1
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Ren YL, Liang Q, Lian CY, Zhang W, Wang L. Melatonin alleviates glyphosate-induced testosterone synthesis inhibition via targeting mitochondrial function in roosters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123828. [PMID: 38522604 DOI: 10.1016/j.envpol.2024.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.
Collapse
Affiliation(s)
- Yu-Long Ren
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Qing Liang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Wei Zhang
- Yantai Academy of Agricultural Sciences, Yan'tai City 265500, Shandong Province, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
3
|
Lu L, Lian CY, Lv YT, Zhang SH, Wang L, Wang L. Glyphosate drives autophagy-dependent ferroptosis to inhibit testosterone synthesis in mouse Leydig cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169927. [PMID: 38199345 DOI: 10.1016/j.scitotenv.2024.169927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Glyphosate (GLY), a widely used herbicide, can adversely affect the male reproductive health by inhibiting testosterone synthesis. Ferroptosis is a form of iron-dependent oxidative cell death that contributes to inhibition of testosterone secretion. However, it still remains unclear whether ferroptosis is involved in GLY-inhibited testosterone synthesis. Hereby, an in vitro model of 1 mM GLY-exposed testicular Leydig (TM3) cells was established to elucidate this issue. Data firstly showed that GLY causes cytotoxicity and testosterone synthesis inhibition via ferroptosis, while accumulation of lipid peroxides due to intracellular ferrous ion (Fe2+) overload and glutathione depletion is confirmed as a determinant of ferroptosis. Blockage of ferroptosis via chelation of Fe2+ or inhibition of lipid peroxidation can markedly mitigate GLY-induced testosterone synthesis inhibition. Also, autophagy activation is revealed in GLY-treated TM3 cells and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is involved in ferroptosis through the release of excess Fe2+. GLY-induced cytotoxicity and testosterone synthesis inhibition are significantly alleviated by NCOA4 knockdown, demonstrating the crucial role of NCOA4-mediated ferritinophagy in GLY-inhibited testosterone synthesis. In summary, this study provides solid evidence that NCOA4-mediated ferritinophagy promotes ferroptosis to inhibit testosterone synthesis, highlighting that targeting NCOA4 may be a potential therapeutic approach in GLY-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lu Lu
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yan-Ting Lv
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Shu-Hui Zhang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Long Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
4
|
Gao F, Liu H, Du Y, Fang X, Cheng B, Shi B. Dietary Resveratrol Ameliorates Hepatic Fatty Acid Metabolism and Jejunal Barrier in Offspring Induced by Maternal Oxidized Soybean Oil Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3730-3740. [PMID: 38320975 DOI: 10.1021/acs.jafc.3c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Increasing evidence indicates that maternal exposure to oxidized soybean oil (OSO) causes damage to the mother and offspring. The antioxidant resveratrol (Res) has a variety of health benefits. However, the protective effect of Res on mitigating offspring damage after maternal exposure to OSO and its mechanism remains unclear. Therefore, this study aimed to investigate the effect of Res on hepatic fatty acid metabolism and the jejunal barrier in suckling piglets after maternal OSO exposure. A total of 18 sows in late gestation were randomly assigned to three treatments. The sows were fed with a fresh soybean oil (FSO) diet, an OSO diet, or the OSO diet supplemented with 300 mg/kg Res (OSO + Res), respectively. The results showed that maternal supplementation of Res restored the mRNA levels of genes related to fatty acid metabolism and increased the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in suckling piglets' livers under the OSO challenge. Moreover, the OSO + Res group restored the mRNA levels of occludin and claudin 4 in suckling piglet jejunum compared with the results of the OSO challenges. In summary, supplementation with Res improves hepatic fatty acid metabolism and intestinal barrier function of suckling piglets after maternal OSO challenge during late gestation and lactation.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| |
Collapse
|
5
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Yildirim EA, Laptev GY, Tiurina DG, Gorfunkel EP, Ilina LA, Filippova VA, Dubrovin AV, Brazhnik EA, Novikova NI, Melikidi VK, Kalitkina KA, Ponomareva ES, Griffin DK, Romanov MN. Investigating adverse effects of chronic dietary exposure to herbicide glyphosate on zootechnical characteristics and clinical, biochemical and immunological blood parameters in broiler chickens. Vet Res Commun 2024; 48:153-164. [PMID: 37594698 PMCID: PMC10810961 DOI: 10.1007/s11259-023-10195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Although the herbicide glyphosate is widely used globally and considered safe, more evidence of its adverse effects on animals and humans is accumulating. The present investigation was aimed at evaluating the impact of different glyphosate concentrations on zootechnical characteristics and clinical, biochemical and immunological blood parameters in Ross 308 broiler chickens. Four groups were employed, including untreated control and three experimental groups fed diets enriched with glyphosate at doses of 10, 20 and 100 ppm that conformed to 0.5, 1 and 5 maximum residue limits, respectively. The results showed that glyphosate is a stress factor triggering a multifaceted effect on important blood parameters (e.g., white blood cell and phagocytic counts), which was shown for the first time in the experiments involving productive meat-type poultry. It was first revealed that glyphosate-induced changes in blood parameters may be related to a negative impact on the zootechnical characteristics including the digestive tract organ development and body weight gain. The study findings suggested that exposure to glyphosate in the feedstuffs can adversely affect the physiological condition and productivity of broilers.
Collapse
Affiliation(s)
- Elena A Yildirim
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | - Georgi Yu Laptev
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | | | | | - Larisa A Ilina
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | - Valentina A Filippova
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | | | | | | | | | - Kseniya A Kalitkina
- BIOTROF+ Ltd, Pushkin, St. Petersburg, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia
| | | | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, UK.
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast, Russia.
| |
Collapse
|
7
|
Park W, Park H, Park S, Lim W, Song G. Bifenox compromises porcine trophectoderm and luminal epithelial cells in early pregnancy by arresting cell cycle progression and impairing mitochondrial and calcium homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105628. [PMID: 37945262 DOI: 10.1016/j.pestbp.2023.105628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Bifenox is a widely used herbicide that contains a diphenyl ether group. However its global usage, the cell physiological effects that induce toxicity have not been elucidated. In this study, the effect of bifenox was examined in porcine trophectoderm and uterine epithelial cells to investigate the potential toxicity of the implantation process. To uncover the toxic effects of bifenox, cell viability and apoptosis following treatment with bifenox were evaluated. To investigate the underlying cellular mechanisms, mitochondrial and calcium homeostasis were investigated in both cell lines. In addition, the dysregulation of cell signal transduction and transcriptional alterations were also demonstrated. Bifenox reduced cell viability and significantly increased the number of cells arrested at the sub-G1 stage. Moreover, bifenox depolarized the mitochondrial membrane and upregulated the calcium flux into the mitochondria in both cell lines. Cytosolic calcium flux increased in porcine trophectoderm (pTr) cells and decreased in porcine luminal epithelium (pLE) cells. In addition, bifenox activated the mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways. Furthermore, bifenox inhibited the expression of retinoid receptor genes, such as RXRA, RXRB, and RXRG. Chemokine CCL8 was also downregulated at the mRNA level, whereas CCL5 expression remained unchanged. Overall, the results of this study suggest that bifenox deteriorates cell viability by arresting cell cycle progression, damaging mitochondria, and controlling calcium levels in pTr and pLE cells. The present study indicates the toxic potential of bifenox in the trophectoderm and luminal epithelial cells, which can lead to implantation disorders in early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Tajai P, Pruksakorn D, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Effects of glyphosate-based herbicides and glyphosate exposure on sex hormones and the reproductive system: From epidemiological evidence to mechanistic insights. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104252. [PMID: 37604359 DOI: 10.1016/j.etap.2023.104252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Glyphosate-based herbicides (GBHs) containing glyphosate as the active component are extensively used worldwide. Concerns have arisen about their potential risk to human, as glyphosate has been detected in human body fluids. Current controversies surround the endocrine-disrupting properties and transgenerational inheritance of diseases and germline epimutations resulting from exposure to GBHs and glyphosate. This review discusses evidence from in vitro, in vivo, and clinical studies on their impact on sex hormone regulation and reproductive system. Evidence suggests that they act as endocrine-disrupting chemicals, which altering sex hormone levels. Mechanistically, they interfere with hormone signaling pathways by disrupting proteins involved in hormone transport and metabolism. Pathological changes have been observed in male and female reproductive systems, potentially leading to reproductive toxicity. Prenatal exposure may lead to transgenerational inheritance of pathologies and sperm epimutations. However, due to the complexity of glyphosate formulations containing adjuvants identifying higher risk components in environmental exposure becomes challenging.
Collapse
Affiliation(s)
- Preechaya Tajai
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Catheterization & Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Catheterization & Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
9
|
Zhang L, Chen L, Tao D, Yu F, Qi M, Xu S. Tannin alleviates glyphosate exposure-induced apoptosis, necrosis and immune dysfunction in hepatic L8824 cell line by inhibiting ROS/PTEN/PI3K/AKT pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109551. [PMID: 36681169 DOI: 10.1016/j.cbpc.2023.109551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Glyphosate can cause tissue damage such as liver and kidney in mammals. Tannin has anti-inflammatory, antibacterial and anti-inflammatory properties. However, the effect of glyphosate on the growth of L8824 cell line and the effect of tannin on antagonism of glyphosate through the ROS/PTEN/PI3K/AKT axis are unclear. In this study, L8824 cells were treated with glyphosate (50 μg/mL) and/or tannin (4.5 μM) for 24 h to establish a model. The results showed that glyphosate exposure increased ROS and MDA levels, decreased CAT and SOD activities. PTEN was activated and the PI3K/AKT signaling pathway was inhibited. The P53/Bcl-2/Bax/CytC/Caspase3 and RIPK1/RIPK3/MLKL pathways were also activated. In addition, the cytokines and antimicrobial peptides LEAP-2, TNF-α and IL-1β were increased while β-defensin, Hepcidin, IL-2 and IFN-γ were decreased. The use of tannin reduced the adverse effects of glyphosate exposure on L8824 cells significantly. In conclusion, tannin can trigger oxidative stress via PTEN/PI3K/AKT pathway to cause apoptosis, necroptosis and immune dysfunction of L8824 cells.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Dayong Tao
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China.
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China; Key Laboratory of Tarim Animal Husbandry Technology Corps, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China.
| |
Collapse
|
10
|
Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W. Ultrasonic stimulation of milk fermentation: effects on degradation of pesticides and physiochemical, antioxidant, and flavor properties of yogurt. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6612-6622. [PMID: 35596658 DOI: 10.1002/jsfa.12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ultrasound has the potential to increase microbial metabolic activity, so this study explored the stimulatory effect of ultrasound pre-treatment on the degradation of four common pesticides (fenitrothion, chlorpyrifos, profenofos, and dimethoate) during milk fermentation by Lactobacillus plantarum and its effect on yogurt quality. RESULTS Appropriate ultrasound pretreatment significantly enhanced the growth of L. plantarum. The degradation percentages of pesticides increased by 19-38% under ultrasound treatment. Ultrasonic intensity, pulse duty cycle, and duration time were key factors affecting microbial growth and pesticide degradation. Under optimal ultrasonic pre-treatment conditions, the degradation rate constants of four pesticides were at least 3.4 times higher than those without sonication. In addition, such ultrasound pretreatment significantly shortened yogurt fermentation time, increased the water holding capacity, hardness and antioxidant activity of the yogurt, and improved the flavor quality of the yogurt. CONCLUSION Ultrasonic pretreatment significantly accelerated the degradation of the four pesticides during yogurt fermentation. In addition, such ultrasound pretreatment increased the efficiency of yogurt making and improved the quality of yogurt in terms of water holding capacity, firmness, antioxidant activity, and flavor. These findings provide a basis for the application of ultrasound to the removal of pesticide residues and quality improvement of yogurt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Kurowska P, Mlyczyńska E, Dawid M, Respekta N, Pich K, Serra L, Dupont J, Rak A. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 2022; 78:205-218. [PMID: 35476178 DOI: 10.1007/s12020-022-03061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The prevalence of adult obesity has risen markedly in recent decades. The endocrine system precisely regulates energy balance, fat abundance and fat deposition. Interestingly, white adipose tissue is an endocrine gland producing adipokines, which regulate whole-body physiology, including energy balance and reproduction. Endocrine disruptor chemicals (EDCs) include natural substances or chemicals that affect the endocrine system by multiple mechanisms and increase the risk of adverse health outcomes. Numerous studies have associated exposure to EDCs with obesity, classifying them as obesogens by their ability to activate different mechanisms, including the differentiation of adipocytes, increasing the storage of triglycerides, or elevating the number of adipocytes. Moreover, in recent years, not only industrial deception and obesity have intensified but also the problem of human infertility. Reproductive functions depend on hormone interactions, the balance of which may be disrupted by various EDCs or obesity. This review gives a brief summary of common EDCs linked with obesity, the mechanisms of their action, and the effect on adipokine levels, reproduction and connected disorders, such as polycystic ovarian syndrome, decrease in sperm motility, preeclampsia, intrauterine growth restriction in females and decrease of sperm motility in males.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
12
|
Duque-Díaz E, Hurtado Giraldo H, Rocha-Muñoz LP, Coveñas R. Glyphosate, AMPA and glyphosate-based herbicide exposure leads to GFAP, PCNA and caspase-3 increased immunoreactive area on male offspring rat hypothalamus. Eur J Histochem 2022; 66:3428. [PMID: 36226530 PMCID: PMC9614696 DOI: 10.4081/ejh.2022.3428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Glyphosate, aminomethylphosphonic acid (AMPA), and glyphosate-based herbicides altered the neuroendocrine axis, the content of brain neurotransmitters, and behavior in experimental animal models. Glyphosate alone, AMPA or Roundup® Active were administered to postpartum female rats, from P0 to P10, and their water consumption was measured daily. The immunoreactivity for glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA) and caspase-3 was measured in the anterior, medial preoptic, periventricular, supraoptic and lateroanterior hypothalamic nuclei of P0-P10 male pups after exposure, via lactation, to these xenobiotics. Puppies exposed to glyphosate had a moderate level of GFAP with no overlapping astrocyte processes, but this overlapping was observed after Roundup® Active or AMPA exposure. After being exposed to Roundup® Active or AMPA, PCNA-positive cells with strong immunoreactivity were found in some hypothalamic nuclei. Cells containing caspase-3 were found in all hypothalamic nuclei studied, but the labeling was stronger after Roundup® Active or AMPA exposure. Xenobiotics significantly increased the immunoreactivity area for all of the markers studied in the majority of cases (p<0.05). AMPA or Roundup® Active treated animals had a greater area of PCNA immunoreactivity than control or glyphosate alone treated animals (p<0.05). The effects observed after xenobiotic exposure were not due to increased water intake. The increased immunoreactivity areas observed for the markers studied suggest that xenobiotics induced a neuro-inflammatory response, implying increased cell proliferation, glial activation, and induction of apoptotic pathways. The findings also show that glyphosate metabolites/adjuvants and/or surfactants present in glyphosate commercial formulations had a greater effect than glyphosate alone. In summary, glyphosate, AMPA, and glyphosate-based herbicides altered GFAP, caspase-3, and PCNA expression in the rat hypothalamus, altering the neuroendocrine axis.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Faculty of Medical Science and Health, MASIRA Institute, Universidad de Santander, Bucaramanga.
| | - Hernán Hurtado Giraldo
- Faculty of Medical Science and Health, MASIRA Institute, Universidad de Santander, Bucaramanga.
| | - Linda P Rocha-Muñoz
- Faculty of Exact, Natural and Agricultural Sciences, Universidad de Santander, Bucaramanga.
| | - Rafael Coveñas
- Institute of Neuroscience of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca; Group GIR USAL: BMD (Bases Moleculares del Desarrollo), Salamanca.
| |
Collapse
|
13
|
Chen K, Liu JB, Tie CZ, Wang L. Trehalose prevents glyphosate-induced testicular damage in roosters via its antioxidative properties. Res Vet Sci 2022; 152:314-322. [PMID: 36084373 DOI: 10.1016/j.rvsc.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Glyphosate (GLY), an active ingredient of the most commonly used herbicide, when in crops and feed, is deleterious to male reproductive health. Trehalose (Tre), a naturally non-reducing disaccharide, is shown to counteract the adverse stresses due to its antioxidation effect. Thus, this study was designed to investigate whether Tre can improve GLY-induced testicular damage via suppressing oxidative stress. 60 healthy Hy-Line Brown breeder roosters were utilized to assess the protective effects of Tre supplementation against testicular oxidative damage caused by GLY. Data showed that Tre administration significantly alleviated GLY- induced reduction in testis weight, decreased GLY level in the testis tissues, and alleviated GLY-caused testicular pathological damage. Concurrently, GLY treatment significantly elevated serum malondialdehyde (MDA) and testicular reactive oxygen species (ROS) levels, decreased serum total anti-oxidation capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, which were all notably reversed by Tre administration. Moreover, GLY- inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in rooster testis, a master regulator of oxidative stress, was markedly recovered by Tre administration. In summary, these findings demonstrated that Tre can prevent GLY-induced testicular damage in roosters by ameliorating oxidative stress.
Collapse
Affiliation(s)
- Kai Chen
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China; Shandong Technology Innovation Center of Artificial Phage Drug, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China
| | - Jing-Bo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Cheng-Zhu Tie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
14
|
Estienne A, Fréville M, Bourdon G, Ramé C, Delaveau J, Rat C, Chahnamian M, Brionne A, Chartrin P, Adriensen H, Lecompte F, Froment P, Dupont J. Chronic dietary exposure to a glyphosate-based herbicide results in reversible increase early embryo mortality in chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113741. [PMID: 35679729 DOI: 10.1016/j.ecoenv.2022.113741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate (Gly) is the active molecule of non-selective herbicides used in conventional agriculture. Some evidence shows that exposure to Glyphosate-Based Herbicides (GBH) can affect both male and female fertility in animal models. However, few data exist on birds that can be easily exposed through their cereal-based diet. To our knowledge, there are no current studies on the effects of chronic dietary exposure to GBH and the potential reversibility on the fertility and embryo development in chickens. In our protocol, hens (32 weeks-old) were exposed to GBH (47 mg kg-1/day-1 glyphosate equivalent corresponding to half of the No-Observed-Adverse-Effect-Level (NOAEL) as defined by European Food Safety Authority in birds, GBH group (GBH), n = 75) or not (Control group (CT), n = 75) for 6 weeks. Then, both CT and GBH groups were fed for 5 more weeks without GBH exposure. During these two periods, we investigated the consequences on the egg performance and quality, fertilization rate, embryo development, and viability of offspring. Despite the accumulation of Gly and its metabolite aminomethylphosphonic acid (AMPA) in the hen blood plasma, the body weight and laying rate were similar in GBH and CT animals. We observed from the 4th day of exposure an accumulation of Gly (but not AMPA) only in the yolk of the eggs produced by the exposed hens. After artificial insemination of the hens followed by eggs incubation, we showed a strong significant early embryonic mortality level in GBH compared to CT animals (78 ± 2 % vs 2.5 ± 0.3 %, p < 0.0001) with embryo death mainly occurring on the third day of incubation. By using computed tomography (CT) and magnetic resonance imaging (MRI) tools, we noted a significant delay in the embryo development of GBH survivors at 15 days with a reduction by half of the embryo volume and some disturbances in the calculated volumes of the embryonic annexes. At 20 days of incubation, we showed a reduction in the length of the tibia and in the volume of the soft tissues whereas the skeleton volume was increased in GBH chicks. The vast majority of these phenotypes disappeared two weeks after an arrest of the GBH maternal dietary exposure. Taken together, the dietary chronic exposure of broiler hens to GBH at a Gly equivalent concentration lower than NOAEL induces an accumulation of Gly in the egg yolk resulting in severe early embryonic mortality and a delayed embryonic development in survivors that were abolished two weeks after the end of GBH exposure.
Collapse
Affiliation(s)
- Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly 37380, France
| | - Mathias Fréville
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly 37380, France
| | | | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly 37380, France
| | | | | | | | | | | | - Hans Adriensen
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly 37380, France
| | | | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly 37380, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly 37380, France.
| |
Collapse
|
15
|
Bai G, Zhou R, Jiang X, Zou Y, Shi B. Glyphosate-based herbicides induces autophagy in IPEC-J2 cells and the intervention of N-acetylcysteine. ENVIRONMENTAL TOXICOLOGY 2022; 37:1878-1890. [PMID: 35388968 DOI: 10.1002/tox.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide in the world, and its extensive use has increased pressures on environmental safety and potential human and livestock health risks. This study investigated the effects of GBHs on antioxidant capacity, inflammatory cytokines, and autophagy of porcine intestinal epithelial cells (IPEC-J2) and its molecular mechanism. Also, the protective effects of N-acetylcysteine (NAC) against the toxicity of GBHs were evaluated. Our results showed that the activities of antioxidant enzymes (SOD, GSH-Px) were decreased by GBHs. GBHs increased inflammatory factors (IL-1β, IL-6, TNF-α) and the mRNA expression of iNOS and COX-2. GBHs induced the up-regulation of Nrf2/HO-1 pathway and the phosphorylation of IκB-α and NFκB p65, up-regulation of LC3-II/LC3-I, and down-regulation of P62, and NFκB inhibitor decreased the mRNA expression of inflammatory cytokines (IL-1β, IL-6, IL-8). Moreover, NAC reduced the cytotoxicity by suppressing ROS levels, and changed the autophagy-related proteins such as the suppression of LC3-II conversion and up-regulation of P62. Our findings unveil a novel mechanism of GBHs effects on IPEC-J2 cells and NAC can reverse cytotoxicity to some extent.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Liu JB, Chen K, Li ZF, Wang ZY, Wang L. Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150368. [PMID: 34543792 DOI: 10.1016/j.scitotenv.2021.150368] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate (GLY), a ubiquitous environmental pollutant, can result in gut microbiota dysbiosis intimately involving various diseases. The latest research has shown an association between gut microbiota alteration and defective spermatogenesis. Here, we aimed to investigate whether GLY-induced gut microbiota dysbiosis contributed to male reproductive toxicity. Data showed that GLY-exposed rats exhibited male reproductive dysfunction, evidenced by impaired testis architectural structure, reduced sperm motility, together with increased sperm malformation ratio. 16S rDNA sequencing analysis indicated that GLY exposure altered the composition of gut commensal microbiota, of which the relative abundance of Bacteroidetes and Firmicutes phyla was significantly changed. Unexpectedly, the increased abundance of Prevotella_1 and Bacteroides genera was negatively correlated with sperm quality. Mechanistically, the pathological changes in GLY-exposed testis were accompanied by the increased interleukin (IL)-17A production, probably due to gut microbes-derived Th17 cell migration. Furthermore, activation of IL-17A signaling triggered testicular oxidative damage. Taken together, these findings uncover an underlying mechanistic scenario that gut microbiota dysbiosis-driven local IL-17A production is one reason responsible for male reproductive toxicity induced by GLY, which provides new insights into the male reproductive toxicity of GLY in mammals.
Collapse
Affiliation(s)
- Jing-Bo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China
| | - Kai Chen
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan City 250355, Shandong Province, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
18
|
Liu JB, Li ZF, Lu L, Wang ZY, Wang L. Glyphosate damages blood-testis barrier via NOX1-triggered oxidative stress in rats: Long-term exposure as a potential risk for male reproductive health. ENVIRONMENT INTERNATIONAL 2022; 159:107038. [PMID: 34906888 DOI: 10.1016/j.envint.2021.107038] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Blood-testis barrier (BTB) creates a privileged niche indispensable for spermatogenesis. Glyphosate (GLY), the most commonly used herbicide worldwide, has been reported to decrease sperm quality. However, whether and how GLY destroys the BTB to affect sperm quality remains to be elucidated. Herein, this study was designed to investigate the influence of GLY on the BTB in vivo and in vitro experiments. The results showed that male rats exposed to GLY for 4 months exhibited a decrease in sperm quality and quantity, accompanied by BTB integrity disruption and testicular oxidative stress. Additionally, GLY-induced reactive oxygen species (ROS) contributed to the downregulation of BTB-related proteins in primary Sertoli cells (SCs). Intriguingly, we identified a marked upregulation of oxidative stress-related gene NOX1 in GLY-exposed testis based on transcriptome analysis. NOX1 knockdown blocked the GLY-induced oxidative stress, as well as prevented BTB-related protein decrease in SCs. Furthermore, the estrogen receptor (ER)-α was significantly upregulated in vivo and in vitro models. An ER-α inhibitor decreased the expression levels of both ER-α and NOX1. Mechanistically, GLY directly interacted with ER-α at the site of Pro39 and Lys401 to promote ER-α activation, which boosted NOX1 expression to trigger ROS accumulation. Collectively, these results demonstrate that long-term GLY exposure adversely affects BTB integrity, which disrupts spermatogenesis via activation of ER-α/NOX1 axis. This study presents a better understanding of the risk of long-term GLY exposure to male fertility.
Collapse
Affiliation(s)
- Jing-Bo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan City 250355, Shandong Province, China
| | - Lu Lu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
19
|
Qiu S, Liu Y, Gao Y, Fu H, Shi B. Response of the nuclear xenobiotic receptors to alleviate glyphosate-based herbicide-induced nephrotoxicity in weaned piglets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2707-2717. [PMID: 34378135 DOI: 10.1007/s11356-021-15831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are widely used worldwide. Glyphosate (GLP) is the main active component of GBHs. The presence of GBH residues in the environment has led to the exposure of animals to GBHs, but the mechanisms of GBH-induced nephrotoxicity are not clear. This study investigated the effects of GBHs on piglet kidneys. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) with an average weight of 12.24 ± 0.61 kg were randomly divided into four treatment groups (n=7 piglets/group) that were supplemented with Roundup® (equivalent to GLP concentrations of 0, 10, 20, and 40 mg/kg) for a 35-day feeding trial. The results showed that the kidneys in the 40-mg/kg GLP group suffered slight damage. Roundup® significantly decreased the activity of catalase (CAT) (P=0.005) and increased the activity of superoxide dismutase (SOD) (P=0.029). Roundup® increased the level of cystatin-C (Cys-C) in the plasma (linear, P=0.002 and quadratic, P=0.015). The levels of neutrophil gelatinase-associated lipocalin (NGAL) in plasma increased linearly (P=0.007) and quadratically (P=0.003) as the dose of GLP increased. The mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) in the 20-mg/kg GLP group was increased significantly (P<0.05). There was a significant increase in the mRNA levels of pregnenolone X receptor (PXR), constitutive androstane receptor (CAR), and uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) (P<0.05). Our findings found that kidney nuclear xenobiotic receptors (NXRs) may play an important role in defense against GBHs.
Collapse
Affiliation(s)
- Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
20
|
Serra L, Estienne A, Bourdon G, Ramé C, Chevaleyre C, Didier P, Chahnamian M, El Balkhi S, Froment P, Dupont J. Chronic Dietary Exposure of Roosters to a Glyphosate-Based Herbicide Increases Seminal Plasma Glyphosate and AMPA Concentrations, Alters Sperm Parameters, and Induces Metabolic Disorders in the Progeny. TOXICS 2021; 9:toxics9120318. [PMID: 34941753 PMCID: PMC8704617 DOI: 10.3390/toxics9120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
The effects of chronic dietary Roundup (RU) exposure on rooster sperm parameters, fertility, and offspring are unknown. We investigated the effects of chronic RU dietary exposure (46.8 mg kg−1 day−1 glyphosate) for 5 weeks in 32-week-old roosters (n = 5 RU-exposed and n = 5 control (CT)). Although the concentrations of glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) increased in blood plasma and seminal fluid during exposure, no significant differences in testis weight and sperm concentrations were observed between RU and CT roosters. However, sperm motility was significantly reduced, associated with decreased calcium and ATP concentrations in RU spermatozoa. Plasma testosterone and oestradiol concentrations increased in RU roosters. These negative effects ceased 14 days after RU removal from the diet. Epigenetic analysis showed a global DNA hypomethylation in RU roosters. After artificial insemination of hens (n = 40) with sperm from CT or RU roosters, eggs were collected and artificially incubated. Embryo viability did not differ, but chicks from RU roosters (n = 118) had a higher food consumption, body weight and subcutaneous adipose tissue content. Chronic dietary RU exposure in roosters reduces sperm motility and increases plasma testosterone levels, growth performance, and fattening in offspring.
Collapse
Affiliation(s)
- Loïse Serra
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Anthony Estienne
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Guillaume Bourdon
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Claire Chevaleyre
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Philippe Didier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement—Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France; (P.D.); (M.C.)
| | - Marine Chahnamian
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement—Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France; (P.D.); (M.C.)
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU, F-87042 Limoges, France;
| | - Pascal Froment
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
- Correspondence:
| |
Collapse
|
21
|
Marino M, Mele E, Viggiano A, Nori SL, Meccariello R, Santoro A. Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. Int J Mol Sci 2021; 22:12606. [PMID: 34830483 PMCID: PMC8618927 DOI: 10.3390/ijms222212606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Stefania Lucia Nori
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| |
Collapse
|
22
|
Serra L, Estienne A, Vasseur C, Froment P, Dupont J. Review: Mechanisms of Glyphosate and Glyphosate-Based Herbicides Action in Female and Male Fertility in Humans and Animal Models. Cells 2021; 10:3079. [PMID: 34831302 PMCID: PMC8622223 DOI: 10.3390/cells10113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic-pituitary-gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA)." In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Claudine Vasseur
- Assisted Medical Procreation, Pôle Santé Léonard de Vinci, F-37380 Chambray-lès-Tours, France;
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| |
Collapse
|
23
|
Park S, Yun BH, Bae H, Lim W, Song G. Reproductive toxicity of folpet through deregulation of calcium homeostasis in porcine trophectoderm and luminal epithelial cells during early pregnancy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104974. [PMID: 34802524 DOI: 10.1016/j.pestbp.2021.104974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Folpet, a fungicide, is utilized even in cosmetics and pharmaceuticals. The LD50 of folpet in mammals, birds, and fish is relatively high. Recently, several negative effects of folpet on the respiratory system and cornea have been reported. However, there is no study on the negative effects of folpet on maternal-fetus interactions. In the present study, we used porcine trophectoderm (pTr) cells and porcine luminal epithelial (pLE) cells to investigate the toxic effects of folpet during implantation. Folpet treatment decreased cell proliferation and promoted apoptosis with cell cycle arrest. In addition, the ERK, JNK, and AKT signal pathways were activated by folpet treatment. Folpet treatment induced calcium overload in pTr and pLE cells mediating antimigratory and antiadhesive effects in both cell lines. Co-treatment with calcium chelates decreased the anti-implantation effect of folpet. Overall, our results demonstrated potential reproductive toxicity of folpet in pig.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Plant and Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Bo Hyun Yun
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyocheol Bae
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea..
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|