1
|
Li J, Chang R, Li L, Zhang H, Li J. Spatiotemporal variation of polycyclic aromatic hydrocarbons in Tibetan lake sediment cores reveals the influence of forest fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176737. [PMID: 39383964 DOI: 10.1016/j.scitotenv.2024.176737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Despite declining anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) due to global control strategies, forest fire emissions have been increasing, significantly affecting PAH dynamics in global sinks. This study investigated the spatiotemporal variations of sedimentary PAHs in three Tibetan lakes-Yiong Tso, Yamdrok Yumtso, and Urru Tso-to determine the influence of forest fires on PAH levels and historical trends. Yiong Tso Lake, located in a fire-affected watershed, exhibited the highest PAH concentrations (average of 43.4 ± 25.7 ng/g) with significant fluctuations since the 1920s, peaking in the 1960s (46.3 ng/g) and 1980s (91.3 ng/g), corresponding to periods of intense forest fires. This pattern aligned with source contribution estimates using the modified Cohen's d (mcd), indicating the dominance of forest fires as a PAH source until the 1990s. PAH concentrations decreased with increasing distance from the southeastern Tibetan Forest, as observed in Yamdrok Yumtso (average of 36.1 ± 19.9 ng/g) and Urru Tso (average of 16.4 ± 6.9 ng/g). Temporal variations in PAH concentrations and mcd values from these lakes also reflected a response to forest fires during the 1960s, suggesting a widespread influence of forest-fire-derived PAHs across the plateau. The impact of forest fires on sedimentary PAHs was expected to persist for decades, with an estimated half-life of approximately 11-12 years. These findings highlight significant emissions of PAHs from forest fires in the Tibetan Plateau, potentially transforming regional PAH dynamics and influencing global cycling.
Collapse
Affiliation(s)
- Jiping Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lewei Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - He Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
2
|
Tsiodra I, Grivas G, Bougiatioti A, Tavernaraki K, Parinos C, Paraskevopoulou D, Papoutsidaki K, Tsagkaraki M, Kozonaki FA, Oikonomou K, Nenes A, Mihalopoulos N. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175416. [PMID: 39142411 DOI: 10.1016/j.scitotenv.2024.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.
Collapse
Affiliation(s)
- Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Georgios Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Kalliopi Tavernaraki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece
| | - Despina Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Kyriaki Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Maria Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Faidra-Aikaterini Kozonaki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | | | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
3
|
Gigl F, Abdullahi M, Barnard M, Hollert H, Orsini L. Interactions between phenanthrene exposure and historical chemical stress: Implications for fitness and ecological resilience of the sentinel species Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174963. [PMID: 39069192 DOI: 10.1016/j.scitotenv.2024.174963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) arise from incomplete combustion of oil, coal, and gasoline, with lipophilic properties facilitating their widespread distribution and persistence. Due to their biochemical attributes, PAHs can accumulate in animal tissues, potentially causing mutagenic and carcinogenic effects. Since the industrial revolution, PAH concentrations in the environment have risen, with lakes showing levels from 0.159 to 33,090 μg/kg sediment. Despite acute toxicity studies showing adverse effects on freshwater organisms, the long-term impacts and synergistic interactions with other pollutants remain largely unexplored. This study investigates the impact of phenanthrene (PHE), a prominent PAH found in aquatic environments, on Daphnia magna, a species of significant ecological importance in freshwater ecosystems globally, being both a sentinel species for chemical pollution and a keystone organism in freshwater aquatic ecosystems. Leveraging the dormancy of D. magna, which spans decades or even centuries, we exposed strains with diverse histories of chemical contaminant exposure to environmentally relevant concentrations of PHE. Initially, acute exposure experiments were conducted in accordance with OECD guidelines across 16 Daphnia strains, revealing substantial variation in acute toxic responses, with strains naïve to chemical pollutants showing the lowest toxicity. Utilizing the median effect concentration EC10 derived from acute exposures, we assessed the impacts of chronic PHE exposure on life history traits and ecological endpoints of the 16 strains. To elucidate how historical exposure to other environmental stressors may modulate the toxicity of PHE, temporal populations of D. magna resurrected from a lake with a well-documented century-spanning history of environmental impact were utilized. Our findings demonstrate that PHE exposure induces developmental failure, delays sexual maturation, and reduces adult size in Daphnia. Populations of Daphnia historically exposed to chemical stress exhibited significantly greater fitness impacts compared to naïve populations. This study provides crucial insights into the augmented effects of PAHs interacting with other environmental stressors.
Collapse
Affiliation(s)
- Florian Gigl
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Muhammad Abdullahi
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marianne Barnard
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luisa Orsini
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
4
|
Wang S, He P, Wu X, Zan F, Yuan Z, Zhou J, Xu M. It's time to reevaluate the list of priority polycyclic aromatic compounds: Evidence from a large urban shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173988. [PMID: 38889819 DOI: 10.1016/j.scitotenv.2024.173988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Monitoring only 16 priority PAHs (Pri-PAHs) may greatly underestimate the pollutant load and toxicity of polycyclic aromatic compounds (PACs) in aquatic environments. There is an urgent need to reevaluate the list of priority PACs. To determine which PACs deserve priority monitoring, the occurrence, sources, and toxicity of 78 PACs, including 24 parent PAHs (Par-PAHs), 49 alkylated PAHs (Alk-PAHs), 3 oxygenated PAHs (OPAHs), carbazole, and dibenzothiophene were investigated for the first time in Lake Chaohu sediments, China. Concentrations of ∑Par-PAHs, ∑Alk-PAHs, and ∑OPAHs ranged from 35 to 165, 3.4-26, and 7.7-26 ng g-1, respectively. Concentrations of 16 Pri-PAHs have decreased by 1-2 orders of magnitude compared to a decade ago, owing to the effective implementation of PAHs emission control measures. Comparisons with the sediment quality guidelines indicated that 16 Pri-PAHs have negligible adverse effects on benthic organisms. Positive matrix factorization (PMF) model results showed that coal combustion was the major source of PACs (accounting for 23.5 %), followed by traffic emissions (23.4 %), petroleum volatilization (21.9 %), wood/biomass combustion (18.2 %), and biological/microbial transformation (13.1 %). The toxicity of PACs was assessed by calculating the BaP toxic equivalent concentrations (TEQBaP) and toxic units. It was found that Par-PAHs were the predominant toxic substances. In addition, monomethyl-BaPs, OPAHs, BeP, and 7,12-DMBaA should be prioritized for monitoring due to their noticeable contributions to overall toxicity. The contributions of different sources to the toxicity of PACs were determined based on PMF model results and TEQBaP values, which revealed that combustion sources mainly contributed to the comprehensive toxicity of PACs in Lake Chaohu sediments.
Collapse
Affiliation(s)
- Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui 241000, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengpeng He
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Fengyu Zan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jiale Zhou
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Miaoqing Xu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
5
|
Stalwick JA, Somers G, Eccles KM, Thomas PJ, Cunada C, Gurney KEB. Polycyclic aromatic compounds in a northern freshwater ecosystem: Patterns, sources, and the influences of environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:123962. [PMID: 38614424 DOI: 10.1016/j.envpol.2024.123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Polycyclic aromatic compounds (PACs) - a large group of organic chemicals naturally present in petroleum deposits (i.e., petrogenic) or released into the environment by incomplete combustion of organic materials (i.e., pyrogenic) - represent a potential risk to the health of aquatic ecosystems. In high latitude freshwater ecosystems, concentrations of PACs may be increasing, yet there are limited studies in such systems to assess change and to understand threats. Using 10 years of contemporary data from passive samplers deployed across five regions (n = 43 sites) in the Mackenzie River Basin, we (i) describe baseline levels of PACs, (ii) assess spatiotemporal patterns, and (iii) evaluate the extent to which environmental factors (fire, snowmelt, and proximity to oil infrastructure) influence concentrations in this system. Measured concentrations were low, relative to those in more southern systems, with mixtures primarily being dominated by non-alkylated, low molecular weight compounds. Concentrations were spatially consistent, except for two sites near Norman Wells (an area of active oil extraction) with increased levels. Similarly, observed annual variation was minimal, with 2014 having generally higher levels of PACs. We did not detect effects of fire, snowmelt, or oil infrastructure on concentrations. Taken together, our findings suggest that PACs in the Mackenzie River are currently at low levels and are primarily petrogenic in origin. They further indicate that ongoing monitoring and testing of environmental drivers (especially at finer spatial scales) are needed to better predict how ecosystem change will influence PAC levels in the basin and in other northern systems.
Collapse
Affiliation(s)
- Jordyn A Stalwick
- Science and Technology Branch, Environment and Climate Change Canada, Prairie Northern Wildlife Research Centre, 115 Perimeter Road, Saskatoon, SK, Canada, S7N 0X4.
| | - Gila Somers
- Department of Environment and Climate Change, Government of the Northwest Territories, 600 5102 50th Ave, Yellowknife, NT, Canada, X1A 2L9
| | - Kristin M Eccles
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9
| | - Philippe J Thomas
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada, K1A 0H3
| | - Christopher Cunada
- Department of Environment and Climate Change, Government of the Northwest Territories, Highway 5, X0E 0P0, Fort Smith, NT, Canada
| | - Kirsty E B Gurney
- Science and Technology Branch, Environment and Climate Change Canada, Prairie Northern Wildlife Research Centre, 115 Perimeter Road, Saskatoon, SK, Canada, S7N 0X4
| |
Collapse
|
6
|
Barros B, Oliveira M, Morais S. Continent-based systematic review of the short-term health impacts of wildfire emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:387-415. [PMID: 37469022 DOI: 10.1080/10937404.2023.2236548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| |
Collapse
|
7
|
Fu X, Kokkinaki A, Shi X, Yu J, Gong X, Zhang Y, Wu J. An ice- air-water-NAPL multiphase model for simulating NAPL migration in subsurface system under freeze-thaw condition. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 257:104214. [PMID: 37348416 DOI: 10.1016/j.jconhyd.2023.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Non-aqueous phase liquid (NAPL) leakage poses serious threats to human health and the environment. Understanding NAPL migration and distribution in subsurface systems is crucial for developing effective remediation strategies. Multiphase flow modeling is an important tool to quantitatively describe the NAPL migration process in the subsurface. However, most multiphase flow models are built for temperatures typical of warmer climates and above freezing conditions, only considering two phases (water-NAPL) or three phases (air-water-NAPL). To date, few studies simulate NAPL migration in a four-phase system (ice-air-water-NAPL), which would be more appropriate for cold regions. In this study, we developed a coupled non-isothermal multiphase transport model to quantitatively describe NAPL migration in a four-phase (ice, gas, water, NAPL) system. The ice phase was added in the continuity equations and the constitutive relationship between unfrozen water content and temperature was applied to solve the energy and flow equations. The developed mathematical model was evaluated using a two-dimensional experiment under freeze-thaw cycles (FTCs) with an R2 = 0.8803 between the simulated and observed NAPL saturation. Next, we evaluated the effect of freezing-induced changes in pressure and density between LNAPL and DNAPL on NAPL distribution under freeze-thaw condition. Simulation results show that ignoring the impact of ice formation and thawing during freeze-thaw cycles for LNAPL and DNAPL transport simulations can result in up to a 48% and 13% difference in model predictions of local NAPL saturations respectively, affecting model predictions of overall NAPL spatial distributions and potentially predicted remediation effectiveness.
Collapse
Affiliation(s)
- Xiaoqin Fu
- School of Earth Sciences and Engineering, Nanjing University, Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, Nanjing 210023, China
| | - Amalia Kokkinaki
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, USA
| | - Xiaoqing Shi
- School of Earth Sciences and Engineering, Nanjing University, Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, Nanjing 210023, China.
| | - Jun Yu
- Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210049, China
| | - Xulong Gong
- Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210049, China
| | - Yan Zhang
- Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210049, China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Nanjing University, Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources, Nanjing 210023, China
| |
Collapse
|
8
|
Song S, Chen B, Huang T, Ma S, Liu L, Luo J, Shen H, Wang J, Guo L, Wu M, Mao X, Zhao Y, Gao H, Ma J. Assessing the contribution of global wildfire biomass burning to BaP contamination in the Arctic. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100232. [PMID: 36685748 PMCID: PMC9852607 DOI: 10.1016/j.ese.2022.100232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have become cause for growing concern in the Arctic ecosystems, partly due to their stable levels despite global emission reduction. Wildfire is considered one of the primary sources that influence PAH levels and trends in the Arctic, but quantitative investigations of this influence are still lacking. This study estimates the global emissions of benzo[a]pyrene (BaP), a congener of PAHs with high carcinogenicity, from forest and grassland fires from 2001 to 2020 and simulates the contributions of wildfire-induced BaP emissions from different source regions to BaP contamination in the Arctic. We find that global wildfires contributed 29.3% to annual averaging BaP concentrations in the Arctic from 2001 to 2020. Additionally, we show that wildfires contributed significantly to BaP concentrations in the Arctic after 2011, enhancing it from 10.1% in 2011 to 83.9% in 2020. Our results reveal that wildfires accounted for 94.2% and 50.8% of BaP levels in the Asian Arctic during boreal summer and autumn, respectively, and 74.2% and 14.5% in the North American Arctic for the same seasons. The source-tagging approach identified that local wildfire biomass emissions were the largest source of BaP in the Arctic, accounting for 65.7% of its concentration, followed by those of Northern Asia (17.8%) and Northern North America (13.7%). Our findings anticipate wildfires to play a larger role in Arctic PAH contaminations alongside continually decreasing anthropogenic emissions and climate warming in the future.
Collapse
Affiliation(s)
- Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Boqi Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuxin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Luqian Liu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jinmu Luo
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 5180551, PR China
| | - Jiaxin Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Liang Guo
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Min Wu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
9
|
Stern GA, Macdonald CR, Carvalho PC, Wolfe T, Ferraz F. Baseline levels and characterization of hydrocarbons in surface marine sediments along the transportation corridor in Hudson Bay: A multivariate analysis of n-alkanes, PAHs and biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158718. [PMID: 36113804 DOI: 10.1016/j.scitotenv.2022.158718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Hudson Bay is a small arctic inland shelf sea which receives large amounts of freshwater from riverine discharges, with marine flow from the north and the Atlantic. A warming climate has resulted in an expanded open water season which will result in an increase in shipping of fuel oil and petroleum to communities and mines on the western shore, increasing the risk of hydrocarbon releases. To evaluate the status of hydrocarbons, surface sediments were collected at 34 locations in the transportation route and offshore and analysed for several types of hydrocarbons. Total hydrocarbons varied by over 25 times between sites, reaching a maximum of 1116 μg/g OC (organic carbon basis) in Hudson Strait due to low molecular weight n-alkanes from marine primary production. The gross mean for all sites was 344 μg/g OC (GSD = 173-682), roughly equivalent to other remote sites in the Canadian Arctic with no known local hydrocarbon source. n-alkanes accounted for >90 % of residues. Diagnostic ratios (e.g., Carbon Preference Index (CPI), Odd-Even Predominance (OEP)) indicated mixed sources of n-alkanes, likely due to the input from vascular plants and ombrotrophic peat in northern and western watersheds, and primary production within the Bay. The elevated proportion of high molecular weight n-alkanes at deep water sites is consistent with lotic particulate organic matter deposited in the nearshore environment and redeposited offshore. Ʃ36PAHs were a small fraction (1.9 %) of hydrocarbons, with a gross mean of 5.68 μg/g OC (GSD = 3.30-9.79). PCA separated deep water sediments from nearshore and community samples due to 4 alkylated naphthalenes which usually indicate a petrogenic source but probably indicates a natural source due to the lack of other petrogenic markers. Priority PAHs (i.e., Ʃ16PAH) varied from 31.5 % to 56.6 % of the Ʃ36PAH residues. The concentrations of individual PAHs were well below the Interim Sediment Quality Guidelines recommended by the Canadian Council of Ministers of the Environment.
Collapse
Affiliation(s)
- Gary A Stern
- Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada.
| | | | | | - Teresinha Wolfe
- Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada
| | - Fernanda Ferraz
- Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Degrendele C, Kanduč T, Kocman D, Lammel G, Cambelová A, Dos Santos SG, Horvat M, Kukučka P, Holubová Šmejkalová A, Mikeš O, Nuñez-Corcuera B, Přibylová P, Prokeš R, Saňka O, Maggos T, Sarigiannis D, Klánová J. NPAHs and OPAHs in the atmosphere of two central European cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148528. [PMID: 34328964 PMCID: PMC8434474 DOI: 10.1016/j.scitotenv.2021.148528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 05/24/2023]
Abstract
Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk.
Collapse
Affiliation(s)
| | - Tjaša Kanduč
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | - David Kocman
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | | | | | - Saul Garcia Dos Santos
- Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental Instituto de Salud Carlos III, Spain
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | - Petr Kukučka
- RECETOX Centre, Masaryk University, Czech Republic
| | | | - Ondřej Mikeš
- RECETOX Centre, Masaryk University, Czech Republic
| | - Beatriz Nuñez-Corcuera
- Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental Instituto de Salud Carlos III, Spain
| | | | - Roman Prokeš
- RECETOX Centre, Masaryk University, Czech Republic
| | - Ondřej Saňka
- RECETOX Centre, Masaryk University, Czech Republic
| | - Thomas Maggos
- Atmospheric Chemistry & Innovative Technologies Laboratory, NCSR "Demokritos", Greece
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece; University School of Advanced Study, Pavia, Italy
| | - Jana Klánová
- RECETOX Centre, Masaryk University, Czech Republic
| |
Collapse
|
11
|
Marvin CH, Berthiaume A, Burniston DA, Chibwe L, Dove A, Evans M, Hewitt LM, Hodson PV, Muir DCG, Parrott J, Thomas PJ, Tomy GT. Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117442. [PMID: 34380209 DOI: 10.1016/j.envpol.2021.117442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.
Collapse
Affiliation(s)
- Christopher H Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| | - Alicia Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, Quebec, Canada
| | - Deborah A Burniston
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Leah Chibwe
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Alice Dove
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Marlene Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Peter V Hodson
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Derek C G Muir
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Joanne Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Philippe J Thomas
- Wildlife and Landscape Research Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Galarneau E. Editorial to "Polycyclic aromatic compounds (PACs) in the Canadian environment: Overview of results and knowledge gaps from the special issue". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117607. [PMID: 34148676 DOI: 10.1016/j.envpol.2021.117607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.
| |
Collapse
|