1
|
Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv 2024; 77:108468. [PMID: 39437879 DOI: 10.1016/j.biotechadv.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The persistent challenge of water pollution, exacerbated by slow progress in ecofriendly technologies and accumulating pollutants, underscores the need for innovative solutions. Constructed Wetland Microbial Fuel Cell (CW-MFC) emerges as an intriguing environmental technology capable of adressing this issue by eliminating contaminants from wastewater while simultaneously producing green energy as an additional bonus. In recent years, CW-MFC technology has gained attention due to its sustainability and promising prospects for a circular waste-free industry. However, due to various technological and biological challenges, it has not yet achieved wide-scale application. This review examines the current state of CW-MFC technology and identifies both biotic and abiotic strategies for optimization through operational and structural improvements affecting biocomponents. Our review highlights several key findings: (1) Plants play an important role in reducing the system's inner resistance through mechanisms such as radial oxygen loss, evapotranspiration, and high photosynthetic flow, which facilitate electroactive bacteria and affect redox potential. (2) Plant characteristics such as root porosity, phloem and aerenchyma development, chlorophyll content, and plant biomass are key indicators of CW-MFC performance and significantly impact both pollutant removal and energy harvesting. (3) We expand the criteria for selecting suitable plants to include mesophytes and C3 pollutant-tolerant species, in addition to traditional aquatic and C4 plants. Additionally, the review presents several technical approaches that enhance CW-MFC efficiency: (1) design optimization, (2) use of novel materials, and (3) application of external electrical fields, aeration, light, and temperature adjustments. CW-MFCs are capable of nearly complete elimination of a wide range of contaminants, including organic matter (84 % ± 10), total nitrogen (80 % ± 7) and phosphorus (79 % ± 18) compounds, metals (86 % ± 10), pharmaceuticals (87 % ± 7), dyes (90 % ± 8), and other complex pollutants, while generating green energy. We hope our findings will be useful in optimizing CW-MFC design and providing insights for researchers aiming to advance the technology and facilitate its future scaling.
Collapse
Affiliation(s)
- Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv 79013, Ukraine.
| | - Julio César Gómora-Hernández
- Division of Environmental Engineering, National Technological Institute of Mexico (TecNM) / Technological of Higher Studies of Tianguistenco, Tianguistenco 52650, Mexico.
| |
Collapse
|
2
|
Pastor-López EJ, Escolà M, Kisielius V, Arias CA, Carvalho PN, Gorito AM, Ramos S, Freitas V, Guimarães L, Almeida CMR, Müller JA, Küster E, Kilian RM, Diawara A, Ba S, Matamoros V. Potential of nature-based solutions to reduce antibiotics, antimicrobial resistance, and pathogens in aquatic ecosystems. a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174273. [PMID: 38925380 DOI: 10.1016/j.scitotenv.2024.174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This comprehensive scientific review evaluates the effectiveness of nature-based solutions (NBS) in reducing antibiotics (ABs), combating antimicrobial resistance (AMR), and controlling pathogens in various aquatic environments at different river catchment levels. It covers conventional and innovative treatment wetland configurations for wastewater treatment to reduce pollutant discharge into the aquatic ecosystems as well as exploring how river restoration and saltmarshes can enhance pollutant removal. Through the analysis of experimental studies and case examples, the review shows NBS's potential for providing sustainable and cost-effective solutions to improve the health of aquatic ecosystems. It also evaluates the use of diagnostic indicators to predict NBS effectiveness in removing specific pollutants such as ABs and AMR. The review concludes that NBS are feasible for addressing the new challenges stemming from human activities such as the presence of ABs, AMR and pathogens, contributing to a better understanding of NBS, highlighting success stories, addressing knowledge gaps, and providing recommendations for future research and implementation.
Collapse
Affiliation(s)
- Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Mònica Escolà
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Carlos A Arias
- Department of Biology, Aarhus University, Aarhus, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Ana M Gorito
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Sandra Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vânia Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Dept. Bioanalytical Ecotoxicology, Leipzig, Germany
| | - R M Kilian
- Kilian Water Ltd., Torupvej 4, 8654 Bryrup, Denmark
| | - Abdoulaye Diawara
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Sidy Ba
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
3
|
Sarvary Korojdeh M, Hadavifar M, Birjandi N, Mehrkhah R, Li Q. Enhanced bioenergy production through dual-chamber microbial fuel cells: Utilizing citric acid factory wastewater and grape waste as substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122739. [PMID: 39368388 DOI: 10.1016/j.jenvman.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Microbial fuel cell (MFC) is a variant of the bio-electro-chemical system that uses microorganisms as biocatalysts to generate bioenergy by oxidizing organic matter. Due to its two-prong feature of simultaneously treating wastewater and generating electricity, it has drawn extensive interest by scientific communities around the world. However, the pollution purifying capacity and power production of MFC at the laboratory scale have tended to remain steady, and there have been no reports of a performance breakthrough. PROBLEM STATEMENT This research was conducted to produce electricity and evaluate the efficiency of chemical oxygen demand (COD) removal from wastewater containing Citric Acid using a two-chamber microbial fuel cell without an intermediary. METHODOLOGY In this research, citric acid factory wastewater was used as the substrate, graphite as the electrode, Nafion membrane for proton transfer from anode to cathode, and grape waste as a carbon source. These Experiments were performed at room temperature and neutral pH. Also, the effect of three independent variables mixed liquor suspended solid (MLSS), Carbon: Nitrogen: Phosphorus stoichiometric ratio (COD:TKN:P), and grape waste on electricity production and wastewater treatment was investigated. Then, the optimal values of each variable were determined under favorable conditions for electricity generation and COD reduction. RESULTS The MFC was conducted at the optimal values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P 140:10:1, and the grape waste dose of 1.4 g/L. At these conditions, the obtained maximum power density and current density were 18228.10 mW/m2 and 244.44 mA/m2, respectively. The maximum COD removal was 72% achieved in the values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P equal to 260:10:1, and 1.4 g/L of grape waste. The maximum open circuit voltage was also recorded as 678 mV, obtained at MLSS 3000 mg/L, the stoichiometric ratio of COD:TKN:P equal to 200:10:1, and for a grape waste dose of 2 g/L. CONCLUSION The results of this research showed that the use of grape waste to supply glucose to microorganisms in the MFC system has a significant effect on increasing energy production and COD removal, and it is recommended to conduct additional research in the future to improve the efficiency. However, scalability and practical application potential of these integrated technologies are the challenges towards their real-world applications in small scale trials.
Collapse
Affiliation(s)
| | - Mojtaba Hadavifar
- Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, 397, Iran.
| | - Noushin Birjandi
- Department of Environmental Sciences and Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran
| | - Roya Mehrkhah
- Michigan Technology Co., Ltd, Techno B-502, Ulsan Technopark, Jonggaro 15, Junggu, Ulsan, 44412, South Korea
| | - Qin Li
- School of Engineering and Built Environment, Griffith University, Nathan, Australia
| |
Collapse
|
4
|
Wang X, Zhang D, Ma K, Bu C, Wang Y, Tang Y, Xu J, Xu Y. Biochar and zero-valent iron alleviated sulfamethoxazole and tetracycline co-stress on the long-term system performance of bioretention cells: Insights into microbial community, antibiotic resistance genes and functional genes. ENVIRONMENTAL RESEARCH 2024; 248:118271. [PMID: 38262515 DOI: 10.1016/j.envres.2024.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.
Collapse
Affiliation(s)
- Xue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Danyi Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kexin Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Chibin Bu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jianing Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
5
|
Tang X, Wang L, Zhang Q, Xu D, Tao Z. Performance optimization for Pb(II) -containing wastewater treatment in constructed wetland-microbial fuel cell triggered by biomass dosage and Pb(II) level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15039-15049. [PMID: 38285263 DOI: 10.1007/s11356-024-32137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Three identical sets of constructed wetland-microbial fuel cells (CW-MFCs) fabricated with biomass carbon source addition were constructed and underwent the short- and long-term experiments. For this, the efficacy of biomass dosage and Pb(II) concentration towards Pb(II) removal and concurrent bioelectricity production of CW-MFCs were systematically explored. From the perspective of integrated capabilities and economic benefits, the solid biomass carbon sources equivalent to 500 mg/L COD was regarded as the optimal dosage, and the corresponding device was labeled as CW-MFC-2. For the short-term experiment, the closed-circuit CW-MFC-2 produced maximum output voltages and power densities in a range of 386-657 mV and 1.55 × 103-6.31 × 103 mW/m2 with the increasing Pb(II) level, respectively. Also, Pb(II) removal up to 94.4-99.6% was obtained in CW-MFC-2. With respect to long-term experiment, Pb(II) removal, the maximum output voltage, and power density of CW-MFC-2 ranged from 98.7 to 99.2%, 322 to 387 mV, and 3.28 × 102 to 2.26 × 103 mW/m2 upon 200 mg/L Pb(II) level, respectively. The migration results confirmed the potential of substrate and biomass for Pb(II) adsorption and fixation. For the cathode, Pb(II) was fixed and removed via binding to O. This study enlarges our knowledge of effective modulation of CW-MFCs for the treatment of high-level Pb(II)-containing wastewater and bioelectricity generation via adopting desirable biomass dosage.
Collapse
Affiliation(s)
- Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Lu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
6
|
Youssef YA, Abuarab ME, Mahrous A, Mahmoud M. Enhanced degradation of ibuprofen in an integrated constructed wetland-microbial fuel cell: treatment efficiency, electrochemical characterization, and microbial community dynamics. RSC Adv 2023; 13:29809-29818. [PMID: 37829716 PMCID: PMC10566547 DOI: 10.1039/d3ra05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Over the past few decades, there has been a growing concern regarding the fate and transport of pharmaceuticals, particularly antibiotics, as emerging contaminants in the environment. It has been proposed that the presence of antibiotics at concentrations typically found in wastewater can impact the dynamics of bacterial populations and facilitate the spread of antibiotic resistance. The efficiency of currently-used wastewater treatment technologies in eliminating pharmaceuticals is often insufficient, resulting in the release of low concentrations of these compounds into the environment. In this study, we addressed these challenges by evaluating how different influent ibuprofen (IBU) concentrations influenced the efficiency of a laboratory-scale, integrated constructed wetland-microbial fuel cell (CW-MFC) system seeded with Eichhornia crassipes, in terms of organic matter removal, electricity generation, and change of bacterial community structure compared to unplanted, sediment MFC (S-MFC) and abiotic S-MFC (AS-MFC). We observed that the addition of IBU (5 mg L-1) resulted in a notable decrease in chemical oxygen demand (COD) and electricity generation, suggesting that high influent IBU concentrations caused partial inhibition for the electroactive microbial community due to its complexity and aromaticity. However, CW-MFC could recover from IBU inhibition after an acclimation period compared to unplanted S-MFC, even though the influent IBU level was increased up to 20 mg L-1, suggesting that plants in CW-MFCs have a beneficial role in relieving the inhibition of anode respiration due to the presence of high levels of IBU; thus, promoting the metabolic activity of the electroactive microbial community. Similarly, IBU removal efficiency for CW-MFC (i.e., 49-62%) was much higher compared to SMFC (i.e., 29-42%), and AS-MFC (i.e., 20-22%) during all experimental phases. In addition, our high throughput sequencing revealed that the high performance of CW-MFCs compared to S-MFC was associated with increasing the relative abundances of several microbial groups that are closely affiliated with anode respiration and organic matter fermentation. In summary, our results show that the CW-MFC system demonstrates suitability for high removal efficiency of IBU and effective electricity generation.
Collapse
Affiliation(s)
- Youssef A Youssef
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Mohamed E Abuarab
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Ahmed Mahrous
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre 33 El-Buhouth St., Dokki Cairo 12311 Egypt
| |
Collapse
|
7
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
8
|
Mishra S, Singh AK, Cheng L, Hussain A, Maiti A. Occurrence of antibiotics in wastewater: Potential ecological risk and removal through anaerobic-aerobic systems. ENVIRONMENTAL RESEARCH 2023; 226:115678. [PMID: 36921787 DOI: 10.1016/j.envres.2023.115678] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are intensively used to improve public health, prevent diseases and enhance productivity in animal farms. Contrarily, when released, the antibiotics laden wastewater produced from pharmaceutical industries and their application sources poses a potential ecological risk to the environment. This study provides a discussion on the occurrence of various antibiotics in wastewater and their potential ecological risk in the environment. Further, a critical review of anaerobic-aerobic processes based on three major systems (such as constructed wetland, high-rate bioreactor, and integrated treatment technologies) applied for antibiotics removal from wastewater is performed. The review also explores microbial dynamics responsible for antibiotic biodegradation in anaerobic-aerobic systems and its economic feasibility at wider-scale applications. The operational problems and prospective modifications are discussed to define key future research directions. The appropriate selection of treatment processes, sources control, understanding of antibiotic fate, and adopting precise monitoring strategies could eliminate the potential ecological risks of antibiotics. Integrated bio-electrochemical systems exhibit antibiotics removal ≥95% by dominant Geobacter sp. at short HRT ∼4-10 h. Major process factors like organic loading rate, hydraulic loading rate (HRT), and solid retention time significantly affect the system performance. This review will be beneficial to the researchers by providing in-depth understanding of antibiotic pollution and its abatement via anaerobic-aerobic processes to develop sustainable wastewater treatment technology in the future.
Collapse
Affiliation(s)
- Saurabh Mishra
- College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, 210098, China; College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China.
| | - Anurag Kumar Singh
- University School of Chemical Technology, Guru Govind Singh Indraprastha University, Sector 16c Dwarka, New Delhi, 110078, India
| | - Liu Cheng
- College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, 210098, China; College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China.
| | - Abid Hussain
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| |
Collapse
|
9
|
Yaqoob AA, Al-Zaqri N, Alamzeb M, Hussain F, Oh SE, Umar K. Bioenergy Generation and Phenol Degradation through Microbial Fuel Cells Energized by Domestic Organic Waste. Molecules 2023; 28:molecules28114349. [PMID: 37298824 DOI: 10.3390/molecules28114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Microbial fuel cells (MFCs) seem to have emerged in recent years to degrade the organic pollutants from wastewater. The current research also focused on phenol biodegradation using MFCs. According to the US Environmental Protection Agency (EPA), phenol is a priority pollutant to remediate due to its potential adverse effects on human health. At the same time, the present study focused on the weakness of MFCs, which is the low generation of electrons due to the organic substrate. The present study used rotten rice as an organic substrate to empower the MFC's functional capacity to degrade the phenol while simultaneously generating bioenergy. In 19 days of operation, the phenol degradation efficiency was 70% at a current density of 17.10 mA/m2 and a voltage of 199 mV. The electrochemical analysis showed that the internal resistance was 312.58 Ω and the maximum specific capacitance value was 0.00020 F/g on day 30, which demonstrated mature biofilm production and its stability throughout the operation. The biofilm study and bacterial identification process revealed that the presence of conductive pili species (Bacillus genus) are the most dominant on the anode electrode. However, the present study also explained well the oxidation mechanism of rotten rice with phenol degradation. The most critical challenges for future recommendations are also enclosed in a separate section for the research community with concluding remarks.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Alamzeb
- Department of Chemistry, University of Kotli, Kotli 11100, Azad Jammu and Kashmir, Pakistan
| | - Fida Hussain
- Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| |
Collapse
|
10
|
Fu J, Zhao Y, Yao Q, Addo-Bankas O, Ji B, Yuan Y, Wei T, Esteve-Núñez A. A review on antibiotics removal: Leveraging the combination of grey and green techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156427. [PMID: 35660594 DOI: 10.1016/j.scitotenv.2022.156427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
Antibiotics are currently a major source of concern around the world due to the serious risks posed to human health and the environment. The performance of the secondary wastewater treatment processes/technologies (representing grey process) and constructed wetlands (CWs) (typical green process) in removing antibiotics and antibiotic resistance genes (ARG) was reviewed. The result showed that the grey process mainly removes antibiotics, but does not significantly remove ARG, and some processes may even cause ARG enrichment. The overall treatment in CWs is better than WWTPs, especially for ARG. Vertical subsurface flow CWs (VFCWs) are more conductive to antibiotics removal, while horizontal subsurface flow CWs (HFCWs) have a better ARG removal. More importantly, this review admits and suggests that the combination of grey process with green process is an effective strategy to remove antibiotics and ARG. The most advantage of the combination lies in realizing complementary advantages, i.e. the grey process as the primary treatment while CWs as the polishing stage. The efficiency of such the hybrid system is much higher than either single treatment process.
Collapse
Affiliation(s)
- Jingmiao Fu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Qi Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Olivia Addo-Bankas
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yujie Yuan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Abraham Esteve-Núñez
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain; Bioelectrogenesis Group, IMDEA WATER, Madrid, Spain.
| |
Collapse
|
11
|
Zheng S, Wang Y, Chen C, Zhou X, Liu Y, Yang J, Geng Q, Chen G, Ding Y, Yang F. Current Progress in Natural Degradation and Enhanced Removal Techniques of Antibiotics in the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710919. [PMID: 36078629 PMCID: PMC9518397 DOI: 10.3390/ijerph191710919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics are used extensively throughout the world and their presence in the environment has caused serious pollution. This review summarizes natural methods and enhanced technologies that have been developed for antibiotic degradation. In the natural environment, antibiotics can be degraded by photolysis, hydrolysis, and biodegradation, but the rate and extent of degradation are limited. Recently, developed enhanced techniques utilize biological, chemical, or physicochemical principles for antibiotic removal. These techniques include traditional biological methods, adsorption methods, membrane treatment, advanced oxidation processes (AOPs), constructed wetlands (CWs), microalgae treatment, and microbial electrochemical systems (such as microbial fuel cells, MFCs). These techniques have both advantages and disadvantages and, to overcome disadvantages associated with individual techniques, hybrid techniques have been developed and have shown significant potential for antibiotic removal. Hybrids include combinations of the electrochemical method with AOPs, CWs with MFCs, microalgal treatment with activated sludge, and AOPs with MFCs. Considering the complexity of antibiotic pollution and the characteristics of currently used removal technologies, it is apparent that hybrid methods are better choices for dealing with antibiotic contaminants.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People’s Hospital, Weifang 261041, China
| | - Cuihong Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaojing Zhou
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Ying Liu
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Jinmei Yang
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qijin Geng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Gang Chen
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Correspondence: (Y.D.); (F.Y.)
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Correspondence: (Y.D.); (F.Y.)
| |
Collapse
|
12
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
13
|
Cheng R, Hou S, Wang J, Zhu H, Shutes B, Yan B. Biochar-amended constructed wetlands for eutrophication control and microcystin (MC-LR) removal. CHEMOSPHERE 2022; 295:133830. [PMID: 35149020 DOI: 10.1016/j.chemosphere.2022.133830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) pollution caused by eutrophication and climate change has posed a serious threat to ecosystems and human health. Constructed wetlands (CWs) with biochar addition volume ratios of 0% (BC0-CWs), 10% (BC10-CWs), 20% (BC20-CWs) and 50% (BC50-CWs) were set up to evaluate the efficiency of biochar-amended CWs for eutrophication and MCs pollution control. The results illustrated that removal efficiencies of both NH4+-N and NO3--N were enhanced by biochar addition to varying degrees. The average TP and MC-LR removal efficiencies increased with increasing biochar addition ratios, and the average TP and MC-LR removal efficiencies in biochar-amended CWs were significantly (p < 0.05) improved by 5.64-9.58% and 10.74-14.52%, respectively, compared to that of BC0-CWs. Biochar addition changed the microbial community diversity and structure of CWs. The relative abundance of functional microorganisms such as Burkholderiaceae, Nitrospiraceae, Micrococcaceae, Sphingomonadaceae and Xanthomonadaceae was promoted by biochar addition regardless of addition ratios. The higher relative abundance of the above microorganisms in BC20-CWs and BC50-CWs may contribute to their better removal performance compared to other CWs. The concentrations of extracellular polymeric substance (EPS) in biochar-amended CWs were significantly (p < 0.05) lower than that in BC0-CWs, which can reduce the risk of system clogging. This study demonstrated that biochar addition may be a potential intensification strategy for eutrophication and MCs pollution control by CWs. Considering both the removal performance and economic cost, a biochar addition ratio of 20% was recommended as an optimal addition ratio in practical application.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Shengnan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, PR China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, PR China.
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, PR China
| |
Collapse
|
14
|
Cheng R, Zhu H, Wang J, Hou S, Shutes B, Yan B. Removal of microcystin (MC-LR) in constructed wetlands integrated with microbial fuel cells: Efficiency, bioelectricity generation and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114669. [PMID: 35168133 DOI: 10.1016/j.jenvman.2022.114669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) pollution caused by cyanobacteria harmful blooms (CHBs) has posed short- and long-term risks to aquatic ecosystems and public health. Constructed wetlands (CWs) have been verified as an effective technology for eutrophication but the removal performance for MCs did not achieve an acceptable level. CWs integrated with microbial fuel cell (MFC-CWs) were developed to intensify the nutrient and Microcystin-LR (MC-LR) removal efficiencies in this study. The results indicated that closed-circuit MFC-CWs (T1) exhibited a better NO3--N, NH4+-N, TP and MC-LR removal efficiency compared to that of open-circuit MFC-CWs (CK, i.e., traditional CWs). Therein, a MC-LR removal efficiency of greater than 95% was observed in both trials in T1. The addition of sponge iron to the anode layer of MFC-CWs (T2) improved only the NO3--N removal and efficiency bioelectricity generation performance compared to T1, and the average effluent MC-LR concentration of T2 (1.14 μg/L) was still higher than the provisional limit concentration (1.0 μg/L). The microbial community diversity of T1 and T2 was simplified compared to CK. The relative abundance of Sphingomonadaceae possessing the degradation capability for MCs increased in T1, which contributed to the higher MC-LR removal efficiency compared to CK and T2. While the relative abundance of electrochemically active bacteria (EAB) (i.e., Desulfuromonadaceae and Desulfomicrobiaceae) in the anode of T2 was promoted by the addition of sponge iron. Overall, this study suggests that integrating MFC into CWs provides a feasible intensification strategy for eutrophication and MCs pollution control.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Shengnan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|
15
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
16
|
A Review of Stand-Alone and Hybrid Microbial Electrochemical Systems for Antibiotics Removal from Wastewater. Processes (Basel) 2022. [DOI: 10.3390/pr10040714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The growing concern about residual antibiotics in the water environment pushes for innovative and cost-effective technologies for antibiotics removal from wastewater. In this context, various microbial electrochemical systems have been investigated as an alternative to conventional wastewater technologies that are usually ineffective for the adequate removal of antibiotics. This review article details the development of stand-alone and hybrid or integrated microbial electrochemical systems for antibiotics removal from wastewater. First, technical features, antibiotics removal efficiencies, process optimization, and technological bottlenecks of these systems are discussed. Second, a comparative summary based on the existing reports was established to provide insights into the selection between stand-alone and hybrid systems. Finally, research gaps, the relevance of recent progress in complementary areas, and future research needs have been discussed.
Collapse
|
17
|
Yang XL, Wang Q, Li T, Xu H, Song HL. Antibiotic removal and antibiotic resistance genes fate by regulating bioelectrochemical characteristics in microbial fuel cells. BIORESOURCE TECHNOLOGY 2022; 348:126752. [PMID: 35077813 DOI: 10.1016/j.biortech.2022.126752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics removal and ARGs control in microbial fuel cell (MFC) has received extensive attention. In particular, the critical role of bioelectrochemical characteristics deserves further study. Bioelectrochemical characteristics significantly affected sulfamethoxazole (SMX) removal and ARGs fate, in which the current intensity played a more critical role than anode potential. High-concentration SMX (2 mg/L and 10 mg/L) facilitated the anode potential tend to be close, and thus, the strengthening effect of current on the system was highlighted. However, the SMX degradation pathway under different bioelectrochemical characteristics was not affected. Furthermore, the higher current intensity was preferable to antibiotic removal, but unfavorable for ARGs control might be due to the oxidative stress on microorganisms. Low-concentration SMX (0.5 mg/L) contributed to improving higher electricity generation because of Geobacter enrichement. This study suggested that appropriate bioelectrochemical characteristics regulation in MFCs was essential in removing antibiotics and controlling ARGs.
Collapse
Affiliation(s)
- Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Qi Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Tao Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| |
Collapse
|
18
|
Yu MF, Shu B, Li Z, Liu G, Liu W, Yang Y, Ma L. Co-selective Pressure of Cadmium and Doxycycline on the Antibiotic and Heavy Metal Resistance Genes in Ditch Wetlands. Front Microbiol 2022; 13:820920. [PMID: 35250936 PMCID: PMC8895241 DOI: 10.3389/fmicb.2022.820920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Abuse of heavy metals and antibiotics results in the dissemination of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). Ditch wetlands are important sinks for heavy metals and antibiotics. The relationships between bacterial communities and MRG/ARG dissemination under dual stresses of heavy metals and antibiotics remain unclear. The responses of MRGs and ARGs to the co-selective pressure of cadmium (Cd) and doxycycline (DC) in ditch wetlands were investigated after 7-day and 84-day exposures. In ecological ditches, residual rates of Cd and DC varied from 0.4 to –5.73% and 0 to –0.61%, respectively. The greatest total relative abundance of ARGs was observed in the Cd 5 mg L–1 + DC 50 mg L–1 group. A significant level of DC (50 mg L–1) significantly reduced the total relative abundances of MRGs at a concentration of 5 mg L–1 Cd stress. Redundancy analysis indicated that Cd and DC had strong positive effects on most ARGs and MRGs after a 7-day exposure. Meanwhile, the class 1 integron gene (intI1) exhibited strong positive correlations with most ARGs and cadmium resistance genes (czcA) after an 84-day exposure. Network analysis showed that Acinetobacter and Pseudomonas were the potential dominant host genera for ARGs and MRGs, and tetracycline resistance genes (tetA), czcA, and intI1 shared the same potential host bacteria Trichococcus after an 84-day exposure.
Collapse
Affiliation(s)
- Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bizhi Shu
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhixuan Li
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Liu
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Yuyi Yang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Lin Ma
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Lin Ma,
| |
Collapse
|
19
|
Zhang G, Sui X, Xu Y, Jiao Y, Chang JS, Lee DJ. Efficient removal of tetracycline using U-type continuous-flow bioelectrochemical system without ion exchange membrane or cathodic catalyst. BIORESOURCE TECHNOLOGY 2022; 346:126677. [PMID: 34999189 DOI: 10.1016/j.biortech.2022.126677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
A U-type membraneless continuous-flow bioelectrochemical system was developed to efficiently remove tetracycline and antibiotic resistance genes from synthetic wastewaters at hydraulic retention time of only eight hours. At the TC concentration of 20-80 mgL-1 in feed, the removals of tetracycline all exceeded 95%, over 60-1200 mgL-1 chemical oxygen demand, 30-150 mgL-1 NH4+-N, and at 5-25 °C, superior to the performances reported in literature. The maximum power of the BES system peaked at 0.416 Wm-3 at 20 mgL-1 TC feeding, corresponding to open circle voltage of 0.90 V and internal resistance of 799.8 Ω. The community analysis showed that the elevated TC loadings forced the predominate population to be evolved to TC-degrading consortium. The relative abundances of tetA, tetC, tetO, tetQ, and tetW in treated effluent ranged 1.20 × 10-6 to 2.60 × 10-4, revealing that the present BES reactor has superior removal efficiency of antibiotic resistance genes.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyu Sui
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yangyang Xu
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Jiao
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong.
| |
Collapse
|
20
|
Wen H, Zhu H, Yan B, Bañuelos G, Shutes B, Wang X, Cao S, Cheng R, Tian L. High removal efficiencies of antibiotics and low accumulation of antibiotic resistant genes obtained in microbial fuel cell-constructed wetlands intensified by sponge iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150220. [PMID: 34560453 DOI: 10.1016/j.scitotenv.2021.150220] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Using microbial fuel cells with constructed wetlands (MFC-CWs) for eliminating antibiotics has recently attracted extensive attention. However, antibiotic removal efficiencies in MFC-CWs must be enhanced, and the accumulation of antibiotic resistant genes (ARGs) remains an unmanageable issue. This study tries to enhance the antibiotic removal in synthetic wastewater and reduce ARGs by adding sponge iron (s-Fe0) and calcium peroxide to the anode and cathode of MFC-CWs, respectively, and/or simultaneously. The results demonstrated that adding s-Fe0 and calcium peroxide to MFC-CWs could improve the removal efficiencies of sulfamethoxazole (SMX) and tetracycline (TC) by 0.8-1.3% and 6.0-8.7%. Therein, s-Fe0 also significantly reduced 84.10-94.11% and 49.61-60.63% of total sul and tet genes, respectively. Furthermore, s-Fe0 improved the voltage output, power density, columbic efficiency, and reduced the internal resistance of reactors. The intensification to the electrode layers posed a significant effect on the microbial community composition and functions, which motivated the shift of antibiotic removal, accumulation of ARGs and bioelectricity generation in MFC-CWs. Given the overall performance of MFC-CWs, adding s-Fe0 to the anode region of MFC-CWs was found to be an effective strategy for removing antibiotics and reducing the accumulation of ARGs.
Collapse
Affiliation(s)
- Huiyang Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Shujing Cao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
21
|
Hoang AT, Nižetić S, Ng KH, Papadopoulos AM, Le AT, Kumar S, Hadiyanto H, Pham VV. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. CHEMOSPHERE 2022; 287:132285. [PMID: 34563769 DOI: 10.1016/j.chemosphere.2021.132285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Agis M Papadopoulos
- Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Postal Address: GR-54124, Thessaloniki, Greece
| | - Anh Tuan Le
- School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Sunil Kumar
- Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| | - H Hadiyanto
- Center of Biomass and Renewable Energy (CBIORE), Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang, 50271, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, SH Semarang, 50241, Indonesia.
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Liu X, Lu S, Liu Y, Wang Y, Guo X, Chen Y, Zhang J, Wu F. Performance and mechanism of sulfamethoxazole removal in different bioelectrochemical technology-integrated constructed wetlands. WATER RESEARCH 2021; 207:117814. [PMID: 34741898 DOI: 10.1016/j.watres.2021.117814] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Sulfamethoxazole (SMX) has a high concentration and detection frequency in aquatic environments due to the poor removal efficiency of traditional biological treatment processes. Bioelectrochemical technology-integrated constructed wetlands (CWs) have great potential for SMX removal; however, the process of SMX removal in different bioelectrochemical technology-integrated CWs (microbial fuel cell (MFC) and direct current (EC)) remains unclear. To address this, we examined the mechanism of SMX removal in MFCCW and ECCW. The results revealed that the SMX removal efficiency can reach 96.0 ± 2.4% in the ECCW and 97.2 ± 2.2% in the MFCCW. The enhancement of MFC for SMX removal in CW was slightly better than that in direct current (p > 0.05). It was found that the adsorption process of SMX in the substrate promoted by EC was more enhanced than that by MFC. Furthermore, bioelectrochemical technology improved plant activity, including root and enzymatic (superoxide dismutase, peroxidase, and catalase) activities, and fluorescence parameters (photochemical quenching coefficient, non-photochemical quenching coefficient, and quantum efficiency of PS II). Significant differences were found between CW and ECCW (p < 0.05), while no significant differences were found between CW and MFCCW (p > 0.05). The microbial activity and abundance in CW were improved by bioelectrochemical technology, and the microbial community structure was optimised to be simpler and more stable. However, EC tended to promote microbial and plant activity in CW, whereas MFC tended to optimise the microbial community and improve the tightness and stability of the module. The enhanced difference might also account for the changes in the SMX degradation pathway. 4-aminobenzenesulfonic acid (TP174), 3-amino-5-methylisoxazole (TP99) and 5-methylisoxazole (TP84) were all common products in the three reactors, whereas TP99 underwent further ring-opening in MFCCW and TP174 underwent further hydrolysis in ECCW. This study provided an important reference for the targeted regulation of plants and microorganisms in constructed wetlands via different bioelectrochemistry to enhance characteristic pollutants degradation.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ying Liu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqiang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 250100, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
23
|
Ohore OE, Qin Z, Sanganyado E, Wang Y, Jiao X, Liu W, Wang Z. Ecological impact of antibiotics on bioremediation performance of constructed wetlands: Microbial and plant dynamics, and potential antibiotic resistance genes hotspots. JOURNAL OF HAZARDOUS MATERIALS 2021; 424:127495. [PMID: 34673400 DOI: 10.1016/j.jhazmat.2021.127495] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) are nature-based solutions for treating domestic and livestock wastewater which may contain residual antibiotics concentration. Antibiotics may exert selection pressure on wetland's microbes, thereby increasing the global antibiotics resistance problems. This review critically examined the chemodynamics of antibiotics and antibiotics resistance genes (ARGs) in CWs. Antibiotics affected the biogeochemical cycling function of microbial communities in CWs and directly disrupted the removal efficiency of total nitrogen, total phosphorus, and chemical oxygen demand by 22%, 9.3%, and 24%, respectively. Since changes in microbial function and structure are linked to the emergence and propagation of antibiotic resistance, antibiotics could adversely affect microbial diversity in CWs. The cyanobacteria community seemed to be particularly vulnerable, while Proteobacteria could resist and persist in antibiotics contaminated wetlands. Antibiotics triggered excitation responses in plants and increased the root activities and exudates. Microbes, plants, and substrates play crucial roles in antibiotic removal. High removal efficiency was exhibited for triclosan (100%) > enrofloxacin (99.8%) > metronidazole (99%) > tetracycline (98.8%) > chlortetracycline (98.4%) > levofloxacin (96.69%) > sulfamethoxazole (91.9%) by the CWs. This review showed that CWs exhibited high antibiotics removal capacity, but the absolute abundance of ARGs increased, suggesting CWs are potential hotspots for ARGs. Future research should focus on specific bacterial response and impact on microbial interactions.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Edmond Sanganyado
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Organization of African Academic Doctors, Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Yuwen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wenhua Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
24
|
Umar MF, Rafatullah M, Abbas SZ, Ibrahim MNM, Ismail N. Bioelectricity production and xylene biodegradation through double chamber benthic microbial fuel cells fed with sugarcane waste as a substrate. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126469. [PMID: 34192640 DOI: 10.1016/j.jhazmat.2021.126469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Xylene, a recalcitrant compound present in wastewater from activities of petrochemical and chemical industries causes chronic problems for living organisms and the environment. Xylene contaminated wastewater may be biodegraded through a benthic microbial fuel cell (BMFC) as seen in this study. Xylene was oxidized into intermediate 3-methyl benzoic acid and entirely converted into non-toxic carbon dioxide. The highest voltage of the BMFC reactor was generated at 410 mV between 23 and 90 days when cell potential was 1 kΩ. The reactor achieved a maximum power density of about 63 mW/m2, and a current of 0.4 mA which was optimized from variable resistance (20 Ω - 1 kΩ). However, the maximum biodegradation efficiency of the BMFC was at 87.8%. The cyclic voltammetry curve helped to determine that the specific capacitance was 0.124 F/g after 30 days of the BMFC operation. Furthermore, the fitting equivalent circuit was observed with the help of Nyquist plot for calculating overall internal resistance of 65.82 Ω on 30th day and 124.5 Ω on 80th day. Staphylococcus edaphicus and Staphylococcus sparophiticus were identified by 16S rRNA sequencing as the dominant species in the control and BMFC electrode, presumably associated with xylene biodegradation.
Collapse
Affiliation(s)
- Mohammad Faisal Umar
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | | | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
25
|
Gong Y, Liu L, Wang F, Pei Y, Liu S, Lyu R, Luo X. Aminated chitosan/cellulose nanocomposite microspheres designed for efficient removal of low-concentration sulfamethoxazole from water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|