1
|
Xie JF, Gu JY, Li LZ, Guo Y, Liu LY. First report on liquid crystal monomers in tree barks surrounding a display manufacturer: Insights for atmospheric transport and establishment of priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135372. [PMID: 39106723 DOI: 10.1016/j.jhazmat.2024.135372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Tree bark has been proven as an effective passive air sampler, particularly where access to active sampling methods is limited. In this study, 60 target liquid crystal monomers (LCMs; comprising 10 cyanobiphenyl and analogs (CBAs), 13 biphenyl and analogs (BAs), and 37 fluorinated biphenyl and analogs (FBAs)) were analyzed in 34 tree barks collected from the vicinity of a liquid crystal display (LCD) manufacturer situated in the Pearl River Delta, South China. The concentrations of LCMs in tree barks ranged from 1400 to 16000 ng/g lipid weight, with an average of 5900 ng/g lipid weight. Generally, bark levels of BAs exponentially decreased within 5 km of the LCD manufacturer. The profiles of LCMs in tree barks are similar to previously reported patterns in gaseous phase, suggesting bark's efficacy as a sampler for gaseous LCMs. The inclusion of different congeners in existing studies on the environmental occurrence of LCMs has hindered the horizontal comparisons. Therefore, this study established a list of priority LCMs based on environmental monitoring data and the publicly accessible production data. This list comprised 146 LCMs, including 63 REACH registered LCMs that haven't been analyzed in any study and 56 belonging to 4 types of mainstream LCMs.
Collapse
Affiliation(s)
- Jiong-Feng Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China
| | - Jia-Yi Gu
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Zhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Research, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Akbarimorad S, Sobhanardakani S, Hosseini NS, Martín DB. Pinus eldarica (L.) bark as urban atmospheric trace element pollution bioindicator: pollution status, spatial variations, and quantitative source apportionment based on positive matrix factorization receptor model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:771. [PMID: 39085500 DOI: 10.1007/s10661-024-12929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
In this study, a total of 180 Pinus eldarica bark samples were collected from different regions of Hamedan megacity, Iran, in 2023, and contents of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the samples were determined using ICP-OES. The results illustrated that the average contents of all the analyzed elements were greater than those in the background contents, which presumably demonstrated anthropogenic sources of these potentially toxic elements (PTEs). The greatest concentrations of the analyzed PTEs for different functional areas were observed in specimens collected from commercial or industrial areas, indicating the impact of human entries. The I-geo values were in the range of "unpolluted to moderately polluted" to "moderately to heavily polluted", PI showed "moderate to very high pollution", and PLI reflected high to very high pollution levels for the whole study area. Additionally, the cumulative mean value of ecological risk (RI) was found to be 152, demonstrating moderate ecological risk across the study area. The results of positive matrix factorization (PMF) showed that the PTE contamination in the air of Hamedan could mainly have an anthropogenic origin (82.7%) and that the traffic emissions as the primary pollution source (33.6%) make the highest contribution to the PTE pollution and ecological risks in the study area. In residential areas, demolition and construction activities could be considered the main sources of PTEs, while in commercial and industrial areas traffic emissions and industrial emissions, could be regarded as the main sources of such pollution, respectively. In conclusion, this study provides a useful approach to identifying the sources and contributions of the toxic elements in different functional areas and can inform future endeavors that aim at managing and controlling metal element pollution.
Collapse
Affiliation(s)
- Shima Akbarimorad
- Department of Energy and Fuels, School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003, Madrid, Spain
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Nayereh Sadat Hosseini
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - David Bolonio Martín
- Department of Energy and Fuels, School of Mining and Energy Engineering, Universidad Politécnica de Madrid, 28003, Madrid, Spain
| |
Collapse
|
3
|
Liu J, Dong L, Zhou L, Yang W, Shi S, Dong S, Zhang H, Zhang X, Guo J, Zhang L. Tree barks for retrospective measurement and source appointment of airborne perfluoroalkyl and polyfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123346. [PMID: 38215867 DOI: 10.1016/j.envpol.2024.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Tree bark is a useful bioindicator of atmospheric pollution. It is specially suitable for airborne perfluoroalkyl and polyfluoroalkyl substances (PFASs) investigation due to persistence of ionic PFASs. The present work firstly systematically studied tree barks as a bioindicator of airborne PFASs. Comparison with the regular active and passive samplers found barks could produce long-term measurement of airborne PFASs, and could record the historical emission of PFASs with retrospective time frame as long as decades. Factors, e.g. tree type, trunk diameter, and sampling depth, can affect PFAS accumulation in barks, and these factors should be kept consistent during sampling. In a study area spatial distribution of airborne PFASs can be obtained by interpolation of bark results, and the concerned region can be located. Properties of the emission sources can be characterized, and the potential sources can be tracked based on the bark results. Their contributions can be further estimated by the source appointment strategies. In the economically and industrially developed study area of the present study, eight cities of southern Jiangsu Province of China, total ionic PFAS concentration of camphor bark samples collected in 34 sites was 0.44-359 ng/g dw (dry weight), dominated by perfluoroalkyl carboxylic acids (PFCAs). Two types of possible sources were characterized as with long-chained PFCAs and PFOA (perfluorooctanoic acid) as the main components respectively. The sources were appointed as fluoropolymer manufacturing and textile industries, the important PFAS application fields, and their relative contribution was estimated as 32.5% and 67.5% respectively. The present study can provide useful advice to the method framework of using barks for long-term occurrence investigation, concerned region location, and emission source appointment of airborne PFASs in a study area. Based on the bark results, effective strategies can be further made for PFAS pollution elimination and risk control.
Collapse
Affiliation(s)
- Jinlin Liu
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China.
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Li Zhou
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Wenlong Yang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Shuangxin Shi
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Shuping Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Hui Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Xiulan Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Jing Guo
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| | - Lifei Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100029, PR China; Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, PR China
| |
Collapse
|
4
|
Xu C, Xu C, Zhou Q, Shen C, Peng L, Liu S, Yin S, Li F. Spatial distribution, isomer signature and air-soil exchange of legacy and emerging poly- and perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123222. [PMID: 38145639 DOI: 10.1016/j.envpol.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Widespread occurrences of various poly- and perfluoroalkyl substances (PFAS) in terrestrial environment calls for the growing interest in their transport behaviors. However, limited studies detected PFAS with structural diversity in tree barks, which reflect the long-term contamination in atmosphere and play a vital role in air-soil exchange behaviors. In this study, 26 PFAS congeners and typical branched isomers were investigated in surface soils and tree barks at 28 sites along the Taihu Lake, Taipu River, and Huangpu River. Concentrations of total PFAS in soils and tree barks were 0.991-29.4 and 7.99-188 ng/g dw, with PFPeA and PFDoA were the largest contributors in the two matrices. The highest PFAS levels were found in the Taihu Lake watershed, where textile manufacturing and metal plating activities highly prosper. With regard to the congener and isomer signatures, short-chain homologs dominated in soils (65.5%), whereas long-chain PFAS showed a major proportion in barks (41.9%). The composition of linear isomers of PFOS, PFOA and PFHxS implied that precursor degradation might be an important source of PFAS in addition to the 3M electrochemical fluorination (ECF). Additionally, the distance from the emission source, total organic carbon (TOC), logKOA and logKOW were considered potential influencing factors in PFAS distributions. Based on the multi-media fugacity model, about 71% of the fugacity fraction (ffs) values of the PFAS were below 0.3, indicating the dominant deposition from the atmosphere to the soil. The average fluxes of air-soil exchange for PFAS were -0.700 ± 11.0 ng/(m2·h). Notably, the estimated daily exposure to PFAS ranged from 9.57 × 10-2 to 8.59 × 10-1 ng/kg·bw/day for children and 3.31 × 10-2 to 3.09 × 10-1 ng/kg·bw/day for adults, suggesting low risks from outdoor inhalation and dermal uptake. Overall, results from distribution with structural diversity, air-soil exchange and preliminary risk assessment. This study provided in-depth insight of PFAS in multi-medium environment and bridged gaps between field data and policy-making for pollution control.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chenman Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Leni Peng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
5
|
Feng X, Yi S, Shan G, Chen X, Yang Y, Yang L, Jia Y, Zhu Y, Zhu L. Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130473. [PMID: 36455325 DOI: 10.1016/j.jhazmat.2022.130473] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
With the stringent restrictions on long-chain per- and polyfluoroalkyl substances (PFASs), ether-PFASs are being widely used as alternatives. We estimated that the mega fluorochemical industrial park (FIP) in Shandong, China, had emitted a maximum of 5040 kg and 1026 kg of hexafluoropropylene oxides (HFPOs), and 7560 kg and 1890 kg of perfluorooctanoic acid (PFOA) to water and air during 2021. In the surface water, groundwater, outdoor dust, soil, tree leaf and bark collected in the vicinity of the FIP, PFOA was predominant, followed by HFPOs. The much higher percentage of HFPO dimer acid (HFPO-DA) in groundwater than in surface water verified that this compound was more mobile in porous media. The strong correlations between the main PFASs in outdoor dust and surface soil suggested that the soil PFASs were mainly derived from air deposition, particularly for HFPO trimer acid (HFPO-TA), which has a stronger binding affinity with particles than PFOA. High percentage of the hydroxylated product of 6:2 polyfluorinated ether sulfonic acid was observed in groundwater, implying reductive dechlorination might occur in groundwater. Strong correlations between PFASs in outdoor dust and those in tree leaf and bark magnified that tree could serve as a sampler to effectively monitor airborne PFASs. This study provides the first line of information about the discharge, transport, and fate of novel ether-PFASs in the multiple environmental media near a point source.
Collapse
Affiliation(s)
- Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR) of the People's Republic of China, Tianjin 300192, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Liu S, Liu Z, Tan W, Johnson AC, Sweetman AJ, Sun X, Liu Y, Chen C, Guo H, Liu H, Wan X, Zhang L. Transport and transformation of perfluoroalkyl acids, isomer profiles, novel alternatives and unknown precursors from factories to dinner plates in China: New insights into crop bioaccumulation prediction and risk assessment. ENVIRONMENT INTERNATIONAL 2023; 172:107795. [PMID: 36764184 DOI: 10.1016/j.envint.2023.107795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are contaminants of global concern, and the inadvertent consumption of PFAA-contaminated crops may pose a threat to public health. Therefore, systematically studying their source tracing, bioaccumulation prediction and risk assessments in crops is an urgent priority. This study investigated the source apportionment and transport of PFAAs and novel fluorinated alternatives (collectively as per- and polyfluoroalkyl substances, PFASs) from factories to agricultural fields in a fluorochemical industrial region of China. Furthermore, bioaccumulation specificities and prediction of these chemicals in different vegetables were explored, followed by a comprehensive risk assessment from agricultural fields to dinner plates which considered precursor degradation. A positive matrix factorization model revealed that approximately 70 % of PFASs in agricultural soils were derived from fluorochemical manufacturing and metal processing. Alarming levels of ∑PFASs ranged 8.28-84.3 ng/g in soils and 163-7176 ng/g in vegetables. PFAS with short carbon chain or carboxylic acid group as well as branched isomers exhibited higher environmental transport potentials and bioaccumulation factors (BAFs) across a range of vegetables. The BAFs of different isomers of perfluorooctanoic acid (PFOA) decreased as the perfluoromethyl group moved further from the acid functional group. Hexafluoropropylene oxide dimer acid (GenX) showed relatively low BAFs, probably related to its ether bond with a high affinity to soil. Vegetables with fewer Casparian strips (e.g., carrot and radish), or more protein, possessed larger BAFs of PFASs. A bioaccumulation equation integrating critical parameters of PFASs, vegetables and soils, was built and corroborated with a good contamination prediction. After a total oxidizable precursors (TOP) assay, incremental perfluoroalkyl carboxylic acids (PFCAs) were massively found (325-5940 ng/g) in edible vegetable parts. Besides, precursor degradation and volatilization loss of PFASs was firstly confirmed during vegetable cooking. A risk assessment based on the TOP assay was developed to assist the protection of vegetable consumers.
Collapse
Affiliation(s)
- Shun Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Limei Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Hua ZL, Gao C, Zhang JY, Li XQ. Perfluoroalkyl acids in the aquatic environment of a fluorine industry-impacted region: Spatiotemporal distribution, partition behavior, source, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159452. [PMID: 36265630 DOI: 10.1016/j.scitotenv.2022.159452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the temporal and spatial distributions, partition behaviors, sources, and risks of 14 perfluoroalkyl acids (PFAAs) in the aquatic environment of a fluorine industry-impacted region. The total concentrations of 14 PFAAs (ΣPFAAs) were 118.10-2235.4 ng/L, 40.00-2316.1 ng/g dw, and 6.90-180.5 ng/g dw in dissolved, suspended particle matter (SPM), and sedimentary phases, respectively. The predominant pollutants in the dissolved and SPM phases were perfluoroalkyl carboxylic acids (PFCAs) with carbon chain lengths <9, whereas C13 and C14 PFCAs accounted for a large proportion in the sedimentary phase. The dry season exhibited the highest concentration of ΣPFAAs in the dissolved phase (500.9 ± 350.2 ng/L), while the wet season showed the highest concentrations of ΣPFAAs in the SPM and sedimentary phases (591.6 ± 469.1 ng/g dw and 59.7 ± 35.5 ng/g dw, respectively). Significantly higher concentrations of PFAAs have been found in sewage plant and industrial areas. The concentration of PFAAs in the Xupu water source area (XPS) was slightly higher than that in other water source areas of the Yangtze River, which were either not affected or were less affected by the fluorine industry. The log KD-SPM (distribution coefficient between SPM and water), log KD-SED (distribution coefficient between sediment and water), and log KOC-SED (the organic carbon normalized distribution coefficient) of PFAAs showed significant differences between the wet season and dry season, which may also be affected by carbon chain length. Source identification results showed that industries, wastewater discharge, and nonpoint sources were the main sources of PFAAs in this region. The ecological risk posed by long-chain PFAAs in aquatic organisms cannot be ignored, especially in areas with intensive industrial and agricultural activities. Health risks may exist for local toddlers with long-term exposure to perfluorooctanoic acid (PFOA) through drinking water intake and dermal contact.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
8
|
Cheng H, Lv C, Li J, Wu D, Zhan X, Song Y, Zhao N, Jin H. Bioaccumulation and biomagnification of emerging poly- and perfluoroalkyl substances in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158117. [PMID: 35985598 DOI: 10.1016/j.scitotenv.2022.158117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence has demonstrated the wide environmental presence of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES) and p-perfluorous nonenoxybenzene sulfonate (PFNOBS). However, data on the bioaccumulation and trophic magnification of these emerging poly- and perfluoroalkyl substances (PFASs) in subtropical marine environment is still limited. In this study, seawater (n = 17), sediment (n = 14), and marine organism (27 species; n = 177) samples were collected from East China Sea, and analyzed them for legacy and emerging PFASs. Besides perfluoroalkyl carboxylates and perfluorooctane sulfonate (PFOS), 6:2 Cl-PFAES was always among the predominant PFASs detected in seawater, sediment, and marine organism. For emerging PFASs, 6:2 Cl-PFAES (mean ± SD, 3.1 ± 0.17), 8:2 Cl-PFAES (3.3 ± 0.35), and PFNOBS (3.3 ± 0.19) had lower bioaccumulation factors (BAF) than PFOS (3.4 ± 0.22) in marine fish. In crab, PFNOBS (3.7 ± 0.33) had a lower biota-sediment accumulation factor (BSAF) than PFOS (3.9 ± 0.45). In snail, among all detected PFASs, PFNOBS (4.0 ± 0.42) had the highest mean log BSAF value. 8:2 Cl-PFAES consistently had a higher log BSAF value than 6:2 Cl-PFAES in snail and crab. Notably, these differences in BAF and BSAF are not significant. Among PFASs, 6:2 Cl-PFAES (2.3; 95 % confidence interval, CI: 1.9-2.6) displayed the highest trophic magnification factor (TMF). PFNOBS had the lowest TMF value (1.8, 95 % CI: 1.4-2.1), but which still indicates its weak biomagnification through the current marine food web. This is the first study reporting the bioaccumulation and biomagnification of PFNOBS in marine organisms, which deepens the understanding of its environmental behavior in the marine ecosystem.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Chenhan Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jianhui Li
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Dexin Wu
- Hangzhou Xinjing Environmental Protection Technology Co., Ltd., Hangzhou, Zhejiang 310012, PR China
| | - Xugang Zhan
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Ying Song
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
9
|
Liu Z, Xu C, Johnson AC, Sun X, Wang M, Xiong J, Chen C, Wan X, Ding X, Ding M. Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154413. [PMID: 35276179 DOI: 10.1016/j.scitotenv.2022.154413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The widely used legacy perfluoroalkyl acids (PFAAs) with serious environmental hazards are gradually restricted and being replaced by novel alternatives. Here, for an efficient control of emerging environmental risks in groundwater, we systematically studied the source apportionment, spatial attenuation, composition change and risk zoning of 12 PFAAs and five novel alternatives within a region of ~200 km2 around a mega fluorochemical industrial park (FIP) along the Yangtze River, and in-depth explored potential association between groundwater and soil pollution as well as influencing factors on contaminant migration and risk distribution in the aquifer. Short-chain PFAAs and novel alternatives together accounted for over 70% in groundwater, revealing their prevalence in replacing legacy perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Novel alternatives for PFOA were mainly hexafluoropropylene oxide dimer acid (GenX) and hexafluoropropylene oxide trimer acid (HFPO-TA), while those for PFOS were 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). PFAAs (maximum total: 1339 ng/L) and novel alternatives (maximum total: 208 ng/L) in groundwater were mostly derived from the FIP, and exhibited an exponentially decreasing trend with increasing distance. Compared with those in groundwater, more diverse sources of PFAAs and novel alternatives in surface soil were identified. The transport of these chemicals may be retarded by clayed surface soils with high organic matter contents. High aquifer permeability could generally promote the dilution and migration of PFAAs and novel alternatives in groundwater, as well as reduce the differences in their spatial distribution. Shorter-chain components with smaller molecules and higher hydrophilicity exhibited greater migration capacities in the aquifer. In addition, different levels of health risk from PFOS and PFOA were zoned based on drinking groundwater, and high risks tended to be distributed in areas with relatively poor aquifer water yield due to higher pollutant accumulation.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon OX 10 8BB, UK
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbe, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muyang Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|