxide (CO2) in indoor air is promising of achieving indoor-air purification. Of all potential adsorbents, hexagonal boron nitride (h-BN) is one of the most suitable species owing to facile formation of attraction points. Therefore, in this study, performances of HCHO and CO2 being adsorbed over pure/modified h-BN are systematically investigated via density functional theory (DFT) calculations. Minutely speaking, direct interaction between HCHO and CO2, single-point adsorption enhancement of HCHO over modified h-BN, co-adsorption reinforcement of HCHO/CO2 as well as relevant thermodynamic characteristics are major research contents. According to calculation results, there is relatively strong attraction between HCHO and CO2 owing to hydrogen bonds, which is in favor of co-adsorption of HCHO/CO2. As to single-adsorption of HCHO, C-doped h-BN shows better adsorption features than P-doped h-BN and C/P-doped h-BN is slightly weakened in adsorption ability due to surficial deformation caused by P atoms. For co-adsorption of HCHO/CO2, CO2 is the protagonist via formation of quasi-carbonate with the help of delocalized π-orbital electrons. Regarding effects of temperatures on adsorption strengths, they depend on interelectronic interactions among dopant atoms and finally derives from dispersion of π bonds across adsorbents. Overall, this study provides detailed mechanisms for co-capture of HCHO/CO2 to accomplish indoor-air purification.
Collapse
Affiliation(s)
- Yanli Nan
- China Southwest Architectural Design and Research Institute Corp. Ltd, Chengdu, 610041, Sichuan, PR China
| | - Chi Feng
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Pengbo Hu
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
2
|
Zuazua-Ros A, de Brito Andrade L, Dorregaray-Oyaregui S, Martín-Gómez C, Ramos González JC, Manzueta R, Sánchez Saiz-Ezquerra B, Ariño AH. Crosscutting of the pollutants and building ventilation systems: a literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66538-66558. [PMID: 37121949 PMCID: PMC10149636 DOI: 10.1007/s11356-023-27148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Considering the time spent in enclosed environments, it is essential to study the relationship between pollutants and building ventilation systems to find whether the types and levels of pollutants and greenhouse gasses, which are expected to be exhaled through ventilation systems into the atmosphere, have been adequately evaluated. We propose the hypothesis that the exhaled air from residential buildings contains pollutants that may become another source of contamination affecting urban air quality and potentially contributing to climate drivers. Thus, the main goal of this article is to present a cross-review of the identification of pollutants expected to be exhaled through ventilation systems in residential buildings. This approach has created the concept of "exhalation of buildings" a new concept enclosed within the research project in which this article is included. We analyze the studies related to the most significant pollutants found in buildings and the studies about the relation of buildings' ventilation systems with such pollutants. Our results show that, on the one hand, the increase in the use of mechanical ventilation systems in residential buildings has been demonstrated to enhance the ventilation rate and generally improve the indoor air quality conditions. But no knowledge could be extracted about the corresponding environmental cost of this improvement, as no systematic data were found about the total mass of contaminants exhaled by those ventilation systems. At the same time, no projects were found that showed a quantitative study on exhalation from buildings, contrary to the existence of studies on pollutants in indoor air.
Collapse
Affiliation(s)
- Amaia Zuazua-Ros
- Department of Construction, Building Services and Structures, Universidad de Navarra, Campus Universitario, 31009, Pamplona, Spain
| | - Leonardo de Brito Andrade
- Department of Rural Engineering, Center of Agrarian Sciences, Federal University of Santa Catarina, Rodovia Admar Gonzaga 1346, Florianópolis, SC, 88034-000, Brazil.
| | - Sara Dorregaray-Oyaregui
- Department of Construction, Building Services and Structures, Universidad de Navarra, Campus Universitario, 31009, Pamplona, Spain
| | - César Martín-Gómez
- Department of Construction, Building Services and Structures, Universidad de Navarra, Campus Universitario, 31009, Pamplona, Spain
| | - Juan Carlos Ramos González
- Department of Mechanical Engineering and Materials, Thermal and Fluids Engineering Division, Universidad de Navarra, Paseo de Manuel Lardizábal 13, 20018, San Sebastián, Spain
| | - Robiel Manzueta
- Department of Construction, Building Services and Structures, Universidad de Navarra, Campus Universitario, 31009, Pamplona, Spain
| | - Bruno Sánchez Saiz-Ezquerra
- Department of Construction, Building Services and Structures, Universidad de Navarra, Campus Universitario, 31009, Pamplona, Spain
| | - Arturo H Ariño
- Department of Environmental Biology, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| |
Collapse
|
3
|
Parhizkar H, Fretz M, Laguerre A, Stenson J, Corsi RL, Van Den Wymelenberg KG, Gall ET. A novel VOC breath tracer method to evaluate indoor respiratory exposures in the near- and far-fields; implications for the spread of respiratory viruses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:339-346. [PMID: 36424424 PMCID: PMC9686220 DOI: 10.1038/s41370-022-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.
Collapse
Affiliation(s)
- Hooman Parhizkar
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| | - Jason Stenson
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Richard L Corsi
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Kevin G Van Den Wymelenberg
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA.
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA.
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| |
Collapse
|
4
|
Qin L, Zhai M, Cheng H. Indoor air pollution from the household combustion of coal: Tempo-spatial distribution of gaseous pollutants and semi-quantification of source contribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163502. [PMID: 37075989 DOI: 10.1016/j.scitotenv.2023.163502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Coal is a widely used solid fuel for cooking and heating activities in rural households, whose incomplete combustion in inefficient household stoves releases a range of gaseous pollutants. To evaluate the impact of coal combustion on indoor air quality, this study comprehensively investigated the indoor air pollution of typical gaseous pollutants, including formaldehyde (HCHO), carbon dioxide (CO2), carbon monoxide (CO), total volatile organic compounds (TVOC), and methane (CH4), during coal combustion process in rural households using online monitoring with high tempo-spatial resolution. The indoor concentrations of gaseous pollutants were considerably elevated during the coal combustion period, with the indoor concentrations being significantly higher than those in courtyard air. The levels of several gaseous pollutants (CO2, CO, TVOC, and CH4) in indoor air were much higher during the flaming phase than the de-volatilization and smoldering phases, while HCHO peaked in the de-volatilization phase. The gaseous pollutant concentrations mostly decreased from the room ceiling to the ground level, while their horizontal distribution was relatively uniform within the room. It was estimated that coal combustion accounted for about 71 %, 92 %, 63 %, 59 %, and 21 % of total exposure to indoor CO2, CO, TVOC, CH4, and HCHO, respectively. Improved stove combined with clean fuel could effectively lower the concentrations of CO2, CO, TVOC, and CH4 in indoor air and reduce the contributions of coal combustion to these gaseous pollutants by about 21-68 %. These findings help better understand the indoor air pollution resulting from residential coal combustion and could guide the development of intervention programs to improve indoor air quality in rural households of northern China.
Collapse
Affiliation(s)
- Lifan Qin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Mengkun Zhai
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Wang J, Du W, Lei Y, Chen Y, Wang Z, Mao K, Tao S, Pan B. Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: Current status and future implication. ENVIRONMENT INTERNATIONAL 2023; 175:107934. [PMID: 37086491 DOI: 10.1016/j.envint.2023.107934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.
Collapse
Affiliation(s)
- Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Yali Lei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
6
|
Liu X, Li Y, Luo Z, Xing R, Men Y, Huang W, Jiang K, Zhang L, Sun C, Xie L, Cheng H, Shen H, Chen Y, Du W, Shen G, Tao S. Identification of Factors Determining Household PM 2.5 Variations at Regional Scale and Their Implications for Pollution Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3722-3732. [PMID: 36826460 DOI: 10.1021/acs.est.2c05750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Indoor PM2.5, particulate matter no more than 2.5 μm in aerodynamic equivalent diameter, has very high spatiotemporal variabilities; and exploring the key factors influencing the variabilities is critical for purifying air and protecting human health. Here, we conducted a longer-term field monitoring campaign using low-cost sensors and evaluated inter- and intra-household PM2.5 variations in rural areas where energy or stove stacking is common. Household PM2.5 varied largely across different homes but also within households. Using generalized linear models and dominance analysis, we estimated that outdoor PM2.5 explained 19% of the intrahousehold variation in indoor daily PM2.5, whereas factors like the outdoor temperature and indoor-outdoor temperature difference that was associated with energy use directly or indirectly, explained 26% of the temporal variation. Inter-household variation was lower than intrahousehold variation. The inter-household variation was strongly associated with distinct internal sources, with energy-use-associated factors explaining 35% of the variation. The statistical source apportionment model estimated that solid fuel burning for heating contributed an average of 31%-55% of PM2.5 annually, whereas the contribution of sources originating from the outdoors was ≤10%. By replacing raw biomass or coal with biomass pellets in gasifier burners for heating, indoor PM2.5 could be significantly reduced and indoor temperature substantially increased, providing thermal comforts in addition to improved air quality.
Collapse
Affiliation(s)
- Xinlei Liu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Agricultural Renewable Resource Utilization Technology, Northeast Agricultural University, Harbin 150006, China
| | - Yaojie Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihan Luo
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yatai Men
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxuan Huang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ke Jiang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chao Sun
- Shandong Warm Valley New Energy and Environmental Protection, Yantai 264001, China
| | - Longjiao Xie
- Health Science Center, Peking University, Beijing 100871, China
| | - Hefa Cheng
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huizhong Shen
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wei Du
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
8
|
Zannoni N, Lakey PSJ, Won Y, Shiraiwa M, Rim D, Weschler CJ, Wang N, Ernle L, Li M, Bekö G, Wargocki P, Williams J. The human oxidation field. Science 2022; 377:1071-1077. [PMID: 36048928 DOI: 10.1126/science.abn0340] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydroxyl (OH) radicals are highly reactive species that can oxidize most pollutant gases. In this study, high concentrations of OH radicals were found when people were exposed to ozone in a climate-controlled chamber. OH concentrations calculated by two methods using measurements of total OH reactivity, speciated alkenes, and oxidation products were consistent with those obtained from a chemically explicit model. Key to establishing this human-induced oxidation field is 6-methyl-5-hepten-2-one (6-MHO), which forms when ozone reacts with the skin-oil squalene and subsequently generates OH efficiently through gas-phase reaction with ozone. A dynamic model was used to show the spatial extent of the human-generated OH oxidation field and its dependency on ozone influx through ventilation. This finding has implications for the oxidation, lifetime, and perception of chemicals indoors and, ultimately, human health.
Collapse
Affiliation(s)
- Nora Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Youngbo Won
- Department of Architectural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Environmental and Resource Engineering, DTU Sustain, Technical University of Denmark, Lyngby, Denmark.,Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Nijing Wang
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Lisa Ernle
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Mengze Li
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Environmental and Resource Engineering, DTU Sustain, Technical University of Denmark, Lyngby, Denmark
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Environmental and Resource Engineering, DTU Sustain, Technical University of Denmark, Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
9
|
Ainiwaer S, Chen Y, Shen G, Shen H, Ma J, Cheng H, Tao S. Characterization of the vertical variation in indoor PM 2.5 in an urban apartment in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119652. [PMID: 35760202 DOI: 10.1016/j.envpol.2022.119652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Indoor air pollution has aroused increasing concerns due to its significant adverse health impacts. Indoor PM2.5 exposure assessments often rely on PM2.5 concentration measured at a single height, which overlooks the vertical variation of PM2.5 concentrations accompanied by various indoor activities. In this study, we characterize the vertical profile of PM2.5 concentration by monitoring PM2.5 concentration at eight different heights in the kitchen and the bedroom, respectively, using low-cost sensors with high temporal resolution. The localized enhancement of PM2.5 concentration in elevated heights in the kitchen during cooking was observed on clean and polluted days, showing dominating contribution from cooking activities. The source contribution from cooking and outdoor penetration was semi-quantified using regression models. Stratified source contribution from cooking activities was evident in the kitchen during the cooking period. The contribution in elevated heights (above 170 cm) almost tripled the contrition in bottom layers (below 140 cm). In contrast, little vertical variation was observed during other times of the day in the kitchen or the bedroom. The exposure level calculated using the multi-height measurement in this study is consistently higher than the exposure level estimated from the single-height (at 110 cm) measurement. A more significant discrepancy existed for the cookers (17.8%) than the non-cookers (13.5%). By profiling the vertical gradient of PM2.5 concentration, we show the necessity to conduct multi-height measurements or proper breathing-height measurements to obtain unbiased concentration information for source apportionment and exposure assessment. In particular, the multi-height measuring scheme will be crucial to inform household cooking emission regulations.
Collapse
Affiliation(s)
- Subinuer Ainiwaer
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Yilin Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guofeng Shen
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianmin Ma
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Shu Tao
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Zhang Y, Shen F, Yang Y, Niu M, Chen D, Chen L, Wang S, Zheng Y, Sun Y, Zhou F, Qian H, Wu Y, Zhu T. Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6282-6293. [PMID: 35512288 PMCID: PMC9113006 DOI: 10.1021/acs.est.2c00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 05/04/2023]
Abstract
Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.
Collapse
Affiliation(s)
- Yin Zhang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Yi Yang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Mutong Niu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Da Chen
- School
of Environment and Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Longfei Chen
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Shengqi Wang
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yunhao Zheng
- Institute
of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Sun
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Feng Zhou
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hua Qian
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yan Wu
- School of
Environmental Science and Engineering, Shandong
University, Jinan 250100, China
| | - Tianle Zhu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
11
|
Wang W, Kimoto S, Huang R, Matsui Y, Yoneda M, Wang H, Wang B. Identifying the contribution of charge effects to airborne transmission of aerosols in confined spaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151527. [PMID: 34762944 DOI: 10.1016/j.scitotenv.2021.151527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Aerosols in indoor air have various adverse effects on human health. Considering the use of forced ventilation and fan mixing (individually and in combination), the variation in charge number and their effects on aerosol transmission in confined spaces were explored in this study with the distinction of particle sources. In the case of sources originating from the external space, natural penetration acquires a greater number of negative charges. Forced ventilation of a confined space acts on the fate of particles in the neighboring confined space, while the internal fan has a negligible effect on both the number concentration and charge number of particles in the exterior. The combination of forced ventilation and fan mixing increases charge numbers, altering the lifetime of particles in the external regional environment by deposition or adsorption, particularly for neutralized particles. In the case of sources originating from the interior area, application of an internal fan weakens the ventilation effect from forced ventilation, resulting in internal particle loss by depositing on internal surfaces due to electrostatic charge, increasing the potential risk of resuspension. Additionally, source origin is associated with particle fate, and the charge generated under the action of external forces contributes to the transmission pathways and the fate of the particles in the air. This study investigates the transmission pathways and the fate of aerosols from the perspective of charge number, hopefully contributing to an in-depth understanding of the transmission mechanisms of toxic substances in confined spaces with aerosols as carriers.
Collapse
Affiliation(s)
- Wenlu Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan.
| | - Shigeru Kimoto
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Riping Huang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Yasuto Matsui
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Minoru Yoneda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Jinan University, Guangzhou 511443, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Jinan University, Guangzhou 511443, China
| |
Collapse
|
12
|
Men Y, Li J, Liu X, Li Y, Jiang K, Luo Z, Xiong R, Cheng H, Tao S, Shen G. Contributions of internal emissions to peaks and incremental indoor PM 2.5 in rural coal use households. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117753. [PMID: 34261028 DOI: 10.1016/j.envpol.2021.117753] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Indoor air quality is critically important to the human as people spend most time indoors. Indoor PM2.5 is related to the outdoor levels, but more directly influenced by internal sources. Severe household air pollution from solid fuel use has been recognized as one major risk for human health especailly in rural area, however, the issue is significantly overlooked in most national air quality controls and intervention policies. Here, by using low-cost sensors, indoor PM2.5 in rural homes burning coals was monitored for ~4 months and analyzed for its temporal dynamics, distributions, relationship with outdoor PM2.5, and quantitative contributions of internal sources. A bimodal distribution of indoor PM2.5 was identified and the bimodal characteristic was more significant at the finer time resolution. The bimodal distribution maxima were corresponding to the emissions from strong internal sources and the influence of outdoor PM2.5, respectively. Indoor PM2.5 was found to be correlated with the outdoor PM2.5, even though indoor coal combustion for heating was thought to be predominant source of indoor PM2.5. The indoor-outdoor relationship differed significantly between the heating and non-heating seasons. Impacts of typical indoor sources like cooking, heating associated with coal use, and smoking were quantitatively analyzed based on the highly time-resolved PM2.5. Estimated contribution of outdoor PM2.5 to the indoor PM2.5 was ~48% during the non-heating period, but decreased to about 32% during the heating period. The contribution of indoor heating burning coals comprised up to 47% of the indoor PM2.5 during the heating period, while the other indoor sources contributed to ~20%. The study, based on a relatively long-term timely resolved PM2.5 data from a large number of rural households, provided informative results on temporal dynamics of indoor PM2.5 and quantitative contributions of internal sources, promoting scientific understanding on sources and impacts of household air pollution.
Collapse
Affiliation(s)
- Yatai Men
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianpeng Li
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xinlei Liu
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yaojie Li
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ke Jiang
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhihan Luo
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Rui Xiong
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Tao S, Shen G, Cheng H, Ma J. Toward Clean Residential Energy: Challenges and Priorities in Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13602-13613. [PMID: 34597039 DOI: 10.1021/acs.est.1c02283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solid fuels used for cooking, heating, and lighting are major emission sources of many air pollutants, specifically PM2.5 and black carbon, resulting in adverse environmental and health impacts. At the same time, the transition from using residential solid fuels toward using cleaner energy sources can result in significant health benefits. Here, we briefly review recent research progress on the emissions of air pollutants from the residential sector and the impacts of emissions on ambient and indoor air quality, population exposure, and health consequences. The major challenges and future research priorities are identified and discussed.
Collapse
Affiliation(s)
- Shu Tao
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Spatial and temporal scales of variability for indoor air constituents. Commun Chem 2021; 4:110. [PMID: 36697551 PMCID: PMC9814873 DOI: 10.1038/s42004-021-00548-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.
Collapse
|
15
|
Shen H, Hou W, Zhu Y, Zheng S, Ainiwaer S, Shen G, Chen Y, Cheng H, Hu J, Wan Y, Tao S. Temporal and spatial variation of PM 2.5 in indoor air monitored by low-cost sensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145304. [PMID: 33513497 DOI: 10.1016/j.scitotenv.2021.145304] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 05/21/2023]
Abstract
Indoor air pollution has significant adverse health impacts, but its spatiotemporal variations and source contributions are not well quantified. In this study, we used low-cost sensors to measure PM2.5 concentrations in a typical apartment in Beijing. The measurements were conducted at 15 indoor sites and one outdoor site on 1-minute temporal resolution (convert to 10-minute averages for data analysis) from March 14 to 24, 2020. Based on these highly spatially-and temporally-resolved data, we characterized spatiotemporal variations and source contributions of indoor PM2.5 in this apartment. It was found that indoor particulate matter predominantly originates from outdoor infiltration and cooking emissions with the latter contributing more fine particles. Indoor PM2.5 concentrations were found to be correlated with ambient levels but were generally lower than those outdoors with an average I/O of 0.85. The predominant indoor source was cooking, leading to occasional high spikes. The variations observed in most rooms lagged behind those measured outdoors and in the studied kitchen. Differences between rooms were found to depend on pathway distances from sources. On average, outdoor sources contributed 36% of indoor PM2.5, varying extensively over time and among rooms. From observed PM2.5 concentrations at the indoor sites, source strengths, and pathway distances, a multivariate regression model was developed to predict spatiotemporal variations of PM2.5. The model explains 79% of the observed variation and can be used to dynamically simulate PM2.5 concentrations at any site indoors. The model's simplicity suggests the potential for regional-scale application for indoor air quality modeling.
Collapse
Affiliation(s)
- Huizhong Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Weiying Hou
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Yaqi Zhu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Shuxiu Zheng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Subinuer Ainiwaer
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Yilin Chen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Jianying Hu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Yi Wan
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Shrestha B, Tiwari S, Bajracharya S, keitsch M. Role of gender participation in urban household energy technology for sustainability: a case of Kathmandu. DISCOVER SUSTAINABILITY 2021; 2:19. [PMID: 35425909 PMCID: PMC7985919 DOI: 10.1007/s43621-021-00027-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/09/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED Sustainability has endured as a global topic in terms of quality of life and energy-saving for an equalized system. Households represent one of the most energy-consuming sectors globally and are expected to increase tremendously in the future. Women have higher responsibility in the household energy use in most societies. However, their participation and impacts have been less prioritized in the sustainability concept regarding energy perspective. In contrast, most development studies reveal that women's participation in managing resources can positively impact women and policy management. However, women's active participation and influences on social, economic, and environmental contexts are mostly ignored in energy-related decisions, disregarding women's productive activities. Thus, this study evaluates the gender role in urban household energy in three contexts of economic, social, and environmental aspects of sustainability pillars. This study is exploratory research based on questionnaire survey, interviews, observation, and air quality tests to apprehend appropriate data. The study revealed that the lower-income group uses a larger share of their monthly income for household energy with unclean cooking fuel. It has an impact on low-willingness to participate in new energy technology purchases. The use of electrical appliances and income has a moderate correlation (r = .48). However, Kathmandu urban households are eager to use electric cooking, but urban women have insufficient knowledge, information, and less affordability for new technology. The city's sustainability level is still low (47 scores) from a gender perspective, and it suggests the city needs a long way on the sustainability route. The study concluded that innovative technical interventions and women's financial power are essential, including the subsidy policy to reduce inequality between low and high energy household share variation and elevate gender participation. The gender mainstreaming approach in energy policy can increase women's participation in energy technology to get a clean environment and reduce the nation's financial burden of importing fuel. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43621-021-00027-w.
Collapse
Affiliation(s)
| | | | | | - Martina keitsch
- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
The Indoor Microclimate of Prefabricated Buildings for Housing: Interaction of Environmental and Construction Measures. SUSTAINABILITY 2020. [DOI: 10.3390/su122310119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current knowledge shows that the interior microclimate of residential buildings that were constructed between 1950 and 1990 using panel construction, not only in the Czech Republic but also in Europe, and were renovated in accordance with applicable legislation related to thermal comfort and energy is significantly affected by gaseous pollutants. At increased concentrations and exposure times, these pollutants negatively affect the interior microclimate and at the same time have a negative effect on the health of users. After the implementation of remediation measures, which are mainly focused on improving the thermal technical parameters of the building envelope, the concentration of CO2 in the indoor environment increases. Carbon dioxide is one of the most important active factors and in terms of the quality of the interior microclimate, it is considered a reliable indicator of whether the interior microclimate can be considered a healthy and favorable environment. It is thus clear that the set and de facto systematized measures in the renovation of the housing stock from the second half of the 20th century has led to energy savings on the one hand, but on the other hand, this has contributed to the hygienic damage of housing units and an unhealthy interior microclimate. The paper aims to define the interaction of interdisciplinary contexts that have led to an increase in the indoor air quality (IAQ) of renovated residential panel buildings.
Collapse
|